2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
23 #include <linux/kvm.h>
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/percpu.h>
27 #include <linux/gfp.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <linux/reboot.h>
32 #include <linux/debugfs.h>
33 #include <linux/highmem.h>
34 #include <linux/file.h>
35 #include <linux/sysdev.h>
36 #include <linux/cpu.h>
37 #include <linux/sched.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
43 #include <asm/processor.h>
46 #include <asm/uaccess.h>
49 MODULE_AUTHOR("Qumranet");
50 MODULE_LICENSE("GPL");
52 static DEFINE_SPINLOCK(kvm_lock
);
53 static LIST_HEAD(vm_list
);
55 static cpumask_t cpus_hardware_enabled
;
57 struct kvm_x86_ops
*kvm_x86_ops
;
58 struct kmem_cache
*kvm_vcpu_cache
;
59 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
61 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
63 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
65 static struct kvm_stats_debugfs_item
{
68 struct dentry
*dentry
;
69 } debugfs_entries
[] = {
70 { "pf_fixed", STAT_OFFSET(pf_fixed
) },
71 { "pf_guest", STAT_OFFSET(pf_guest
) },
72 { "tlb_flush", STAT_OFFSET(tlb_flush
) },
73 { "invlpg", STAT_OFFSET(invlpg
) },
74 { "exits", STAT_OFFSET(exits
) },
75 { "io_exits", STAT_OFFSET(io_exits
) },
76 { "mmio_exits", STAT_OFFSET(mmio_exits
) },
77 { "signal_exits", STAT_OFFSET(signal_exits
) },
78 { "irq_window", STAT_OFFSET(irq_window_exits
) },
79 { "halt_exits", STAT_OFFSET(halt_exits
) },
80 { "halt_wakeup", STAT_OFFSET(halt_wakeup
) },
81 { "request_irq", STAT_OFFSET(request_irq_exits
) },
82 { "irq_exits", STAT_OFFSET(irq_exits
) },
83 { "light_exits", STAT_OFFSET(light_exits
) },
84 { "efer_reload", STAT_OFFSET(efer_reload
) },
88 static struct dentry
*debugfs_dir
;
90 #define MAX_IO_MSRS 256
92 #define CR0_RESERVED_BITS \
93 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
94 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
95 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
96 #define CR4_RESERVED_BITS \
97 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
98 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
99 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
100 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
102 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
103 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
106 // LDT or TSS descriptor in the GDT. 16 bytes.
107 struct segment_descriptor_64
{
108 struct segment_descriptor s
;
115 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
118 unsigned long segment_base(u16 selector
)
120 struct descriptor_table gdt
;
121 struct segment_descriptor
*d
;
122 unsigned long table_base
;
123 typedef unsigned long ul
;
129 asm ("sgdt %0" : "=m"(gdt
));
130 table_base
= gdt
.base
;
132 if (selector
& 4) { /* from ldt */
135 asm ("sldt %0" : "=g"(ldt_selector
));
136 table_base
= segment_base(ldt_selector
);
138 d
= (struct segment_descriptor
*)(table_base
+ (selector
& ~7));
139 v
= d
->base_low
| ((ul
)d
->base_mid
<< 16) | ((ul
)d
->base_high
<< 24);
142 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
143 v
|= ((ul
)((struct segment_descriptor_64
*)d
)->base_higher
) << 32;
147 EXPORT_SYMBOL_GPL(segment_base
);
149 static inline int valid_vcpu(int n
)
151 return likely(n
>= 0 && n
< KVM_MAX_VCPUS
);
154 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
156 if (!vcpu
->fpu_active
|| vcpu
->guest_fpu_loaded
)
159 vcpu
->guest_fpu_loaded
= 1;
160 fx_save(&vcpu
->host_fx_image
);
161 fx_restore(&vcpu
->guest_fx_image
);
163 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu
);
165 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
167 if (!vcpu
->guest_fpu_loaded
)
170 vcpu
->guest_fpu_loaded
= 0;
171 fx_save(&vcpu
->guest_fx_image
);
172 fx_restore(&vcpu
->host_fx_image
);
