4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 init_buffer(struct buffer_head
*bh
, bh_end_io_t
*handler
, void *private)
52 bh
->b_end_io
= handler
;
53 bh
->b_private
= private;
56 static int sync_buffer(void *word
)
58 struct block_device
*bd
;
59 struct buffer_head
*bh
60 = container_of(word
, struct buffer_head
, b_state
);
65 blk_run_address_space(bd
->bd_inode
->i_mapping
);
70 void fastcall
__lock_buffer(struct buffer_head
*bh
)
72 wait_on_bit_lock(&bh
->b_state
, BH_Lock
, sync_buffer
,
73 TASK_UNINTERRUPTIBLE
);
75 EXPORT_SYMBOL(__lock_buffer
);
77 void fastcall
unlock_buffer(struct buffer_head
*bh
)
79 smp_mb__before_clear_bit();
80 clear_buffer_locked(bh
);
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh
->b_state
, BH_Lock
);
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
90 void __wait_on_buffer(struct buffer_head
* bh
)
92 wait_on_bit(&bh
->b_state
, BH_Lock
, sync_buffer
, TASK_UNINTERRUPTIBLE
);
96 __clear_page_buffers(struct page
*page
)
98 ClearPagePrivate(page
);
99 set_page_private(page
, 0);
100 page_cache_release(page
);
103 static void buffer_io_error(struct buffer_head
*bh
)
105 char b
[BDEVNAME_SIZE
];
107 printk(KERN_ERR
"Buffer I/O error on device %s, logical block %Lu\n",
108 bdevname(bh
->b_bdev
, b
),
109 (unsigned long long)bh
->b_blocknr
);
113 * End-of-IO handler helper function which does not touch the bh after
115 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
116 * a race there is benign: unlock_buffer() only use the bh's address for
117 * hashing after unlocking the buffer, so it doesn't actually touch the bh
120 static void __end_buffer_read_notouch(struct buffer_head
*bh
, int uptodate
)
123 set_buffer_uptodate(bh
);
125 /* This happens, due to failed READA attempts. */
126 clear_buffer_uptodate(bh
);
132 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
133 * unlock the buffer. This is what ll_rw_block uses too.
135 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
137 __end_buffer_read_notouch(bh
, uptodate
);
141 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
143 char b
[BDEVNAME_SIZE
];
146 set_buffer_uptodate(bh
);
148 if (!buffer_eopnotsupp(bh
) && printk_ratelimit()) {
150 printk(KERN_WARNING
"lost page write due to "
152 bdevname(bh
->b_bdev
, b
));
154 set_buffer_write_io_error(bh
);
155 clear_buffer_uptodate(bh
);
162 * Write out and wait upon all the dirty data associated with a block
163 * device via its mapping. Does not take the superblock lock.
165 int sync_blockdev(struct block_device
*bdev
)
170 ret
= filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
173 EXPORT_SYMBOL(sync_blockdev
);
176 * Write out and wait upon all dirty data associated with this
177 * device. Filesystem data as well as the underlying block
178 * device. Takes the superblock lock.
180 int fsync_bdev(struct block_device
*bdev
)
182 struct super_block
*sb
= get_super(bdev
);
184 int res
= fsync_super(sb
);
188 return sync_blockdev(bdev
);
192 * freeze_bdev -- lock a filesystem and force it into a consistent state
193 * @bdev: blockdevice to lock
195 * This takes the block device bd_mount_sem to make sure no new mounts
196 * happen on bdev until thaw_bdev() is called.
197 * If a superblock is found on this device, we take the s_umount semaphore
198 * on it to make sure nobody unmounts until the snapshot creation is done.
200 struct super_block
*freeze_bdev(struct block_device
*bdev
)
202 struct super_block
*sb
;
204 down(&bdev
->bd_mount_sem
);
205 sb
= get_super(bdev
);
206 if (sb
&& !(sb
->s_flags
& MS_RDONLY
)) {
207 sb
->s_frozen
= SB_FREEZE_WRITE
;
212 sb
->s_frozen
= SB_FREEZE_TRANS
;
215 sync_blockdev(sb
->s_bdev
);
217 if (sb
->s_op
->write_super_lockfs
)
218 sb
->s_op
->write_super_lockfs(sb
);
222 return sb
; /* thaw_bdev releases s->s_umount and bd_mount_sem */
224 EXPORT_SYMBOL(freeze_bdev
);
227 * thaw_bdev -- unlock filesystem
228 * @bdev: blockdevice to unlock
229 * @sb: associated superblock
231 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
233 void thaw_bdev(struct block_device
*bdev
, struct super_block
*sb
)
236 BUG_ON(sb
->s_bdev
!= bdev
);
238 if (sb
->s_op
->unlockfs
)
239 sb
->s_op
->unlockfs(sb
);
240 sb
->s_frozen
= SB_UNFROZEN
;
242 wake_up(&sb
->s_wait_unfrozen
);
246 up(&bdev
->bd_mount_sem
);
248 EXPORT_SYMBOL(thaw_bdev
);
251 * Various filesystems appear to want __find_get_block to be non-blocking.
252 * But it's the page lock which protects the buffers. To get around this,
253 * we get exclusion from try_to_free_buffers with the blockdev mapping's
256 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
257 * may be quite high. This code could TryLock the page, and if that
258 * succeeds, there is no need to take private_lock. (But if
259 * private_lock is contended then so is mapping->tree_lock).
261 static struct buffer_head
*
262 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
264 struct inode
*bd_inode
= bdev
->bd_inode
;
265 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
266 struct buffer_head
*ret
= NULL
;
268 struct buffer_head
*bh
;
269 struct buffer_head
*head
;
273 index
= block
>> (PAGE_CACHE_SHIFT
- bd_inode
->i_blkbits
);
274 page
= find_get_page(bd_mapping
, index
);
278 spin_lock(&bd_mapping
->private_lock
);
279 if (!page_has_buffers(page
))
281 head
= page_buffers(page
);
284 if (bh
->b_blocknr
== block
) {
289 if (!buffer_mapped(bh
))
291 bh
= bh
->b_this_page
;
292 } while (bh
!= head
);
294 /* we might be here because some of the buffers on this page are
295 * not mapped. This is due to various races between
296 * file io on the block device and getblk. It gets dealt with
297 * elsewhere, don't buffer_error if we had some unmapped buffers
300 printk("__find_get_block_slow() failed. "
301 "block=%llu, b_blocknr=%llu\n",
302 (unsigned long long)block
,
303 (unsigned long long)bh
->b_blocknr
);
304 printk("b_state=0x%08lx, b_size=%zu\n",
305 bh
->b_state
, bh
->b_size
);
306 printk("device blocksize: %d\n", 1 << bd_inode
->i_blkbits
);
309 spin_unlock(&bd_mapping
->private_lock
);
310 page_cache_release(page
);
315 /* If invalidate_buffers() will trash dirty buffers, it means some kind
316 of fs corruption is going on. Trashing dirty data always imply losing
317 information that was supposed to be just stored on the physical layer
320 Thus invalidate_buffers in general usage is not allwowed to trash
321 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
322 be preserved. These buffers are simply skipped.
324 We also skip buffers which are still in use. For example this can
325 happen if a userspace program is reading the block device.
327 NOTE: In the case where the user removed a removable-media-disk even if
328 there's still dirty data not synced on disk (due a bug in the device driver
329 or due an error of the user), by not destroying the dirty buffers we could
330 generate corruption also on the next media inserted, thus a parameter is
331 necessary to handle this case in the most safe way possible (trying
332 to not corrupt also the new disk inserted with the data belonging to
333 the old now corrupted disk). Also for the ramdisk the natural thing
334 to do in order to release the ramdisk memory is to destroy dirty buffers.
336 These are two special cases. Normal usage imply the device driver
337 to issue a sync on the device (without waiting I/O completion) and
338 then an invalidate_buffers call that doesn't trash dirty buffers.
340 For handling cache coherency with the blkdev pagecache the 'update' case
341 is been introduced. It is needed to re-read from disk any pinned
342 buffer. NOTE: re-reading from disk is destructive so we can do it only
343 when we assume nobody is changing the buffercache under our I/O and when
344 we think the disk contains more recent information than the buffercache.
345 The update == 1 pass marks the buffers we need to update, the update == 2
346 pass does the actual I/O. */
347 void invalidate_bdev(struct block_device
*bdev
)
349 struct address_space
*mapping
= bdev
->bd_inode
->i_mapping
;
351 if (mapping
->nrpages
== 0)
354 invalidate_bh_lrus();
355 invalidate_mapping_pages(mapping
, 0, -1);
359 * Kick pdflush then try to free up some ZONE_NORMAL memory.
361 static void free_more_memory(void)
366 wakeup_pdflush(1024);
369 for_each_online_pgdat(pgdat
) {
370 zones
= pgdat
->node_zonelists
[gfp_zone(GFP_NOFS
)].zones
;
372 try_to_free_pages(zones
, 0, GFP_NOFS
);
377 * I/O completion handler for block_read_full_page() - pages
378 * which come unlocked at the end of I/O.
380 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
383 struct buffer_head
*first
;
384 struct buffer_head
*tmp
;
386 int page_uptodate
= 1;
388 BUG_ON(!buffer_async_read(bh
));
392 set_buffer_uptodate(bh
);
394 clear_buffer_uptodate(bh
);
395 if (printk_ratelimit())
401 * Be _very_ careful from here on. Bad things can happen if
402 * two buffer heads end IO at almost the same time and both
403 * decide that the page is now completely done.
405 first
= page_buffers(page
);
406 local_irq_save(flags
);
407 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
408 clear_buffer_async_read(bh
);
412 if (!buffer_uptodate(tmp
))
414 if (buffer_async_read(tmp
)) {
415 BUG_ON(!buffer_locked(tmp
));
418 tmp
= tmp
->b_this_page
;
420 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
421 local_irq_restore(flags
);
424 * If none of the buffers had errors and they are all
425 * uptodate then we can set the page uptodate.
427 if (page_uptodate
&& !PageError(page
))
428 SetPageUptodate(page
);
433 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
434 local_irq_restore(flags
);
439 * Completion handler for block_write_full_page() - pages which are unlocked
440 * during I/O, and which have PageWriteback cleared upon I/O completion.
