x86: convert cpu_to_apicid to be a per cpu variable
[wrt350n-kernel.git] / arch / x86 / kernel / smp_32.c
blob4974c3d2a0a6669fba8f184a4d984cec049218d0
1 /*
2 * Intel SMP support routines.
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
7 * This code is released under the GNU General Public License version 2 or
8 * later.
9 */
11 #include <linux/init.h>
13 #include <linux/mm.h>
14 #include <linux/delay.h>
15 #include <linux/spinlock.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/mc146818rtc.h>
18 #include <linux/cache.h>
19 #include <linux/interrupt.h>
20 #include <linux/cpu.h>
21 #include <linux/module.h>
23 #include <asm/mtrr.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
26 #include <mach_apic.h>
29 * Some notes on x86 processor bugs affecting SMP operation:
31 * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
32 * The Linux implications for SMP are handled as follows:
34 * Pentium III / [Xeon]
35 * None of the E1AP-E3AP errata are visible to the user.
37 * E1AP. see PII A1AP
38 * E2AP. see PII A2AP
39 * E3AP. see PII A3AP
41 * Pentium II / [Xeon]
42 * None of the A1AP-A3AP errata are visible to the user.
44 * A1AP. see PPro 1AP
45 * A2AP. see PPro 2AP
46 * A3AP. see PPro 7AP
48 * Pentium Pro
49 * None of 1AP-9AP errata are visible to the normal user,
50 * except occasional delivery of 'spurious interrupt' as trap #15.
51 * This is very rare and a non-problem.
53 * 1AP. Linux maps APIC as non-cacheable
54 * 2AP. worked around in hardware
55 * 3AP. fixed in C0 and above steppings microcode update.
56 * Linux does not use excessive STARTUP_IPIs.
57 * 4AP. worked around in hardware
58 * 5AP. symmetric IO mode (normal Linux operation) not affected.
59 * 'noapic' mode has vector 0xf filled out properly.
60 * 6AP. 'noapic' mode might be affected - fixed in later steppings
61 * 7AP. We do not assume writes to the LVT deassering IRQs
62 * 8AP. We do not enable low power mode (deep sleep) during MP bootup
63 * 9AP. We do not use mixed mode
65 * Pentium
66 * There is a marginal case where REP MOVS on 100MHz SMP
67 * machines with B stepping processors can fail. XXX should provide
68 * an L1cache=Writethrough or L1cache=off option.
70 * B stepping CPUs may hang. There are hardware work arounds
71 * for this. We warn about it in case your board doesn't have the work
72 * arounds. Basically thats so I can tell anyone with a B stepping
73 * CPU and SMP problems "tough".
75 * Specific items [From Pentium Processor Specification Update]
77 * 1AP. Linux doesn't use remote read
78 * 2AP. Linux doesn't trust APIC errors
79 * 3AP. We work around this
80 * 4AP. Linux never generated 3 interrupts of the same priority
81 * to cause a lost local interrupt.
82 * 5AP. Remote read is never used
83 * 6AP. not affected - worked around in hardware
84 * 7AP. not affected - worked around in hardware
85 * 8AP. worked around in hardware - we get explicit CS errors if not
86 * 9AP. only 'noapic' mode affected. Might generate spurious
87 * interrupts, we log only the first one and count the
88 * rest silently.
89 * 10AP. not affected - worked around in hardware
90 * 11AP. Linux reads the APIC between writes to avoid this, as per
91 * the documentation. Make sure you preserve this as it affects
92 * the C stepping chips too.
93 * 12AP. not affected - worked around in hardware
94 * 13AP. not affected - worked around in hardware
95 * 14AP. we always deassert INIT during bootup
96 * 15AP. not affected - worked around in hardware
97 * 16AP. not affected - worked around in hardware
98 * 17AP. not affected - worked around in hardware
99 * 18AP. not affected - worked around in hardware
100 * 19AP. not affected - worked around in BIOS
102 * If this sounds worrying believe me these bugs are either ___RARE___,
103 * or are signal timing bugs worked around in hardware and there's
104 * about nothing of note with C stepping upwards.