174 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu
);
177 * Switches to specified vcpu, until a matching vcpu_put()
179 static void vcpu_load(struct kvm_vcpu
*vcpu
)
183 mutex_lock(&vcpu
->mutex
);
185 preempt_notifier_register(&vcpu
->preempt_notifier
);
186 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
190 static void vcpu_put(struct kvm_vcpu
*vcpu
)
193 kvm_x86_ops
->vcpu_put(vcpu
);
194 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
196 mutex_unlock(&vcpu
->mutex
);
199 static void ack_flush(void *_completed
)
201 atomic_t
*completed
= _completed
;
203 atomic_inc(completed
);
206 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
210 struct kvm_vcpu
*vcpu
;
213 atomic_set(&completed
, 0);
216 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
217 vcpu
= kvm
->vcpus
[i
];
220 if (test_and_set_bit(KVM_TLB_FLUSH
, &vcpu
->requests
))
223 if (cpu
!= -1 && cpu
!= raw_smp_processor_id())
224 if (!cpu_isset(cpu
, cpus
)) {
231 * We really want smp_call_function_mask() here. But that's not
232 * available, so ipi all cpus in parallel and wait for them
235 for (cpu
= first_cpu(cpus
); cpu
!= NR_CPUS
; cpu
= next_cpu(cpu
, cpus
))
236 smp_call_function_single(cpu
, ack_flush
, &completed
, 1, 0);
237 while (atomic_read(&completed
) != needed
) {
243 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
248 mutex_init(&vcpu
->mutex
);
250 vcpu
->mmu
.root_hpa
= INVALID_PAGE
;
253 if (!irqchip_in_kernel(kvm
) || id
== 0)
254 vcpu
->mp_state
= VCPU_MP_STATE_RUNNABLE
;
256 vcpu
->mp_state
= VCPU_MP_STATE_UNINITIALIZED
;
257 init_waitqueue_head(&vcpu
->wq
);
259 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
264 vcpu
->run
= page_address(page
);
266 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
271 vcpu
->pio_data
= page_address(page
);
273 r
= kvm_mmu_create(vcpu
);
275 goto fail_free_pio_data
;
280 free_page((unsigned long)vcpu
->pio_data
);
282 free_page((unsigned long)vcpu
->run
);
286 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
288 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
290 kvm_mmu_destroy(vcpu
);
292 hrtimer_cancel(&vcpu
->apic
->timer
.dev
);
293 kvm_free_apic(vcpu
->apic
);
294 free_page((unsigned long)vcpu
->pio_data
);
295 free_page((unsigned long)vcpu
->run
);
297 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
299 static struct kvm
*kvm_create_vm(void)
301 struct kvm
*kvm
= kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
304 return ERR_PTR(-ENOMEM
);
306 kvm_io_bus_init(&kvm
->pio_bus
);
307 mutex_init(&kvm
->lock
);
308 INIT_LIST_HEAD(&kvm
->active_mmu_pages
);
309 kvm_io_bus_init(&kvm
->mmio_bus
);
310 spin_lock(&kvm_lock
);
311 list_add(&kvm
->vm_list
, &vm_list
);
312 spin_unlock(&kvm_lock
);
317 * Free any memory in @free but not in @dont.
319 static void kvm_free_physmem_slot(struct kvm_memory_slot
*free
,
320 struct kvm_memory_slot
*dont
)
324 if (!dont
|| free
->phys_mem
!= dont
->phys_mem
)
325 if (free
->phys_mem
) {
326 for (i
= 0; i
< free
->npages
; ++i
)
327 if (free
->phys_mem
[i
])
328 __free_page(free
->phys_mem
[i
]);
329 vfree(free
->phys_mem
);
332 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
333 vfree(free
->dirty_bitmap
);
335 free
->phys_mem
= NULL
;
337 free
->dirty_bitmap
= NULL
;
340 static void kvm_free_physmem(struct kvm
*kvm
)
344 for (i
= 0; i
< kvm
->nmemslots
; ++i
)
345 kvm_free_physmem_slot(&kvm
->memslots
[i
], NULL
);
348 static void free_pio_guest_pages(struct kvm_vcpu
*vcpu
)
352 for (i
= 0; i
< ARRAY_SIZE(vcpu
->pio
.guest_pages
); ++i
)
353 if (vcpu
->pio
.guest_pages
[i
]) {
354 __free_page(vcpu
->pio
.guest_pages
[i
]);
355 vcpu
->pio
.guest_pages
[i
] = NULL
;
359 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
362 kvm_mmu_unload(vcpu
);
366 static void kvm_free_vcpus(struct kvm
*kvm
)
371 * Unpin any mmu pages first.