442 static void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
444 char b
[BDEVNAME_SIZE
];
446 struct buffer_head
*first
;
447 struct buffer_head
*tmp
;
450 BUG_ON(!buffer_async_write(bh
));
454 set_buffer_uptodate(bh
);
456 if (printk_ratelimit()) {
458 printk(KERN_WARNING
"lost page write due to "
460 bdevname(bh
->b_bdev
, b
));
462 set_bit(AS_EIO
, &page
->mapping
->flags
);
463 set_buffer_write_io_error(bh
);
464 clear_buffer_uptodate(bh
);
468 first
= page_buffers(page
);
469 local_irq_save(flags
);
470 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
472 clear_buffer_async_write(bh
);
474 tmp
= bh
->b_this_page
;
476 if (buffer_async_write(tmp
)) {
477 BUG_ON(!buffer_locked(tmp
));
480 tmp
= tmp
->b_this_page
;
482 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
483 local_irq_restore(flags
);
484 end_page_writeback(page
);
488 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
489 local_irq_restore(flags
);
494 * If a page's buffers are under async readin (end_buffer_async_read
495 * completion) then there is a possibility that another thread of
496 * control could lock one of the buffers after it has completed
497 * but while some of the other buffers have not completed. This
498 * locked buffer would confuse end_buffer_async_read() into not unlocking
499 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
500 * that this buffer is not under async I/O.
502 * The page comes unlocked when it has no locked buffer_async buffers
505 * PageLocked prevents anyone starting new async I/O reads any of
508 * PageWriteback is used to prevent simultaneous writeout of the same
511 * PageLocked prevents anyone from starting writeback of a page which is
512 * under read I/O (PageWriteback is only ever set against a locked page).
514 static void mark_buffer_async_read(struct buffer_head
*bh
)
516 bh
->b_end_io
= end_buffer_async_read
;
517 set_buffer_async_read(bh
);
520 void mark_buffer_async_write(struct buffer_head
*bh
)
522 bh
->b_end_io
= end_buffer_async_write
;
523 set_buffer_async_write(bh
);
525 EXPORT_SYMBOL(mark_buffer_async_write
);
529 * fs/buffer.c contains helper functions for buffer-backed address space's
530 * fsync functions. A common requirement for buffer-based filesystems is
531 * that certain data from the backing blockdev needs to be written out for
532 * a successful fsync(). For example, ext2 indirect blocks need to be
533 * written back and waited upon before fsync() returns.
535 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
536 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
537 * management of a list of dependent buffers at ->i_mapping->private_list.
539 * Locking is a little subtle: try_to_free_buffers() will remove buffers
540 * from their controlling inode's queue when they are being freed. But
541 * try_to_free_buffers() will be operating against the *blockdev* mapping
542 * at the time, not against the S_ISREG file which depends on those buffers.
543 * So the locking for private_list is via the private_lock in the address_space
544 * which backs the buffers. Which is different from the address_space
545 * against which the buffers are listed. So for a particular address_space,
546 * mapping->private_lock does *not* protect mapping->private_list! In fact,
547 * mapping->private_list will always be protected by the backing blockdev's
550 * Which introduces a requirement: all buffers on an address_space's
551 * ->private_list must be from the same address_space: the blockdev's.
553 * address_spaces which do not place buffers at ->private_list via these
554 * utility functions are free to use private_lock and private_list for
555 * whatever they want. The only requirement is that list_empty(private_list)
556 * be true at clear_inode() time.
558 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
559 * filesystems should do that. invalidate_inode_buffers() should just go
560 * BUG_ON(!list_empty).
562 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
563 * take an address_space, not an inode. And it should be called
564 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
567 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
568 * list if it is already on a list. Because if the buffer is on a list,
569 * it *must* already be on the right one. If not, the filesystem is being
570 * silly. This will save a ton of locking. But first we have to ensure
571 * that buffers are taken *off* the old inode's list when they are freed
572 * (presumably in truncate). That requires careful auditing of all
573 * filesystems (do it inside bforget()). It could also be done by bringing
578 * The buffer's backing address_space's private_lock must be held
580 static inline void __remove_assoc_queue(struct buffer_head
*bh
)
582 list_del_init(&bh
->b_assoc_buffers
);
583 WARN_ON(!bh
->b_assoc_map
);
584 if (buffer_write_io_error(bh
))
585 set_bit(AS_EIO
, &bh
->b_assoc_map
->flags
);
586 bh
->b_assoc_map
= NULL
;
589 int inode_has_buffers(struct inode
*inode
)
591 return !list_empty(&inode
->i_data
.private_list
);
595 * osync is designed to support O_SYNC io. It waits synchronously for
596 * all already-submitted IO to complete, but does not queue any new
597 * writes to the disk.
599 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
600 * you dirty the buffers, and then use osync_inode_buffers to wait for
601 * completion. Any other dirty buffers which are not yet queued for
602 * write will not be flushed to disk by the osync.
604 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
606 struct buffer_head
*bh
;
612 list_for_each_prev(p
, list
) {
614 if (buffer_locked(bh
)) {
618 if (!buffer_uptodate(bh
))
630 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
632 * @mapping: the mapping which wants those buffers written
634 * Starts I/O against the buffers at mapping->private_list, and waits upon
637 * Basically, this is a convenience function for fsync().
638 * @mapping is a file or directory which needs those buffers to be written for
639 * a successful fsync().
641 int sync_mapping_buffers(struct address_space
*mapping
)
643 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
645 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
648 return fsync_buffers_list(&buffer_mapping
->private_lock
,
649 &mapping
->private_list
);
651 EXPORT_SYMBOL(sync_mapping_buffers
);
654 * Called when we've recently written block `bblock', and it is known that
655 * `bblock' was for a buffer_boundary() buffer. This means that the block at
656 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
657 * dirty, schedule it for IO. So that indirects merge nicely with their data.
659 void write_boundary_block(struct block_device
*bdev
,
660 sector_t bblock
, unsigned blocksize
)
662 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
664 if (buffer_dirty(bh
))
665 ll_rw_block(WRITE
, 1, &bh
);
670 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
672 struct address_space
*mapping
= inode
->i_mapping
;
673 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
675 mark_buffer_dirty(bh
);
676 if (!mapping
->assoc_mapping
) {
677 mapping
->assoc_mapping
= buffer_mapping
;
679 BUG_ON(mapping
->assoc_mapping
!= buffer_mapping
);
681 if (list_empty(&bh
->b_assoc_buffers
)) {
682 spin_lock(&buffer_mapping
->private_lock
);
683 list_move_tail(&bh
->b_assoc_buffers
,
684 &mapping
->private_list
);
685 bh
->b_assoc_map
= mapping
;
686 spin_unlock(&buffer_mapping
->private_lock
);
689 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
692 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
695 * If warn is true, then emit a warning if the page is not uptodate and has
696 * not been truncated.
698 static int __set_page_dirty(struct page
*page
,
699 struct address_space
*mapping
, int warn
)
701 if (unlikely(!mapping
))
702 return !TestSetPageDirty(page
);
704 if (TestSetPageDirty(page
))
707 write_lock_irq(&mapping
->tree_lock
);
708 if (page
->mapping
) { /* Race with truncate? */
709 WARN_ON_ONCE(warn
&& !PageUptodate(page
));
711 if (mapping_cap_account_dirty(mapping
)) {
712 __inc_zone_page_state(page
, NR_FILE_DIRTY
);
713 __inc_bdi_stat(mapping
->backing_dev_info
,
715 task_io_account_write(PAGE_CACHE_SIZE
);
717 radix_tree_tag_set(&mapping
->page_tree
,
718 page_index(page
), PAGECACHE_TAG_DIRTY
);
720 write_unlock_irq(&mapping
->tree_lock
);
721 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
727 * Add a page to the dirty page list.
729 * It is a sad fact of life that this function is called from several places
730 * deeply under spinlocking. It may not sleep.
732 * If the page has buffers, the uptodate buffers are set dirty, to preserve
733 * dirty-state coherency between the page and the buffers. It the page does
734 * not have buffers then when they are later attached they will all be set
737 * The buffers are dirtied before the page is dirtied. There's a small race
738 * window in which a writepage caller may see the page cleanness but not the
739 * buffer dirtiness. That's fine. If this code were to set the page dirty
740 * before the buffers, a concurrent writepage caller could clear the page dirty
741 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
742 * page on the dirty page list.
744 * We use private_lock to lock against try_to_free_buffers while using the
745 * page's buffer list. Also use this to protect against clean buffers being
746 * added to the page after it was set dirty.
748 * FIXME: may need to call ->reservepage here as well. That's rather up to the
749 * address_space though.
751 int __set_page_dirty_buffers(struct page
*page
)
753 struct address_space
*mapping
= page_mapping(page
);
755 if (unlikely(!mapping
))
756 return !TestSetPageDirty(page
);
758 spin_lock(&mapping
->private_lock
);
759 if (page_has_buffers(page
)) {
760 struct buffer_head
*head
= page_buffers(page
);
761 struct buffer_head
*bh
= head
;
764 set_buffer_dirty(bh
);
765 bh
= bh
->b_this_page
;
766 } while (bh
!= head
);
768 spin_unlock(&mapping
->private_lock
);
770 return __set_page_dirty(page
, mapping
, 1);
772 EXPORT_SYMBOL(__set_page_dirty_buffers
);
775 * Write out and wait upon a list of buffers.
777 * We have conflicting pressures: we want to make sure that all
778 * initially dirty buffers get waited on, but that any subsequently
779 * dirtied buffers don't. After all, we don't want fsync to last
780 * forever if somebody is actively writing to the file.
782 * Do this in two main stages: first we copy dirty buffers to a
783 * temporary inode list, queueing the writes as we go. Then we clean
784 * up, waiting for those writes to complete.
786 * During this second stage, any subsequent updates to the file may end
787 * up refiling the buffer on the original inode's dirty list again, so
788 * there is a chance we will end up with a buffer queued for write but
789 * not yet completed on that list. So, as a final cleanup we go through
790 * the osync code to catch these locked, dirty buffers without requeuing
791 * any newly dirty buffers for write.
793 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
795 struct buffer_head
*bh
;
796 struct list_head tmp
;
799 INIT_LIST_HEAD(&tmp
);
802 while (!list_empty(list
)) {
803 bh
= BH_ENTRY(list
->next
);
804 __remove_assoc_queue(bh
);
805 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
806 list_add(&bh
->b_assoc_buffers
, &tmp
);
807 if (buffer_dirty(bh
)) {
811 * Ensure any pending I/O completes so that
812 * ll_rw_block() actually writes the current
813 * contents - it is a noop if I/O is still in
814 * flight on potentially older contents.