107 DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, };
110 * the following functions deal with sending IPIs between CPUs.
112 * We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
115 static inline int __prepare_ICR (unsigned int shortcut, int vector)
117 unsigned int icr = shortcut | APIC_DEST_LOGICAL;
119 switch (vector) {
120 default:
121 icr |= APIC_DM_FIXED | vector;
122 break;
123 case NMI_VECTOR:
124 icr |= APIC_DM_NMI;
125 break;
127 return icr;
130 static inline int __prepare_ICR2 (unsigned int mask)
132 return SET_APIC_DEST_FIELD(mask);
135 void __send_IPI_shortcut(unsigned int shortcut, int vector)
138 * Subtle. In the case of the 'never do double writes' workaround
139 * we have to lock out interrupts to be safe. As we don't care
140 * of the value read we use an atomic rmw access to avoid costly
141 * cli/sti. Otherwise we use an even cheaper single atomic write
142 * to the APIC.
144 unsigned int cfg;
147 * Wait for idle.
149 apic_wait_icr_idle();
152 * No need to touch the target chip field
154 cfg = __prepare_ICR(shortcut, vector);
157 * Send the IPI. The write to APIC_ICR fires this off.
159 apic_write_around(APIC_ICR, cfg);
162 void fastcall send_IPI_self(int vector)
164 __send_IPI_shortcut(APIC_DEST_SELF, vector);
168 * This is used to send an IPI with no shorthand notation (the destination is
169 * specified in bits 56 to 63 of the ICR).
171 static inline void __send_IPI_dest_field(unsigned long mask, int vector)
173 unsigned long cfg;
176 * Wait for idle.
178 if (unlikely(vector == NMI_VECTOR))
179 safe_apic_wait_icr_idle();
180 else
181 apic_wait_icr_idle();
184 * prepare target chip field
186 cfg = __prepare_ICR2(mask);
187 apic_write_around(APIC_ICR2, cfg);
190 * program the ICR
192 cfg = __prepare_ICR(0, vector);
195 * Send the IPI. The write to APIC_ICR fires this off.
197 apic_write_around(APIC_ICR, cfg);
201 * This is only used on smaller machines.
203 void send_IPI_mask_bitmask(cpumask_t cpumask, int vector)
205 unsigned long mask = cpus_addr(cpumask)[0];
206 unsigned long flags;
208 local_irq_save(flags);
209 WARN_ON(mask & ~cpus_addr(cpu_online_map)[0]);
210 __send_IPI_dest_field(mask, vector);
211 local_irq_restore(flags);
214 void send_IPI_mask_sequence(cpumask_t mask, int vector)
216 unsigned long flags;
217 unsigned int query_cpu;
220 * Hack. The clustered APIC addressing mode doesn't allow us to send
221 * to an arbitrary mask, so I do a unicasts to each CPU instead. This
222 * should be modified to do 1 message per cluster ID - mbligh
225 local_irq_save(flags);
226 for (query_cpu = 0; query_cpu < NR_CPUS; ++query_cpu) {
227 if (cpu_isset(query_cpu, mask)) {
228 __send_IPI_dest_field(cpu_to_logical_apicid(query_cpu),
229 vector);
232 local_irq_restore(flags);
235 #include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */
238 * Smarter SMP flushing macros.
239 * c/o Linus Torvalds.
241 * These mean you can really definitely utterly forget about
242 * writing to user space from interrupts. (Its not allowed anyway).
244 * Optimizations Manfred Spraul <manfred@colorfullife.com>
247 static cpumask_t flush_cpumask;
248 static struct mm_struct * flush_mm;
249 static unsigned long flush_va;
250 static DEFINE_SPINLOCK(tlbstate_lock);
253 * We cannot call mmdrop() because we are in interrupt context,
254 * instead update mm->cpu_vm_mask.
256 * We need to reload %cr3 since the page tables may be going
257 * away from under us..