373 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
)
375 kvm_unload_vcpu_mmu(kvm
->vcpus
[i
]);
376 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
378 kvm_x86_ops
->vcpu_free(kvm
->vcpus
[i
]);
379 kvm
->vcpus
[i
] = NULL
;
385 static void kvm_destroy_vm(struct kvm
*kvm
)
387 spin_lock(&kvm_lock
);
388 list_del(&kvm
->vm_list
);
389 spin_unlock(&kvm_lock
);
390 kvm_io_bus_destroy(&kvm
->pio_bus
);
391 kvm_io_bus_destroy(&kvm
->mmio_bus
);
395 kvm_free_physmem(kvm
);
399 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
401 struct kvm
*kvm
= filp
->private_data
;
407 static void inject_gp(struct kvm_vcpu
*vcpu
)
409 kvm_x86_ops
->inject_gp(vcpu
, 0);
413 * Load the pae pdptrs. Return true is they are all valid.
415 static int load_pdptrs(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
417 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
418 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
423 u64 pdpte
[ARRAY_SIZE(vcpu
->pdptrs
)];
425 mutex_lock(&vcpu
->kvm
->lock
);
426 page
= gfn_to_page(vcpu
->kvm
, pdpt_gfn
);
432 pdpt
= kmap_atomic(page
, KM_USER0
);
433 memcpy(pdpte
, pdpt
+offset
, sizeof(pdpte
));
434 kunmap_atomic(pdpt
, KM_USER0
);
436 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
437 if ((pdpte
[i
] & 1) && (pdpte
[i
] & 0xfffffff0000001e6ull
)) {
444 memcpy(vcpu
->pdptrs
, pdpte
, sizeof(vcpu
->pdptrs
));
446 mutex_unlock(&vcpu
->kvm
->lock
);
451 void set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
453 if (cr0
& CR0_RESERVED_BITS
) {
454 printk(KERN_DEBUG
"set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
460 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
)) {
461 printk(KERN_DEBUG
"set_cr0: #GP, CD == 0 && NW == 1\n");
466 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
)) {
467 printk(KERN_DEBUG
"set_cr0: #GP, set PG flag "
468 "and a clear PE flag\n");
473 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
475 if ((vcpu
->shadow_efer
& EFER_LME
)) {
479 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
480 "in long mode while PAE is disabled\n");
484 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
486 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
487 "in long mode while CS.L == 1\n");
494 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->cr3
)) {
495 printk(KERN_DEBUG
"set_cr0: #GP, pdptrs "
503 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
506 mutex_lock(&vcpu
->kvm
->lock
);
507 kvm_mmu_reset_context(vcpu
);
508 mutex_unlock(&vcpu
->kvm
->lock
);
511 EXPORT_SYMBOL_GPL(set_cr0
);
513 void lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
515 set_cr0(vcpu
, (vcpu
->cr0
& ~0x0ful
) | (msw
& 0x0f));
517 EXPORT_SYMBOL_GPL(lmsw
);
519 void set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
521 if (cr4
& CR4_RESERVED_BITS
) {
522 printk(KERN_DEBUG
"set_cr4: #GP, reserved bits\n");
527 if (is_long_mode(vcpu
)) {
528 if (!(cr4
& X86_CR4_PAE
)) {
529 printk(KERN_DEBUG
"set_cr4: #GP, clearing PAE while "
534 } else if (is_paging(vcpu
) && !is_pae(vcpu
) && (cr4
& X86_CR4_PAE
)
535 && !load_pdptrs(vcpu
, vcpu
->cr3
)) {
536 printk(KERN_DEBUG
"set_cr4: #GP, pdptrs reserved bits\n");
541 if (cr4
& X86_CR4_VMXE
) {
542 printk(KERN_DEBUG
"set_cr4: #GP, setting VMXE\n");
546 kvm_x86_ops
->set_cr4(vcpu
, cr4
);
548 mutex_lock(&vcpu
->kvm
->lock
);
549 kvm_mmu_reset_context(vcpu
);
550 mutex_unlock(&vcpu
->kvm
->lock
);
552 EXPORT_SYMBOL_GPL(set_cr4
);
554 void set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
556 if (is_long_mode(vcpu
)) {
557 if (cr3
& CR3_L_MODE_RESERVED_BITS
) {
558 printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
564 if (cr3
& CR3_PAE_RESERVED_BITS
) {
566 "set_cr3: #GP, reserved bits\n");
570 if (is_paging(vcpu
) && !load_pdptrs(vcpu
, cr3
)) {
571 printk(KERN_DEBUG
"set_cr3: #GP, pdptrs "
577 if (cr3
& CR3_NONPAE_RESERVED_BITS
) {
579 "set_cr3: #GP, reserved bits\n");
586 mutex_lock(&vcpu
->kvm
->lock
);
588 * Does the new cr3 value map to physical memory? (Note, we
589 * catch an invalid cr3 even in real-mode, because it would
590 * cause trouble later on when we turn on paging anyway.)