816 ll_rw_block(SWRITE
, 1, &bh
);
823 while (!list_empty(&tmp
)) {
824 bh
= BH_ENTRY(tmp
.prev
);
825 list_del_init(&bh
->b_assoc_buffers
);
829 if (!buffer_uptodate(bh
))
836 err2
= osync_buffers_list(lock
, list
);
844 * Invalidate any and all dirty buffers on a given inode. We are
845 * probably unmounting the fs, but that doesn't mean we have already
846 * done a sync(). Just drop the buffers from the inode list.
848 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
849 * assumes that all the buffers are against the blockdev. Not true
852 void invalidate_inode_buffers(struct inode
*inode
)
854 if (inode_has_buffers(inode
)) {
855 struct address_space
*mapping
= &inode
->i_data
;
856 struct list_head
*list
= &mapping
->private_list
;
857 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
859 spin_lock(&buffer_mapping
->private_lock
);
860 while (!list_empty(list
))
861 __remove_assoc_queue(BH_ENTRY(list
->next
));
862 spin_unlock(&buffer_mapping
->private_lock
);
867 * Remove any clean buffers from the inode's buffer list. This is called
868 * when we're trying to free the inode itself. Those buffers can pin it.
870 * Returns true if all buffers were removed.
872 int remove_inode_buffers(struct inode
*inode
)
876 if (inode_has_buffers(inode
)) {
877 struct address_space
*mapping
= &inode
->i_data
;
878 struct list_head
*list
= &mapping
->private_list
;
879 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
881 spin_lock(&buffer_mapping
->private_lock
);
882 while (!list_empty(list
)) {
883 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
884 if (buffer_dirty(bh
)) {
888 __remove_assoc_queue(bh
);
890 spin_unlock(&buffer_mapping
->private_lock
);
896 * Create the appropriate buffers when given a page for data area and
897 * the size of each buffer.. Use the bh->b_this_page linked list to
898 * follow the buffers created. Return NULL if unable to create more
901 * The retry flag is used to differentiate async IO (paging, swapping)
902 * which may not fail from ordinary buffer allocations.
904 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
907 struct buffer_head
*bh
, *head
;
913 while ((offset
-= size
) >= 0) {
914 bh
= alloc_buffer_head(GFP_NOFS
);
919 bh
->b_this_page
= head
;
924 atomic_set(&bh
->b_count
, 0);
925 bh
->b_private
= NULL
;
928 /* Link the buffer to its page */
929 set_bh_page(bh
, page
, offset
);
931 init_buffer(bh
, NULL
, NULL
);
935 * In case anything failed, we just free everything we got.
941 head
= head
->b_this_page
;
942 free_buffer_head(bh
);
947 * Return failure for non-async IO requests. Async IO requests
948 * are not allowed to fail, so we have to wait until buffer heads
949 * become available. But we don't want tasks sleeping with
950 * partially complete buffers, so all were released above.
955 /* We're _really_ low on memory. Now we just
956 * wait for old buffer heads to become free due to
957 * finishing IO. Since this is an async request and
958 * the reserve list is empty, we're sure there are
959 * async buffer heads in use.
964 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
967 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
969 struct buffer_head
*bh
, *tail
;
974 bh
= bh
->b_this_page
;
976 tail
->b_this_page
= head
;
977 attach_page_buffers(page
, head
);
981 * Initialise the state of a blockdev page's buffers.
984 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
985 sector_t block
, int size
)
987 struct buffer_head
*head
= page_buffers(page
);
988 struct buffer_head
*bh
= head
;
989 int uptodate
= PageUptodate(page
);
992 if (!buffer_mapped(bh
)) {
993 init_buffer(bh
, NULL
, NULL
);
995 bh
->b_blocknr
= block
;
997 set_buffer_uptodate(bh
);
998 set_buffer_mapped(bh
);
1001 bh
= bh
->b_this_page
;
1002 } while (bh
!= head
);
1006 * Create the page-cache page that contains the requested block.
1008 * This is user purely for blockdev mappings.
1010 static struct page
*
1011 grow_dev_page(struct block_device
*bdev
, sector_t block
,
1012 pgoff_t index
, int size
)
1014 struct inode
*inode
= bdev
->bd_inode
;
1016 struct buffer_head
*bh
;
1018 page
= find_or_create_page(inode
->i_mapping
, index
,
1019 (mapping_gfp_mask(inode
->i_mapping
) & ~__GFP_FS
)|__GFP_MOVABLE
);
1023 BUG_ON(!PageLocked(page
));
1025 if (page_has_buffers(page
)) {
1026 bh
= page_buffers(page
);
1027 if (bh
->b_size
== size
) {
1028 init_page_buffers(page
, bdev
, block
, size
);
1031 if (!try_to_free_buffers(page
))
1036 * Allocate some buffers for this page
1038 bh
= alloc_page_buffers(page
, size
, 0);
1043 * Link the page to the buffers and initialise them. Take the
1044 * lock to be atomic wrt __find_get_block(), which does not
1045 * run under the page lock.
1047 spin_lock(&inode
->i_mapping
->private_lock
);
1048 link_dev_buffers(page
, bh
);
1049 init_page_buffers(page
, bdev
, block
, size
);
1050 spin_unlock(&inode
->i_mapping
->private_lock
);
1056 page_cache_release(page
);
1061 * Create buffers for the specified block device block's page. If
1062 * that page was dirty, the buffers are set dirty also.
1065 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
)
1074 } while ((size
<< sizebits
) < PAGE_SIZE
);
1076 index
= block
>> sizebits
;
1079 * Check for a block which wants to lie outside our maximum possible
1080 * pagecache index. (this comparison is done using sector_t types).
1082 if (unlikely(index
!= block
>> sizebits
)) {
1083 char b
[BDEVNAME_SIZE
];
1085 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1087 __FUNCTION__
, (unsigned long long)block
,
1091 block
= index
<< sizebits
;
1092 /* Create a page with the proper size buffers.. */
1093 page
= grow_dev_page(bdev
, block
, index
, size
);
1097 page_cache_release(page
);
1101 static struct buffer_head
*
1102 __getblk_slow(struct block_device
*bdev
, sector_t block
, int size
)
1104 /* Size must be multiple of hard sectorsize */
1105 if (unlikely(size
& (bdev_hardsect_size(bdev
)-1) ||
1106 (size
< 512 || size
> PAGE_SIZE
))) {
1107 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1109 printk(KERN_ERR
"hardsect size: %d\n",
1110 bdev_hardsect_size(bdev
));
1117 struct buffer_head
* bh
;
1120 bh
= __find_get_block(bdev
, block
, size
);
1124 ret
= grow_buffers(bdev
, block
, size
);
1133 * The relationship between dirty buffers and dirty pages:
1135 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1136 * the page is tagged dirty in its radix tree.
1138 * At all times, the dirtiness of the buffers represents the dirtiness of
1139 * subsections of the page. If the page has buffers, the page dirty bit is
1140 * merely a hint about the true dirty state.
1142 * When a page is set dirty in its entirety, all its buffers are marked dirty
1143 * (if the page has buffers).
1145 * When a buffer is marked dirty, its page is dirtied, but the page's other
1148 * Also. When blockdev buffers are explicitly read with bread(), they
1149 * individually become uptodate. But their backing page remains not
1150 * uptodate - even if all of its buffers are uptodate. A subsequent
1151 * block_read_full_page() against that page will discover all the uptodate
1152 * buffers, will set the page uptodate and will perform no I/O.
1156 * mark_buffer_dirty - mark a buffer_head as needing writeout
1157 * @bh: the buffer_head to mark dirty
1159 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1160 * backing page dirty, then tag the page as dirty in its address_space's radix
1161 * tree and then attach the address_space's inode to its superblock's dirty
1164 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1165 * mapping->tree_lock and the global inode_lock.
1167 void fastcall
mark_buffer_dirty(struct buffer_head
*bh
)
1169 WARN_ON_ONCE(!buffer_uptodate(bh
));
1170 if (!buffer_dirty(bh
) && !test_set_buffer_dirty(bh
))
1171 __set_page_dirty(bh
->b_page
, page_mapping(bh
->b_page
), 0);
1175 * Decrement a buffer_head's reference count. If all buffers against a page
1176 * have zero reference count, are clean and unlocked, and if the page is clean
1177 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1178 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1179 * a page but it ends up not being freed, and buffers may later be reattached).
1181 void __brelse(struct buffer_head
* buf
)
1183 if (atomic_read(&buf
->b_count
)) {
1187 printk(KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1192 * bforget() is like brelse(), except it discards any
1193 * potentially dirty data.
1195 void __bforget(struct buffer_head
*bh
)
1197 clear_buffer_dirty(bh
);
1198 if (!list_empty(&bh
->b_assoc_buffers
)) {
1199 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1201 spin_lock(&buffer_mapping
->private_lock
);
1202 list_del_init(&bh
->b_assoc_buffers
);
1203 bh
->b_assoc_map
= NULL
;
1204 spin_unlock(&buffer_mapping
->private_lock
);
1209 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1212 if (buffer_uptodate(bh
)) {
1217 bh
->b_end_io
= end_buffer_read_sync
;
1218 submit_bh(READ
, bh
);
1220 if (buffer_uptodate(bh
))
1228 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1229 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1230 * refcount elevated by one when they're in an LRU. A buffer can only appear
1231 * once in a particular CPU's LRU. A single buffer can be present in multiple
1232 * CPU's LRUs at the same time.
1234 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1235 * sb_find_get_block().
1237 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1238 * a local interrupt disable for that.
1241 #define BH_LRU_SIZE 8
1244 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1247 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1250 #define bh_lru_lock() local_irq_disable()
1251 #define bh_lru_unlock() local_irq_enable()
1253 #define bh_lru_lock() preempt_disable()
1254 #define bh_lru_unlock() preempt_enable()
1257 static inline void check_irqs_on(void)
1259 #ifdef irqs_disabled
1260 BUG_ON(irqs_disabled());
1265 * The LRU management algorithm is dopey-but-simple. Sorry.