259 void leave_mm(unsigned long cpu)
261 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
262 BUG();
263 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
264 load_cr3(swapper_pg_dir);
269 * The flush IPI assumes that a thread switch happens in this order:
270 * [cpu0: the cpu that switches]
271 * 1) switch_mm() either 1a) or 1b)
272 * 1a) thread switch to a different mm
273 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
274 * Stop ipi delivery for the old mm. This is not synchronized with
275 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
276 * for the wrong mm, and in the worst case we perform a superflous
277 * tlb flush.
278 * 1a2) set cpu_tlbstate to TLBSTATE_OK
279 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
280 * was in lazy tlb mode.
281 * 1a3) update cpu_tlbstate[].active_mm
282 * Now cpu0 accepts tlb flushes for the new mm.
283 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
284 * Now the other cpus will send tlb flush ipis.
285 * 1a4) change cr3.
286 * 1b) thread switch without mm change
287 * cpu_tlbstate[].active_mm is correct, cpu0 already handles
288 * flush ipis.
289 * 1b1) set cpu_tlbstate to TLBSTATE_OK
290 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
291 * Atomically set the bit [other cpus will start sending flush ipis],
292 * and test the bit.
293 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
294 * 2) switch %%esp, ie current
296 * The interrupt must handle 2 special cases:
297 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
298 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
299 * runs in kernel space, the cpu could load tlb entries for user space
300 * pages.
302 * The good news is that cpu_tlbstate is local to each cpu, no
303 * write/read ordering problems.
307 * TLB flush IPI:
309 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
310 * 2) Leave the mm if we are in the lazy tlb mode.
313 fastcall void smp_invalidate_interrupt(struct pt_regs *regs)
315 unsigned long cpu;
317 cpu = get_cpu();
319 if (!cpu_isset(cpu, flush_cpumask))
320 goto out;
322 * This was a BUG() but until someone can quote me the
323 * line from the intel manual that guarantees an IPI to
324 * multiple CPUs is retried _only_ on the erroring CPUs
325 * its staying as a return
327 * BUG();
330 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
331 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
332 if (flush_va == TLB_FLUSH_ALL)
333 local_flush_tlb();
334 else
335 __flush_tlb_one(flush_va);
336 } else
337 leave_mm(cpu);
339 ack_APIC_irq();
340 smp_mb__before_clear_bit();
341 cpu_clear(cpu, flush_cpumask);
342 smp_mb__after_clear_bit();
343 out:
344 put_cpu_no_resched();
345 __get_cpu_var(irq_stat).irq_tlb_count++;
348 void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm,
349 unsigned long va)
351 cpumask_t cpumask = *cpumaskp;
354 * A couple of (to be removed) sanity checks:
356 * - current CPU must not be in mask
357 * - mask must exist :)
359 BUG_ON(cpus_empty(cpumask));
360 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
361 BUG_ON(!mm);
363 #ifdef CONFIG_HOTPLUG_CPU
364 /* If a CPU which we ran on has gone down, OK. */
365 cpus_and(cpumask, cpumask, cpu_online_map);
366 if (unlikely(cpus_empty(cpumask)))
367 return;
368 #endif
371 * i'm not happy about this global shared spinlock in the
372 * MM hot path, but we'll see how contended it is.
373 * AK: x86-64 has a faster method that could be ported.
375 spin_lock(&tlbstate_lock);
377 flush_mm = mm;
378 flush_va = va;
379 cpus_or(flush_cpumask, cpumask, flush_cpumask);
381 * We have to send the IPI only to
382 * CPUs affected.