1267 static void bh_lru_install(struct buffer_head
*bh
)
1269 struct buffer_head
*evictee
= NULL
;
1274 lru
= &__get_cpu_var(bh_lrus
);
1275 if (lru
->bhs
[0] != bh
) {
1276 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1282 for (in
= 0; in
< BH_LRU_SIZE
; in
++) {
1283 struct buffer_head
*bh2
= lru
->bhs
[in
];
1288 if (out
>= BH_LRU_SIZE
) {
1289 BUG_ON(evictee
!= NULL
);
1296 while (out
< BH_LRU_SIZE
)
1298 memcpy(lru
->bhs
, bhs
, sizeof(bhs
));
1307 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1309 static struct buffer_head
*
1310 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1312 struct buffer_head
*ret
= NULL
;
1318 lru
= &__get_cpu_var(bh_lrus
);
1319 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1320 struct buffer_head
*bh
= lru
->bhs
[i
];
1322 if (bh
&& bh
->b_bdev
== bdev
&&
1323 bh
->b_blocknr
== block
&& bh
->b_size
== size
) {
1326 lru
->bhs
[i
] = lru
->bhs
[i
- 1];
1341 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1342 * it in the LRU and mark it as accessed. If it is not present then return
1345 struct buffer_head
*
1346 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1348 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1351 bh
= __find_get_block_slow(bdev
, block
);
1359 EXPORT_SYMBOL(__find_get_block
);
1362 * __getblk will locate (and, if necessary, create) the buffer_head
1363 * which corresponds to the passed block_device, block and size. The
1364 * returned buffer has its reference count incremented.
1366 * __getblk() cannot fail - it just keeps trying. If you pass it an
1367 * illegal block number, __getblk() will happily return a buffer_head
1368 * which represents the non-existent block. Very weird.
1370 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1371 * attempt is failing. FIXME, perhaps?
1373 struct buffer_head
*
1374 __getblk(struct block_device
*bdev
, sector_t block
, unsigned size
)
1376 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1380 bh
= __getblk_slow(bdev
, block
, size
);
1383 EXPORT_SYMBOL(__getblk
);
1386 * Do async read-ahead on a buffer..
1388 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1390 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1392 ll_rw_block(READA
, 1, &bh
);
1396 EXPORT_SYMBOL(__breadahead
);
1399 * __bread() - reads a specified block and returns the bh
1400 * @bdev: the block_device to read from
1401 * @block: number of block
1402 * @size: size (in bytes) to read
1404 * Reads a specified block, and returns buffer head that contains it.
1405 * It returns NULL if the block was unreadable.
1407 struct buffer_head
*
1408 __bread(struct block_device
*bdev
, sector_t block
, unsigned size
)
1410 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1412 if (likely(bh
) && !buffer_uptodate(bh
))
1413 bh
= __bread_slow(bh
);
1416 EXPORT_SYMBOL(__bread
);
1419 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1420 * This doesn't race because it runs in each cpu either in irq
1421 * or with preempt disabled.
1423 static void invalidate_bh_lru(void *arg
)
1425 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1428 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1432 put_cpu_var(bh_lrus
);
1435 void invalidate_bh_lrus(void)
1437 on_each_cpu(invalidate_bh_lru
, NULL
, 1, 1);
1440 void set_bh_page(struct buffer_head
*bh
,
1441 struct page
*page
, unsigned long offset
)
1444 BUG_ON(offset
>= PAGE_SIZE
);
1445 if (PageHighMem(page
))
1447 * This catches illegal uses and preserves the offset:
1449 bh
->b_data
= (char *)(0 + offset
);
1451 bh
->b_data
= page_address(page
) + offset
;
1453 EXPORT_SYMBOL(set_bh_page
);
1456 * Called when truncating a buffer on a page completely.
1458 static void discard_buffer(struct buffer_head
* bh
)
1461 clear_buffer_dirty(bh
);
1463 clear_buffer_mapped(bh
);
1464 clear_buffer_req(bh
);
1465 clear_buffer_new(bh
);
1466 clear_buffer_delay(bh
);
1467 clear_buffer_unwritten(bh
);
1472 * block_invalidatepage - invalidate part of all of a buffer-backed page
1474 * @page: the page which is affected
1475 * @offset: the index of the truncation point
1477 * block_invalidatepage() is called when all or part of the page has become
1478 * invalidatedby a truncate operation.
1480 * block_invalidatepage() does not have to release all buffers, but it must
1481 * ensure that no dirty buffer is left outside @offset and that no I/O
1482 * is underway against any of the blocks which are outside the truncation
1483 * point. Because the caller is about to free (and possibly reuse) those
1486 void block_invalidatepage(struct page
*page
, unsigned long offset
)
1488 struct buffer_head
*head
, *bh
, *next
;
1489 unsigned int curr_off
= 0;
1491 BUG_ON(!PageLocked(page
));
1492 if (!page_has_buffers(page
))
1495 head
= page_buffers(page
);
1498 unsigned int next_off
= curr_off
+ bh
->b_size
;
1499 next
= bh
->b_this_page
;
1502 * is this block fully invalidated?
1504 if (offset
<= curr_off
)
1506 curr_off
= next_off
;
1508 } while (bh
!= head
);
1511 * We release buffers only if the entire page is being invalidated.
1512 * The get_block cached value has been unconditionally invalidated,
1513 * so real IO is not possible anymore.
1516 try_to_release_page(page
, 0);
1520 EXPORT_SYMBOL(block_invalidatepage
);
1523 * We attach and possibly dirty the buffers atomically wrt
1524 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1525 * is already excluded via the page lock.
1527 void create_empty_buffers(struct page
*page
,
1528 unsigned long blocksize
, unsigned long b_state
)
1530 struct buffer_head
*bh
, *head
, *tail
;
1532 head
= alloc_page_buffers(page
, blocksize
, 1);
1535 bh
->b_state
|= b_state
;
1537 bh
= bh
->b_this_page
;
1539 tail
->b_this_page
= head
;
1541 spin_lock(&page
->mapping
->private_lock
);
1542 if (PageUptodate(page
) || PageDirty(page
)) {
1545 if (PageDirty(page
))
1546 set_buffer_dirty(bh
);
1547 if (PageUptodate(page
))
1548 set_buffer_uptodate(bh
);
1549 bh
= bh
->b_this_page
;
1550 } while (bh
!= head
);
1552 attach_page_buffers(page
, head
);
1553 spin_unlock(&page
->mapping
->private_lock
);
1555 EXPORT_SYMBOL(create_empty_buffers
);
1558 * We are taking a block for data and we don't want any output from any
1559 * buffer-cache aliases starting from return from that function and
1560 * until the moment when something will explicitly mark the buffer
1561 * dirty (hopefully that will not happen until we will free that block ;-)
1562 * We don't even need to mark it not-uptodate - nobody can expect
1563 * anything from a newly allocated buffer anyway. We used to used
1564 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1565 * don't want to mark the alias unmapped, for example - it would confuse
1566 * anyone who might pick it with bread() afterwards...
1568 * Also.. Note that bforget() doesn't lock the buffer. So there can
1569 * be writeout I/O going on against recently-freed buffers. We don't
1570 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1571 * only if we really need to. That happens here.
1573 void unmap_underlying_metadata(struct block_device
*bdev
, sector_t block
)
1575 struct buffer_head
*old_bh
;
1579 old_bh
= __find_get_block_slow(bdev
, block
);
1581 clear_buffer_dirty(old_bh
);
1582 wait_on_buffer(old_bh
);
1583 clear_buffer_req(old_bh
);
1587 EXPORT_SYMBOL(unmap_underlying_metadata
);
1590 * NOTE! All mapped/uptodate combinations are valid:
1592 * Mapped Uptodate Meaning
1594 * No No "unknown" - must do get_block()
1595 * No Yes "hole" - zero-filled
1596 * Yes No "allocated" - allocated on disk, not read in
1597 * Yes Yes "valid" - allocated and up-to-date in memory.
1599 * "Dirty" is valid only with the last case (mapped+uptodate).
1603 * While block_write_full_page is writing back the dirty buffers under
1604 * the page lock, whoever dirtied the buffers may decide to clean them
1605 * again at any time. We handle that by only looking at the buffer
1606 * state inside lock_buffer().
1608 * If block_write_full_page() is called for regular writeback
1609 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1610 * locked buffer. This only can happen if someone has written the buffer
1611 * directly, with submit_bh(). At the address_space level PageWriteback
1612 * prevents this contention from occurring.
1614 static int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1615 get_block_t
*get_block
, struct writeback_control
*wbc
)
1619 sector_t last_block
;
1620 struct buffer_head
*bh
, *head
;
1621 const unsigned blocksize
= 1 << inode
->i_blkbits
;
1622 int nr_underway
= 0;
1624 BUG_ON(!PageLocked(page
));
1626 last_block
= (i_size_read(inode
) - 1) >> inode
->i_blkbits
;
1628 if (!page_has_buffers(page
)) {
1629 create_empty_buffers(page
, blocksize
,
1630 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1634 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1635 * here, and the (potentially unmapped) buffers may become dirty at
1636 * any time. If a buffer becomes dirty here after we've inspected it
1637 * then we just miss that fact, and the page stays dirty.
1639 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1640 * handle that here by just cleaning them.
1643 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1644 head
= page_buffers(page
);
1648 * Get all the dirty buffers mapped to disk addresses and
1649 * handle any aliases from the underlying blockdev's mapping.
1652 if (block
> last_block
) {
1654 * mapped buffers outside i_size will occur, because
1655 * this page can be outside i_size when there is a
1656 * truncate in progress.
1659 * The buffer was zeroed by block_write_full_page()
1661 clear_buffer_dirty(bh
);
1662 set_buffer_uptodate(bh
);
1663 } else if (!buffer_mapped(bh
) && buffer_dirty(bh
)) {
1664 WARN_ON(bh
->b_size
!= blocksize
);
1665 err
= get_block(inode
, block
, bh
, 1);
1668 if (buffer_new(bh
)) {
1669 /* blockdev mappings never come here */
1670 clear_buffer_new(bh
);
1671 unmap_underlying_metadata(bh
->b_bdev
,
1675 bh
= bh
->b_this_page
;
1677 } while (bh
!= head
);
1680 if (!buffer_mapped(bh
))
1683 * If it's a fully non-blocking write attempt and we cannot
1684 * lock the buffer then redirty the page. Note that this can
1685 * potentially cause a busy-wait loop from pdflush and kswapd
1686 * activity, but those code paths have their own higher-level
1689 if (wbc
->sync_mode
!= WB_SYNC_NONE
|| !wbc
->nonblocking
) {
1691 } else if (test_set_buffer_locked(bh
)) {
1692 redirty_page_for_writepage(wbc
, page
);
1695 if (test_clear_buffer_dirty(bh
)) {
1696 mark_buffer_async_write(bh
);
1700 } while ((bh
= bh
->b_this_page
) != head
);
1703 * The page and its buffers are protected by PageWriteback(), so we can
1704 * drop the bh refcounts early.
1706 BUG_ON(PageWriteback(page
));
1707 set_page_writeback(page
);
1710 struct buffer_head
*next
= bh
->b_this_page
;
1711 if (buffer_async_write(bh
)) {
1712 submit_bh(WRITE
, bh
);
1716 } while (bh
!= head
);
1721 if (nr_underway
== 0) {
1723 * The page was marked dirty, but the buffers were
1724 * clean. Someone wrote them back by hand with
1725 * ll_rw_block/submit_bh. A rare case.
1727 end_page_writeback(page
);
1730 * The page and buffer_heads can be released at any time from
1733 wbc
->pages_skipped
++; /* We didn't write this page */
1739 * ENOSPC, or some other error. We may already have added some
1740 * blocks to the file, so we need to write these out to avoid
1741 * exposing stale data.
1742 * The page is currently locked and not marked for writeback
1745 /* Recovery: lock and submit the mapped buffers */
1747 if (buffer_mapped(bh
) && buffer_dirty(bh
)) {
1749 mark_buffer_async_write(bh
);
1752 * The buffer may have been set dirty during
1753 * attachment to a dirty page.
1755 clear_buffer_dirty(bh
);
1757 } while ((bh
= bh
->b_this_page
) != head
);
1759 BUG_ON(PageWriteback(page
));
1760 mapping_set_error(page
->mapping
, err
);
1761 set_page_writeback(page
);
1763 struct buffer_head
*next
= bh
->b_this_page
;
1764 if (buffer_async_write(bh
)) {
1765 clear_buffer_dirty(bh
);
1766 submit_bh(WRITE
, bh
);
1770 } while (bh
!= head
);
1776 * If a page has any new buffers, zero them out here, and mark them uptodate
1777 * and dirty so they'll be written out (in order to prevent uninitialised
1778 * block data from leaking). And clear the new bit.
1780 void page_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1782 unsigned int block_start
, block_end
;
1783 struct buffer_head
*head
, *bh
;
1785 BUG_ON(!PageLocked(page
));
1786 if (!page_has_buffers(page
))
1789 bh
= head
= page_buffers(page
);
1792 block_end
= block_start
+ bh
->b_size
;
1794 if (buffer_new(bh
)) {
1795 if (block_end
> from
&& block_start
< to
) {
1796 if (!PageUptodate(page
)) {
1797 unsigned start
, size
;
1799 start
= max(from
, block_start
);
1800 size
= min(to
, block_end
) - start
;
1802 zero_user_page(page
, start
, size
, KM_USER0
);
1803 set_buffer_uptodate(bh
);
1806 clear_buffer_new(bh
);
1807 mark_buffer_dirty(bh
);
1811 block_start
= block_end
;
1812 bh
= bh
->b_this_page
;
1813 } while (bh
!= head
);
1815 EXPORT_SYMBOL(page_zero_new_buffers
);
1817 static int __block_prepare_write(struct inode
*inode
, struct page
*page
,
1818 unsigned from
, unsigned to
, get_block_t
*get_block
)
1820 unsigned block_start
, block_end
;
1823 unsigned blocksize
, bbits
;
1824 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1826 BUG_ON(!PageLocked(page
));
1827 BUG_ON(from
> PAGE_CACHE_SIZE
);
1828 BUG_ON(to
> PAGE_CACHE_SIZE
);
1831 blocksize
= 1 << inode
->i_blkbits
;
1832 if (!page_has_buffers(page
))
1833 create_empty_buffers(page
, blocksize
, 0);
1834 head
= page_buffers(page
);
1836 bbits
= inode
->i_blkbits
;
1837 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
1839 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1840 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1841 block_end
= block_start
+ blocksize
;
1842 if (block_end
<= from
|| block_start
>= to
) {
1843 if (PageUptodate(page
)) {
1844 if (!buffer_uptodate(bh
))
1845 set_buffer_uptodate(bh
);
1850 clear_buffer_new(bh
);
1851 if (!buffer_mapped(bh
)) {
1852 WARN_ON(bh
->b_size
!= blocksize
);
1853 err
= get_block(inode
, block
, bh
, 1);
1856 if (buffer_new(bh
)) {
1857 unmap_underlying_metadata(bh
->b_bdev
,
1859 if (PageUptodate(page
)) {
1860 clear_buffer_new(bh
);
1861 set_buffer_uptodate(bh
);
1862 mark_buffer_dirty(bh
);
1865 if (block_end
> to
|| block_start
< from
) {
1868 kaddr
= kmap_atomic(page
, KM_USER0
);
1872 if (block_start
< from
)
1873 memset(kaddr
+block_start
,
1874 0, from
-block_start
);
1875 flush_dcache_page(page
);
1876 kunmap_atomic(kaddr
, KM_USER0
);
1881 if (PageUptodate(page
)) {
1882 if (!buffer_uptodate(bh
))
1883 set_buffer_uptodate(bh
);
1886 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
1887 !buffer_unwritten(bh
) &&
1888 (block_start
< from
|| block_end
> to
)) {
1889 ll_rw_block(READ
, 1, &bh
);
1894 * If we issued read requests - let them complete.
1896 while(wait_bh
> wait
) {
1897 wait_on_buffer(*--wait_bh
);
1898 if (!buffer_uptodate(*wait_bh
))
1902 page_zero_new_buffers(page
, from
, to
);
1906 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
1907 unsigned from
, unsigned to
)
1909 unsigned block_start
, block_end
;
1912 struct buffer_head
*bh
, *head
;
1914 blocksize
= 1 << inode
->i_blkbits
;
1916 for(bh
= head
= page_buffers(page
), block_start
= 0;
1917 bh
!= head
|| !block_start
;
1918 block_start
=block_end
, bh
= bh
->b_this_page
) {
1919 block_end
= block_start
+ blocksize
;
1920 if (block_end
<= from
|| block_start
>= to
) {
1921 if (!buffer_uptodate(bh
))
1924 set_buffer_uptodate(bh
);
1925 mark_buffer_dirty(bh
);
1927 clear_buffer_new(bh
);
1931 * If this is a partial write which happened to make all buffers
1932 * uptodate then we can optimize away a bogus readpage() for
1933 * the next read(). Here we 'discover' whether the page went
1934 * uptodate as a result of this (potentially partial) write.
1937 SetPageUptodate(page
);
1942 * block_write_begin takes care of the basic task of block allocation and
1943 * bringing partial write blocks uptodate first.
1945 * If *pagep is not NULL, then block_write_begin uses the locked page
1946 * at *pagep rather than allocating its own. In this case, the page will
1947 * not be unlocked or deallocated on failure.
1949 int block_write_begin(struct file
*file
, struct address_space
*mapping
,
1950 loff_t pos
, unsigned len
, unsigned flags
,
1951 struct page
**pagep
, void **fsdata
,
1952 get_block_t
*get_block
)
1954 struct inode
*inode
= mapping
->host
;
1958 unsigned start
, end
;
1961 index
= pos
>> PAGE_CACHE_SHIFT
;
1962 start
= pos
& (PAGE_CACHE_SIZE
- 1);
1968 page
= __grab_cache_page(mapping
, index
);
1975 BUG_ON(!PageLocked(page
));
1977 status
= __block_prepare_write(inode
, page
, start
, end
, get_block
);
1978 if (unlikely(status
)) {
1979 ClearPageUptodate(page
);
1983 page_cache_release(page
);
1987 * prepare_write() may have instantiated a few blocks
1988 * outside i_size. Trim these off again. Don't need
1989 * i_size_read because we hold i_mutex.
1991 if (pos
+ len
> inode
->i_size
)
1992 vmtruncate(inode
, inode
->i_size
);
2000 EXPORT_SYMBOL(block_write_begin
);
2002 int block_write_end(struct file
*file
, struct address_space
*mapping
,
2003 loff_t pos
, unsigned len
, unsigned copied
,
2004 struct page
*page
, void *fsdata
)
2006 struct inode
*inode
= mapping
->host
;
2009 start
= pos
& (PAGE_CACHE_SIZE
- 1);
2011 if (unlikely(copied
< len
)) {
2013 * The buffers that were written will now be uptodate, so we
2014 * don't have to worry about a readpage reading them and
2015 * overwriting a partial write. However if we have encountered
2016 * a short write and only partially written into a buffer, it
2017 * will not be marked uptodate, so a readpage might come in and
2018 * destroy our partial write.
2020 * Do the simplest thing, and just treat any short write to a
2021 * non uptodate page as a zero-length write, and force the
2022 * caller to redo the whole thing.
2024 if (!PageUptodate(page
))
2027 page_zero_new_buffers(page
, start
+copied
, start
+len
);
2029 flush_dcache_page(page
);
2031 /* This could be a short (even 0-length) commit */
2032 __block_commit_write(inode
, page
, start
, start
+copied
);
2036 EXPORT_SYMBOL(block_write_end
);
2038 int generic_write_end(struct file
*file
, struct address_space
*mapping
,
2039 loff_t pos
, unsigned len
, unsigned copied
,
2040 struct page
*page
, void *fsdata
)
2042 struct inode
*inode
= mapping
->host
;
2044 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2047 * No need to use i_size_read() here, the i_size
2048 * cannot change under us because we hold i_mutex.
2050 * But it's important to update i_size while still holding page lock:
2051 * page writeout could otherwise come in and zero beyond i_size.
2053 if (pos
+copied
> inode
->i_size
) {
2054 i_size_write(inode
, pos
+copied
);
2055 mark_inode_dirty(inode
);
2059 page_cache_release(page
);
2063 EXPORT_SYMBOL(generic_write_end
);
2066 * Generic "read page" function for block devices that have the normal
2067 * get_block functionality. This is most of the block device filesystems.
2068 * Reads the page asynchronously --- the unlock_buffer() and
2069 * set/clear_buffer_uptodate() functions propagate buffer state into the
2070 * page struct once IO has completed.