384 send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);
386 while (!cpus_empty(flush_cpumask))
387 /* nothing. lockup detection does not belong here */
388 cpu_relax();
390 flush_mm = NULL;
391 flush_va = 0;
392 spin_unlock(&tlbstate_lock);
395 void flush_tlb_current_task(void)
397 struct mm_struct *mm = current->mm;
398 cpumask_t cpu_mask;
400 preempt_disable();
401 cpu_mask = mm->cpu_vm_mask;
402 cpu_clear(smp_processor_id(), cpu_mask);
404 local_flush_tlb();
405 if (!cpus_empty(cpu_mask))
406 flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
407 preempt_enable();
410 void flush_tlb_mm (struct mm_struct * mm)
412 cpumask_t cpu_mask;
414 preempt_disable();
415 cpu_mask = mm->cpu_vm_mask;
416 cpu_clear(smp_processor_id(), cpu_mask);
418 if (current->active_mm == mm) {
419 if (current->mm)
420 local_flush_tlb();
421 else
422 leave_mm(smp_processor_id());
424 if (!cpus_empty(cpu_mask))
425 flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
427 preempt_enable();
430 void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
432 struct mm_struct *mm = vma->vm_mm;
433 cpumask_t cpu_mask;
435 preempt_disable();
436 cpu_mask = mm->cpu_vm_mask;
437 cpu_clear(smp_processor_id(), cpu_mask);
439 if (current->active_mm == mm) {
440 if(current->mm)
441 __flush_tlb_one(va);
442 else
443 leave_mm(smp_processor_id());
446 if (!cpus_empty(cpu_mask))
447 flush_tlb_others(cpu_mask, mm, va);
449 preempt_enable();
451 EXPORT_SYMBOL(flush_tlb_page);
453 static void do_flush_tlb_all(void* info)
455 unsigned long cpu = smp_processor_id();
457 __flush_tlb_all();
458 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
459 leave_mm(cpu);
462 void flush_tlb_all(void)
464 on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
468 * this function sends a 'reschedule' IPI to another CPU.
469 * it goes straight through and wastes no time serializing
470 * anything. Worst case is that we lose a reschedule ...
472 static void native_smp_send_reschedule(int cpu)
474 WARN_ON(cpu_is_offline(cpu));
475 send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
479 * Structure and data for smp_call_function(). This is designed to minimise
480 * static memory requirements. It also looks cleaner.
482 static DEFINE_SPINLOCK(call_lock);
484 struct call_data_struct {
485 void (*func) (void *info);
486 void *info;
487 atomic_t started;
488 atomic_t finished;
489 int wait;
492 void lock_ipi_call_lock(void)
494 spin_lock_irq(&call_lock);
497 void unlock_ipi_call_lock(void)
499 spin_unlock_irq(&call_lock);
502 static struct call_data_struct *call_data;
504 static void __smp_call_function(void (*func) (void *info), void *info,
505 int nonatomic, int wait)
507 struct call_data_struct data;
508 int cpus = num_online_cpus() - 1;
510 if (!cpus)
511 return;
513 data.func = func;
514 data.info = info;
515 atomic_set(&data.started, 0);
516 data.wait = wait;
517 if (wait)
518 atomic_set(&data.finished, 0);
520 call_data = &data;
521 mb();
523 /* Send a message to all other CPUs and wait for them to respond */
524 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
526 /* Wait for response */
527 while (atomic_read(&data.started) != cpus)
528 cpu_relax();
530 if (wait)
531 while (atomic_read(&data.finished) != cpus)
532 cpu_relax();
537 * smp_call_function_mask(): Run a function on a set of other CPUs.
538 * @mask: The set of cpus to run on. Must not include the current cpu.
539 * @func: The function to run. This must be fast and non-blocking.
540 * @info: An arbitrary pointer to pass to the function.
541 * @wait: If true, wait (atomically) until function has completed on other CPUs.
543 * Returns 0 on success, else a negative status code.
545 * If @wait is true, then returns once @func has returned; otherwise
546 * it returns just before the target cpu calls @func.
548 * You must not call this function with disabled interrupts or from a
549 * hardware interrupt handler or from a bottom half handler.