2072 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
2074 struct inode
*inode
= page
->mapping
->host
;
2075 sector_t iblock
, lblock
;
2076 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2077 unsigned int blocksize
;
2079 int fully_mapped
= 1;
2081 BUG_ON(!PageLocked(page
));
2082 blocksize
= 1 << inode
->i_blkbits
;
2083 if (!page_has_buffers(page
))
2084 create_empty_buffers(page
, blocksize
, 0);
2085 head
= page_buffers(page
);
2087 iblock
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2088 lblock
= (i_size_read(inode
)+blocksize
-1) >> inode
->i_blkbits
;
2094 if (buffer_uptodate(bh
))
2097 if (!buffer_mapped(bh
)) {
2101 if (iblock
< lblock
) {
2102 WARN_ON(bh
->b_size
!= blocksize
);
2103 err
= get_block(inode
, iblock
, bh
, 0);
2107 if (!buffer_mapped(bh
)) {
2108 zero_user_page(page
, i
* blocksize
, blocksize
,
2111 set_buffer_uptodate(bh
);
2115 * get_block() might have updated the buffer
2118 if (buffer_uptodate(bh
))
2122 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2125 SetPageMappedToDisk(page
);
2129 * All buffers are uptodate - we can set the page uptodate
2130 * as well. But not if get_block() returned an error.
2132 if (!PageError(page
))
2133 SetPageUptodate(page
);
2138 /* Stage two: lock the buffers */
2139 for (i
= 0; i
< nr
; i
++) {
2142 mark_buffer_async_read(bh
);
2146 * Stage 3: start the IO. Check for uptodateness
2147 * inside the buffer lock in case another process reading
2148 * the underlying blockdev brought it uptodate (the sct fix).
2150 for (i
= 0; i
< nr
; i
++) {
2152 if (buffer_uptodate(bh
))
2153 end_buffer_async_read(bh
, 1);
2155 submit_bh(READ
, bh
);
2160 /* utility function for filesystems that need to do work on expanding
2161 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2162 * deal with the hole.
2164 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2166 struct address_space
*mapping
= inode
->i_mapping
;
2169 unsigned long limit
;
2173 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
2174 if (limit
!= RLIM_INFINITY
&& size
> (loff_t
)limit
) {
2175 send_sig(SIGXFSZ
, current
, 0);
2178 if (size
> inode
->i_sb
->s_maxbytes
)
2181 err
= pagecache_write_begin(NULL
, mapping
, size
, 0,
2182 AOP_FLAG_UNINTERRUPTIBLE
|AOP_FLAG_CONT_EXPAND
,
2187 err
= pagecache_write_end(NULL
, mapping
, size
, 0, 0, page
, fsdata
);
2194 int cont_expand_zero(struct file
*file
, struct address_space
*mapping
,
2195 loff_t pos
, loff_t
*bytes
)
2197 struct inode
*inode
= mapping
->host
;
2198 unsigned blocksize
= 1 << inode
->i_blkbits
;
2201 pgoff_t index
, curidx
;
2203 unsigned zerofrom
, offset
, len
;
2206 index
= pos
>> PAGE_CACHE_SHIFT
;
2207 offset
= pos
& ~PAGE_CACHE_MASK
;
2209 while (index
> (curidx
= (curpos
= *bytes
)>>PAGE_CACHE_SHIFT
)) {
2210 zerofrom
= curpos
& ~PAGE_CACHE_MASK
;
2211 if (zerofrom
& (blocksize
-1)) {
2212 *bytes
|= (blocksize
-1);
2215 len
= PAGE_CACHE_SIZE
- zerofrom
;
2217 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2218 AOP_FLAG_UNINTERRUPTIBLE
,
2222 zero_user_page(page
, zerofrom
, len
, KM_USER0
);
2223 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2231 /* page covers the boundary, find the boundary offset */
2232 if (index
== curidx
) {
2233 zerofrom
= curpos
& ~PAGE_CACHE_MASK
;
2234 /* if we will expand the thing last block will be filled */
2235 if (offset
<= zerofrom
) {
2238 if (zerofrom
& (blocksize
-1)) {
2239 *bytes
|= (blocksize
-1);
2242 len
= offset
- zerofrom
;
2244 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2245 AOP_FLAG_UNINTERRUPTIBLE
,
2249 zero_user_page(page
, zerofrom
, len
, KM_USER0
);
2250 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2262 * For moronic filesystems that do not allow holes in file.
2263 * We may have to extend the file.
2265 int cont_write_begin(struct file
*file
, struct address_space
*mapping
,
2266 loff_t pos
, unsigned len
, unsigned flags
,
2267 struct page
**pagep
, void **fsdata
,
2268 get_block_t
*get_block
, loff_t
*bytes
)
2270 struct inode
*inode
= mapping
->host
;
2271 unsigned blocksize
= 1 << inode
->i_blkbits
;
2275 err
= cont_expand_zero(file
, mapping
, pos
, bytes
);
2279 zerofrom
= *bytes
& ~PAGE_CACHE_MASK
;
2280 if (pos
+len
> *bytes
&& zerofrom
& (blocksize
-1)) {
2281 *bytes
|= (blocksize
-1);
2286 err
= block_write_begin(file
, mapping
, pos
, len
,
2287 flags
, pagep
, fsdata
, get_block
);
2292 int block_prepare_write(struct page
*page
, unsigned from
, unsigned to
,
2293 get_block_t
*get_block
)
2295 struct inode
*inode
= page
->mapping
->host
;
2296 int err
= __block_prepare_write(inode
, page
, from
, to
, get_block
);
2298 ClearPageUptodate(page
);
2302 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2304 struct inode
*inode
= page
->mapping
->host
;
2305 __block_commit_write(inode
,page
,from
,to
);
2309 int generic_commit_write(struct file
*file
, struct page
*page
,
2310 unsigned from
, unsigned to
)
2312 struct inode
*inode
= page
->mapping
->host
;
2313 loff_t pos
= ((loff_t
)page
->index
<< PAGE_CACHE_SHIFT
) + to
;
2314 __block_commit_write(inode
,page
,from
,to
);
2316 * No need to use i_size_read() here, the i_size
2317 * cannot change under us because we hold i_mutex.
2319 if (pos
> inode
->i_size
) {
2320 i_size_write(inode
, pos
);
2321 mark_inode_dirty(inode
);
2327 * block_page_mkwrite() is not allowed to change the file size as it gets
2328 * called from a page fault handler when a page is first dirtied. Hence we must
2329 * be careful to check for EOF conditions here. We set the page up correctly
2330 * for a written page which means we get ENOSPC checking when writing into
2331 * holes and correct delalloc and unwritten extent mapping on filesystems that
2332 * support these features.
2334 * We are not allowed to take the i_mutex here so we have to play games to
2335 * protect against truncate races as the page could now be beyond EOF. Because
2336 * vmtruncate() writes the inode size before removing pages, once we have the
2337 * page lock we can determine safely if the page is beyond EOF. If it is not
2338 * beyond EOF, then the page is guaranteed safe against truncation until we
2342 block_page_mkwrite(struct vm_area_struct
*vma
, struct page
*page
,
2343 get_block_t get_block
)
2345 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
2351 size
= i_size_read(inode
);
2352 if ((page
->mapping
!= inode
->i_mapping
) ||
2353 (page_offset(page
) > size
)) {
2354 /* page got truncated out from underneath us */
2358 /* page is wholly or partially inside EOF */
2359 if (((page
->index
+ 1) << PAGE_CACHE_SHIFT
) > size
)
2360 end
= size
& ~PAGE_CACHE_MASK
;
2362 end
= PAGE_CACHE_SIZE
;
2364 ret
= block_prepare_write(page
, 0, end
, get_block
);
2366 ret
= block_commit_write(page
, 0, end
);
2374 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2375 * immediately, while under the page lock. So it needs a special end_io
2376 * handler which does not touch the bh after unlocking it.
2378 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2380 __end_buffer_read_notouch(bh
, uptodate
);
2384 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2385 * the page (converting it to circular linked list and taking care of page
2388 static void attach_nobh_buffers(struct page
*page
, struct buffer_head
*head
)
2390 struct buffer_head
*bh
;
2392 BUG_ON(!PageLocked(page
));
2394 spin_lock(&page
->mapping
->private_lock
);
2397 if (PageDirty(page
))
2398 set_buffer_dirty(bh
);
2399 if (!bh
->b_this_page
)
2400 bh
->b_this_page
= head
;
2401 bh
= bh
->b_this_page
;
2402 } while (bh
!= head
);
2403 attach_page_buffers(page
, head
);
2404 spin_unlock(&page
->mapping
->private_lock
);
2408 * On entry, the page is fully not uptodate.
2409 * On exit the page is fully uptodate in the areas outside (from,to)
2411 int nobh_write_begin(struct file
*file
, struct address_space
*mapping
,
2412 loff_t pos
, unsigned len
, unsigned flags
,
2413 struct page
**pagep
, void **fsdata
,
2414 get_block_t
*get_block
)
2416 struct inode
*inode
= mapping
->host
;
2417 const unsigned blkbits
= inode
->i_blkbits
;
2418 const unsigned blocksize
= 1 << blkbits
;
2419 struct buffer_head
*head
, *bh
;
2423 unsigned block_in_page
;
2424 unsigned block_start
, block_end
;
2425 sector_t block_in_file
;
2429 int is_mapped_to_disk
= 1;
2431 index
= pos
>> PAGE_CACHE_SHIFT
;
2432 from
= pos
& (PAGE_CACHE_SIZE
- 1);
2435 page
= __grab_cache_page(mapping
, index
);
2441 if (page_has_buffers(page
)) {
2443 page_cache_release(page
);
2445 return block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
,
2449 if (PageMappedToDisk(page
))
2453 * Allocate buffers so that we can keep track of state, and potentially
2454 * attach them to the page if an error occurs. In the common case of
2455 * no error, they will just be freed again without ever being attached
2456 * to the page (which is all OK, because we're under the page lock).
2458 * Be careful: the buffer linked list is a NULL terminated one, rather
2459 * than the circular one we're used to.
2461 head
= alloc_page_buffers(page
, blocksize
, 0);
2467 block_in_file
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- blkbits
);
2470 * We loop across all blocks in the page, whether or not they are
2471 * part of the affected region. This is so we can discover if the
2472 * page is fully mapped-to-disk.
2474 for (block_start
= 0, block_in_page
= 0, bh
= head
;
2475 block_start
< PAGE_CACHE_SIZE
;
2476 block_in_page
++, block_start
+= blocksize
, bh
= bh
->b_this_page
) {
2479 block_end
= block_start
+ blocksize
;
2482 if (block_start
>= to
)
2484 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2488 if (!buffer_mapped(bh
))
2489 is_mapped_to_disk
= 0;
2491 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
2492 if (PageUptodate(page
)) {
2493 set_buffer_uptodate(bh
);
2496 if (buffer_new(bh
) || !buffer_mapped(bh
)) {
2497 kaddr
= kmap_atomic(page
, KM_USER0
);
2498 if (block_start
< from
)
2499 memset(kaddr
+block_start
, 0, from
-block_start
);
2501 memset(kaddr
+ to
, 0, block_end
- to
);
2502 flush_dcache_page(page
);
2503 kunmap_atomic(kaddr
, KM_USER0
);
2506 if (buffer_uptodate(bh
))
2507 continue; /* reiserfs does this */
2508 if (block_start
< from
|| block_end
> to
) {
2510 bh
->b_end_io
= end_buffer_read_nobh
;
2511 submit_bh(READ
, bh
);
2518 * The page is locked, so these buffers are protected from
2519 * any VM or truncate activity. Hence we don't need to care
2520 * for the buffer_head refcounts.
2522 for (bh
= head
; bh
; bh
= bh
->b_this_page
) {
2524 if (!buffer_uptodate(bh
))
2531 if (is_mapped_to_disk
)
2532 SetPageMappedToDisk(page
);
2534 *fsdata
= head
; /* to be released by nobh_write_end */
2541 * Error recovery is a bit difficult. We need to zero out blocks that
2542 * were newly allocated, and dirty them to ensure they get written out.
2543 * Buffers need to be attached to the page at this point, otherwise
2544 * the handling of potential IO errors during writeout would be hard
2545 * (could try doing synchronous writeout, but what if that fails too?)
2547 attach_nobh_buffers(page
, head
);
2548 page_zero_new_buffers(page
, from
, to
);
2552 page_cache_release(page
);
2555 if (pos
+ len
> inode
->i_size
)
2556 vmtruncate(inode
, inode
->i_size
);
2560 EXPORT_SYMBOL(nobh_write_begin
);
2562 int nobh_write_end(struct file
*file
, struct address_space
*mapping
,
2563 loff_t pos
, unsigned len
, unsigned copied
,
2564 struct page
*page
, void *fsdata
)
2566 struct inode
*inode
= page
->mapping
->host
;
2567 struct buffer_head
*head
= NULL
;
2568 struct buffer_head
*bh
;
2570 if (!PageMappedToDisk(page
)) {
2571 if (unlikely(copied
< len
) && !page_has_buffers(page
))
2572 attach_nobh_buffers(page
, head
);
2573 if (page_has_buffers(page
))
2574 return generic_write_end(file
, mapping
, pos
, len
,
2575 copied
, page
, fsdata
);
2578 SetPageUptodate(page
);
2579 set_page_dirty(page
);
2580 if (pos
+copied
> inode
->i_size
) {
2581 i_size_write(inode
, pos
+copied
);
2582 mark_inode_dirty(inode
);
2586 page_cache_release(page
);
2591 head
= head
->b_this_page
;
2592 free_buffer_head(bh
);
2597 EXPORT_SYMBOL(nobh_write_end
);
2600 * nobh_writepage() - based on block_full_write_page() except
2601 * that it tries to operate without attaching bufferheads to
2604 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2605 struct writeback_control
*wbc
)
2607 struct inode
* const inode
= page
->mapping
->host
;
2608 loff_t i_size
= i_size_read(inode
);
2609 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2613 /* Is the page fully inside i_size? */
2614 if (page
->index
< end_index
)
2617 /* Is the page fully outside i_size? (truncate in progress) */
2618 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2619 if (page
->index
>= end_index
+1 || !offset
) {
2621 * The page may have dirty, unmapped buffers. For example,
2622 * they may have been added in ext3_writepage(). Make them
2623 * freeable here, so the page does not leak.
2626 /* Not really sure about this - do we need this ? */
2627 if (page
->mapping
->a_ops
->invalidatepage
)
2628 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2631 return 0; /* don't care */
2635 * The page straddles i_size. It must be zeroed out on each and every
2636 * writepage invocation because it may be mmapped. "A file is mapped
2637 * in multiples of the page size. For a file that is not a multiple of
2638 * the page size, the remaining memory is zeroed when mapped, and
2639 * writes to that region are not written out to the file."
2641 zero_user_page(page
, offset
, PAGE_CACHE_SIZE
- offset
, KM_USER0
);
2643 ret
= mpage_writepage(page
, get_block
, wbc
);
2645 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
);
2648 EXPORT_SYMBOL(nobh_writepage
);
2650 int nobh_truncate_page(struct address_space
*mapping
,
2651 loff_t from
, get_block_t
*get_block
)
2653 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2654 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2657 unsigned length
, pos
;
2658 struct inode
*inode
= mapping
->host
;
2660 struct buffer_head map_bh
;
2663 blocksize
= 1 << inode
->i_blkbits
;
2664 length
= offset
& (blocksize
- 1);
2666 /* Block boundary? Nothing to do */
2670 length
= blocksize
- length
;
2671 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2673 page
= grab_cache_page(mapping
, index
);
2678 if (page_has_buffers(page
)) {
2681 page_cache_release(page
);
2682 return block_truncate_page(mapping
, from
, get_block
);
2685 /* Find the buffer that contains "offset" */
2687 while (offset
>= pos
) {
2692 err
= get_block(inode
, iblock
, &map_bh
, 0);
2695 /* unmapped? It's a hole - nothing to do */
2696 if (!buffer_mapped(&map_bh
))
2699 /* Ok, it's mapped. Make sure it's up-to-date */
2700 if (!PageUptodate(page
)) {
2701 err
= mapping
->a_ops
->readpage(NULL
, page
);
2703 page_cache_release(page
);
2707 if (!PageUptodate(page
)) {
2711 if (page_has_buffers(page
))
2714 zero_user_page(page
, offset
, length
, KM_USER0
);
2715 set_page_dirty(page
);
2720 page_cache_release(page
);
2724 EXPORT_SYMBOL(nobh_truncate_page
);
2726 int block_truncate_page(struct address_space
*mapping
,
2727 loff_t from
, get_block_t
*get_block
)
2729 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2730 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2733 unsigned length
, pos
;
2734 struct inode
*inode
= mapping
->host
;
2736 struct buffer_head
*bh
;
2739 blocksize
= 1 << inode
->i_blkbits
;
2740 length
= offset
& (blocksize
- 1);
2742 /* Block boundary? Nothing to do */
2746 length
= blocksize
- length
;
2747 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2749 page
= grab_cache_page(mapping
, index
);
2754 if (!page_has_buffers(page
))
2755 create_empty_buffers(page
, blocksize
, 0);
2757 /* Find the buffer that contains "offset" */
2758 bh
= page_buffers(page
);
2760 while (offset
>= pos
) {
2761 bh
= bh
->b_this_page
;
2767 if (!buffer_mapped(bh
)) {
2768 WARN_ON(bh
->b_size
!= blocksize
);
2769 err
= get_block(inode
, iblock
, bh
, 0);
2772 /* unmapped? It's a hole - nothing to do */
2773 if (!buffer_mapped(bh
))
2777 /* Ok, it's mapped. Make sure it's up-to-date */
2778 if (PageUptodate(page
))
2779 set_buffer_uptodate(bh
);
2781 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2783 ll_rw_block(READ
, 1, &bh
);
2785 /* Uhhuh. Read error. Complain and punt. */
2786 if (!buffer_uptodate(bh
))
2790 zero_user_page(page
, offset
, length
, KM_USER0
);
2791 mark_buffer_dirty(bh
);
2796 page_cache_release(page
);
2802 * The generic ->writepage function for buffer-backed address_spaces
2804 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2805 struct writeback_control
*wbc
)
2807 struct inode
* const inode
= page
->mapping
->host
;
2808 loff_t i_size
= i_size_read(inode
);
2809 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2812 /* Is the page fully inside i_size? */
2813 if (page
->index
< end_index
)
2814 return __block_write_full_page(inode
, page
, get_block
, wbc
);
2816 /* Is the page fully outside i_size? (truncate in progress) */
2817 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2818 if (page
->index
>= end_index
+1 || !offset
) {
2820 * The page may have dirty, unmapped buffers. For example,
2821 * they may have been added in ext3_writepage(). Make them
2822 * freeable here, so the page does not leak.
2824 do_invalidatepage(page
, 0);
2826 return 0; /* don't care */
2830 * The page straddles i_size. It must be zeroed out on each and every
2831 * writepage invokation because it may be mmapped. "A file is mapped
2832 * in multiples of the page size. For a file that is not a multiple of
2833 * the page size, the remaining memory is zeroed when mapped, and
2834 * writes to that region are not written out to the file."
2836 zero_user_page(page
, offset
, PAGE_CACHE_SIZE
- offset
, KM_USER0
);
2837 return __block_write_full_page(inode
, page
, get_block
, wbc
);
2840 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2841 get_block_t
*get_block
)
2843 struct buffer_head tmp
;
2844 struct inode
*inode
= mapping
->host
;
2847 tmp
.b_size
= 1 << inode
->i_blkbits
;
2848 get_block(inode
, block
, &tmp
, 0);
2849 return tmp
.b_blocknr
;
2852 static void end_bio_bh_io_sync(struct bio
*bio
, int err
)
2854 struct buffer_head
*bh
= bio
->bi_private
;
2856 if (err
== -EOPNOTSUPP
) {
2857 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
2858 set_bit(BH_Eopnotsupp
, &bh
->b_state
);
2861 bh
->b_end_io(bh
, test_bit(BIO_UPTODATE
, &bio
->bi_flags
));
2865 int submit_bh(int rw
, struct buffer_head
* bh
)
2870 BUG_ON(!buffer_locked(bh
));
2871 BUG_ON(!buffer_mapped(bh
));
2872 BUG_ON(!bh
->b_end_io
);
2874 if (buffer_ordered(bh
) && (rw
== WRITE
))
2878 * Only clear out a write error when rewriting, should this
2879 * include WRITE_SYNC as well?