551 static int
552 native_smp_call_function_mask(cpumask_t mask,
553 void (*func)(void *), void *info,
554 int wait)
556 struct call_data_struct data;
557 cpumask_t allbutself;
558 int cpus;
560 /* Can deadlock when called with interrupts disabled */
561 WARN_ON(irqs_disabled());
563 /* Holding any lock stops cpus from going down. */
564 spin_lock(&call_lock);
566 allbutself = cpu_online_map;
567 cpu_clear(smp_processor_id(), allbutself);
569 cpus_and(mask, mask, allbutself);
570 cpus = cpus_weight(mask);
572 if (!cpus) {
573 spin_unlock(&call_lock);
574 return 0;
577 data.func = func;
578 data.info = info;
579 atomic_set(&data.started, 0);
580 data.wait = wait;
581 if (wait)
582 atomic_set(&data.finished, 0);
584 call_data = &data;
585 mb();
587 /* Send a message to other CPUs */
588 if (cpus_equal(mask, allbutself))
589 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
590 else
591 send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
593 /* Wait for response */
594 while (atomic_read(&data.started) != cpus)
595 cpu_relax();
597 if (wait)
598 while (atomic_read(&data.finished) != cpus)
599 cpu_relax();
600 spin_unlock(&call_lock);
602 return 0;
605 static void stop_this_cpu (void * dummy)
607 local_irq_disable();
609 * Remove this CPU:
611 cpu_clear(smp_processor_id(), cpu_online_map);
612 disable_local_APIC();
613 if (cpu_data[smp_processor_id()].hlt_works_ok)
614 for(;;) halt();
615 for (;;);
619 * this function calls the 'stop' function on all other CPUs in the system.
622 static void native_smp_send_stop(void)
624 /* Don't deadlock on the call lock in panic */
625 int nolock = !spin_trylock(&call_lock);
626 unsigned long flags;
628 local_irq_save(flags);
629 __smp_call_function(stop_this_cpu, NULL, 0, 0);
630 if (!nolock)
631 spin_unlock(&call_lock);
632 disable_local_APIC();
633 local_irq_restore(flags);
637 * Reschedule call back. Nothing to do,
638 * all the work is done automatically when
639 * we return from the interrupt.
641 fastcall void smp_reschedule_interrupt(struct pt_regs *regs)
643 ack_APIC_irq();
644 __get_cpu_var(irq_stat).irq_resched_count++;
647 fastcall void smp_call_function_interrupt(struct pt_regs *regs)
649 void (*func) (void *info) = call_data->func;
650 void *info = call_data->info;
651 int wait = call_data->wait;
653 ack_APIC_irq();
655 * Notify initiating CPU that I've grabbed the data and am
656 * about to execute the function
658 mb();
659 atomic_inc(&call_data->started);
661 * At this point the info structure may be out of scope unless wait==1
663 irq_enter();
664 (*func)(info);
665 __get_cpu_var(irq_stat).irq_call_count++;
666 irq_exit();
668 if (wait) {
669 mb();
670 atomic_inc(&call_data->finished);
674 static int convert_apicid_to_cpu(int apic_id)
676 int i;
678 for (i = 0; i < NR_CPUS; i++) {
679 if (per_cpu(x86_cpu_to_apicid, i) == apic_id)
680 return i;
682 return -1;
685 int safe_smp_processor_id(void)
687 int apicid, cpuid;
689 if (!boot_cpu_has(X86_FEATURE_APIC))
690 return 0;
692 apicid = hard_smp_processor_id();
693 if (apicid == BAD_APICID)
694 return 0;
696 cpuid = convert_apicid_to_cpu(apicid);
698 return cpuid >= 0 ? cpuid : 0;
701 struct smp_ops smp_ops = {
702 .smp_prepare_boot_cpu = native_smp_prepare_boot_cpu,
703 .smp_prepare_cpus = native_smp_prepare_cpus,
704 .cpu_up = native_cpu_up,
705 .smp_cpus_done = native_smp_cpus_done,
707 .smp_send_stop = native_smp_send_stop,
708 .smp_send_reschedule = native_smp_send_reschedule,
709 .smp_call_function_mask = native_smp_call_function_mask,
712 int smp_call_function_mask(cpumask_t mask, void (*func) (void *info),
713 void *info, int wait)
715 return smp_ops.smp_call_function_mask(mask, func, info, wait);
717 EXPORT_SYMBOL(smp_call_function_mask);