2881 if (test_set_buffer_req(bh
) && (rw
== WRITE
|| rw
== WRITE_BARRIER
))
2882 clear_buffer_write_io_error(bh
);
2885 * from here on down, it's all bio -- do the initial mapping,
2886 * submit_bio -> generic_make_request may further map this bio around
2888 bio
= bio_alloc(GFP_NOIO
, 1);
2890 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
2891 bio
->bi_bdev
= bh
->b_bdev
;
2892 bio
->bi_io_vec
[0].bv_page
= bh
->b_page
;
2893 bio
->bi_io_vec
[0].bv_len
= bh
->b_size
;
2894 bio
->bi_io_vec
[0].bv_offset
= bh_offset(bh
);
2898 bio
->bi_size
= bh
->b_size
;
2900 bio
->bi_end_io
= end_bio_bh_io_sync
;
2901 bio
->bi_private
= bh
;
2904 submit_bio(rw
, bio
);
2906 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
2914 * ll_rw_block: low-level access to block devices (DEPRECATED)
2915 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2916 * @nr: number of &struct buffer_heads in the array
2917 * @bhs: array of pointers to &struct buffer_head
2919 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2920 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2921 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2922 * are sent to disk. The fourth %READA option is described in the documentation
2923 * for generic_make_request() which ll_rw_block() calls.
2925 * This function drops any buffer that it cannot get a lock on (with the
2926 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2927 * clean when doing a write request, and any buffer that appears to be
2928 * up-to-date when doing read request. Further it marks as clean buffers that
2929 * are processed for writing (the buffer cache won't assume that they are
2930 * actually clean until the buffer gets unlocked).
2932 * ll_rw_block sets b_end_io to simple completion handler that marks
2933 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2936 * All of the buffers must be for the same device, and must also be a
2937 * multiple of the current approved size for the device.
2939 void ll_rw_block(int rw
, int nr
, struct buffer_head
*bhs
[])
2943 for (i
= 0; i
< nr
; i
++) {
2944 struct buffer_head
*bh
= bhs
[i
];
2948 else if (test_set_buffer_locked(bh
))
2951 if (rw
== WRITE
|| rw
== SWRITE
) {
2952 if (test_clear_buffer_dirty(bh
)) {
2953 bh
->b_end_io
= end_buffer_write_sync
;
2955 submit_bh(WRITE
, bh
);
2959 if (!buffer_uptodate(bh
)) {
2960 bh
->b_end_io
= end_buffer_read_sync
;
2971 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2972 * and then start new I/O and then wait upon it. The caller must have a ref on
2975 int sync_dirty_buffer(struct buffer_head
*bh
)
2979 WARN_ON(atomic_read(&bh
->b_count
) < 1);
2981 if (test_clear_buffer_dirty(bh
)) {
2983 bh
->b_end_io
= end_buffer_write_sync
;
2984 ret
= submit_bh(WRITE
, bh
);
2986 if (buffer_eopnotsupp(bh
)) {
2987 clear_buffer_eopnotsupp(bh
);
2990 if (!ret
&& !buffer_uptodate(bh
))
2999 * try_to_free_buffers() checks if all the buffers on this particular page
3000 * are unused, and releases them if so.
3002 * Exclusion against try_to_free_buffers may be obtained by either
3003 * locking the page or by holding its mapping's private_lock.
3005 * If the page is dirty but all the buffers are clean then we need to
3006 * be sure to mark the page clean as well. This is because the page
3007 * may be against a block device, and a later reattachment of buffers
3008 * to a dirty page will set *all* buffers dirty. Which would corrupt
3009 * filesystem data on the same device.
3011 * The same applies to regular filesystem pages: if all the buffers are
3012 * clean then we set the page clean and proceed. To do that, we require
3013 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3016 * try_to_free_buffers() is non-blocking.
3018 static inline int buffer_busy(struct buffer_head
*bh
)
3020 return atomic_read(&bh
->b_count
) |
3021 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
3025 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
3027 struct buffer_head
*head
= page_buffers(page
);
3028 struct buffer_head
*bh
;
3032 if (buffer_write_io_error(bh
) && page
->mapping
)
3033 set_bit(AS_EIO
, &page
->mapping
->flags
);
3034 if (buffer_busy(bh
))
3036 bh
= bh
->b_this_page
;
3037 } while (bh
!= head
);
3040 struct buffer_head
*next
= bh
->b_this_page
;
3042 if (!list_empty(&bh
->b_assoc_buffers
))
3043 __remove_assoc_queue(bh
);
3045 } while (bh
!= head
);
3046 *buffers_to_free
= head
;
3047 __clear_page_buffers(page
);
3053 int try_to_free_buffers(struct page
*page
)
3055 struct address_space
* const mapping
= page
->mapping
;
3056 struct buffer_head
*buffers_to_free
= NULL
;
3059 BUG_ON(!PageLocked(page
));
3060 if (PageWriteback(page
))
3063 if (mapping
== NULL
) { /* can this still happen? */
3064 ret
= drop_buffers(page
, &buffers_to_free
);
3068 spin_lock(&mapping
->private_lock
);
3069 ret
= drop_buffers(page
, &buffers_to_free
);
3072 * If the filesystem writes its buffers by hand (eg ext3)
3073 * then we can have clean buffers against a dirty page. We
3074 * clean the page here; otherwise the VM will never notice
3075 * that the filesystem did any IO at all.
3077 * Also, during truncate, discard_buffer will have marked all
3078 * the page's buffers clean. We discover that here and clean
3081 * private_lock must be held over this entire operation in order
3082 * to synchronise against __set_page_dirty_buffers and prevent the
3083 * dirty bit from being lost.
3086 cancel_dirty_page(page
, PAGE_CACHE_SIZE
);
3087 spin_unlock(&mapping
->private_lock
);
3089 if (buffers_to_free
) {
3090 struct buffer_head
*bh
= buffers_to_free
;
3093 struct buffer_head
*next
= bh
->b_this_page
;
3094 free_buffer_head(bh
);
3096 } while (bh
!= buffers_to_free
);
3100 EXPORT_SYMBOL(try_to_free_buffers
);
3102 void block_sync_page(struct page
*page
)
3104 struct address_space
*mapping
;
3107 mapping
= page_mapping(page
);
3109 blk_run_backing_dev(mapping
->backing_dev_info
, page
);
3113 * There are no bdflush tunables left. But distributions are
3114 * still running obsolete flush daemons, so we terminate them here.
3116 * Use of bdflush() is deprecated and will be removed in a future kernel.
3117 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3119 asmlinkage
long sys_bdflush(int func
, long data
)
3121 static int msg_count
;
3123 if (!capable(CAP_SYS_ADMIN
))
3126 if (msg_count
< 5) {
3129 "warning: process `%s' used the obsolete bdflush"
3130 " system call\n", current
->comm
);
3131 printk(KERN_INFO
"Fix your initscripts?\n");
3140 * Buffer-head allocation
3142 static struct kmem_cache
*bh_cachep
;
3145 * Once the number of bh's in the machine exceeds this level, we start
3146 * stripping them in writeback.
3148 static int max_buffer_heads
;
3150 int buffer_heads_over_limit
;
3152 struct bh_accounting
{
3153 int nr
; /* Number of live bh's */
3154 int ratelimit
; /* Limit cacheline bouncing */
3157 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3159 static void recalc_bh_state(void)
3164 if (__get_cpu_var(bh_accounting
).ratelimit
++ < 4096)
3166 __get_cpu_var(bh_accounting
).ratelimit
= 0;
3167 for_each_online_cpu(i
)
3168 tot
+= per_cpu(bh_accounting
, i
).nr
;
3169 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3172 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3174 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
,
3175 set_migrateflags(gfp_flags
, __GFP_RECLAIMABLE
));
3177 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
3178 get_cpu_var(bh_accounting
).nr
++;
3180 put_cpu_var(bh_accounting
);
3184 EXPORT_SYMBOL(alloc_buffer_head
);
3186 void free_buffer_head(struct buffer_head
*bh
)
3188 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3189 kmem_cache_free(bh_cachep
, bh
);
3190 get_cpu_var(bh_accounting
).nr
--;
3192 put_cpu_var(bh_accounting
);
3194 EXPORT_SYMBOL(free_buffer_head
);
3196 static void buffer_exit_cpu(int cpu
)
3199 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3201 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3205 get_cpu_var(bh_accounting
).nr
+= per_cpu(bh_accounting
, cpu
).nr
;
3206 per_cpu(bh_accounting
, cpu
).nr
= 0;
3207 put_cpu_var(bh_accounting
);
3210 static int buffer_cpu_notify(struct notifier_block
*self
,
3211 unsigned long action
, void *hcpu
)
3213 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
3214 buffer_exit_cpu((unsigned long)hcpu
);
3218 void __init
buffer_init(void)
3222 bh_cachep
= KMEM_CACHE(buffer_head
,
3223 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3226 * Limit the bh occupancy to 10% of ZONE_NORMAL
3228 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3229 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3230 hotcpu_notifier(buffer_cpu_notify
, 0);
3233 EXPORT_SYMBOL(__bforget
);
3234 EXPORT_SYMBOL(__brelse
);
3235 EXPORT_SYMBOL(__wait_on_buffer
);
3236 EXPORT_SYMBOL(block_commit_write
);
3237 EXPORT_SYMBOL(block_prepare_write
);
3238 EXPORT_SYMBOL(block_page_mkwrite
);
3239 EXPORT_SYMBOL(block_read_full_page
);
3240 EXPORT_SYMBOL(block_sync_page
);
3241 EXPORT_SYMBOL(block_truncate_page
);
3242 EXPORT_SYMBOL(block_write_full_page
);
3243 EXPORT_SYMBOL(cont_write_begin
);
3244 EXPORT_SYMBOL(end_buffer_read_sync
);
3245 EXPORT_SYMBOL(end_buffer_write_sync
);
3246 EXPORT_SYMBOL(file_fsync
);
3247 EXPORT_SYMBOL(fsync_bdev
);
3248 EXPORT_SYMBOL(generic_block_bmap
);
3249 EXPORT_SYMBOL(generic_commit_write
);
3250 EXPORT_SYMBOL(generic_cont_expand_simple
);
3251 EXPORT_SYMBOL(init_buffer
);
3252 EXPORT_SYMBOL(invalidate_bdev
);
3253 EXPORT_SYMBOL(ll_rw_block
);
3254 EXPORT_SYMBOL(mark_buffer_dirty
);
3255 EXPORT_SYMBOL(submit_bh
);
3256 EXPORT_SYMBOL(sync_dirty_buffer
);
3257 EXPORT_SYMBOL(unlock_buffer
);