592 * A real CPU would silently accept an invalid cr3 and would
593 * attempt to use it - with largely undefined (and often hard
594 * to debug) behavior on the guest side.
596 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
600 vcpu
->mmu
.new_cr3(vcpu
);
602 mutex_unlock(&vcpu
->kvm
->lock
);
604 EXPORT_SYMBOL_GPL(set_cr3
);
606 void set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
608 if (cr8
& CR8_RESERVED_BITS
) {
609 printk(KERN_DEBUG
"set_cr8: #GP, reserved bits 0x%lx\n", cr8
);
613 if (irqchip_in_kernel(vcpu
->kvm
))
614 kvm_lapic_set_tpr(vcpu
, cr8
);
618 EXPORT_SYMBOL_GPL(set_cr8
);
620 unsigned long get_cr8(struct kvm_vcpu
*vcpu
)
622 if (irqchip_in_kernel(vcpu
->kvm
))
623 return kvm_lapic_get_cr8(vcpu
);
627 EXPORT_SYMBOL_GPL(get_cr8
);
629 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
631 if (irqchip_in_kernel(vcpu
->kvm
))
632 return vcpu
->apic_base
;
634 return vcpu
->apic_base
;
636 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
638 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
640 /* TODO: reserve bits check */
641 if (irqchip_in_kernel(vcpu
->kvm
))
642 kvm_lapic_set_base(vcpu
, data
);
644 vcpu
->apic_base
= data
;
646 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
648 void fx_init(struct kvm_vcpu
*vcpu
)
650 unsigned after_mxcsr_mask
;
652 /* Initialize guest FPU by resetting ours and saving into guest's */
654 fx_save(&vcpu
->host_fx_image
);
656 fx_save(&vcpu
->guest_fx_image
);
657 fx_restore(&vcpu
->host_fx_image
);
660 vcpu
->cr0
|= X86_CR0_ET
;
661 after_mxcsr_mask
= offsetof(struct i387_fxsave_struct
, st_space
);
662 vcpu
->guest_fx_image
.mxcsr
= 0x1f80;
663 memset((void *)&vcpu
->guest_fx_image
+ after_mxcsr_mask
,
664 0, sizeof(struct i387_fxsave_struct
) - after_mxcsr_mask
);
666 EXPORT_SYMBOL_GPL(fx_init
);
669 * Allocate some memory and give it an address in the guest physical address
672 * Discontiguous memory is allowed, mostly for framebuffers.
674 static int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
675 struct kvm_memory_region
*mem
)
679 unsigned long npages
;
681 struct kvm_memory_slot
*memslot
;
682 struct kvm_memory_slot old
, new;
685 /* General sanity checks */
686 if (mem
->memory_size
& (PAGE_SIZE
- 1))
688 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
690 if (mem
->slot
>= KVM_MEMORY_SLOTS
)
692 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
695 memslot
= &kvm
->memslots
[mem
->slot
];
696 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
697 npages
= mem
->memory_size
>> PAGE_SHIFT
;
700 mem
->flags
&= ~KVM_MEM_LOG_DIRTY_PAGES
;
702 mutex_lock(&kvm
->lock
);
704 new = old
= *memslot
;
706 new.base_gfn
= base_gfn
;
708 new.flags
= mem
->flags
;
710 /* Disallow changing a memory slot's size. */
712 if (npages
&& old
.npages
&& npages
!= old
.npages
)
715 /* Check for overlaps */
717 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
718 struct kvm_memory_slot
*s
= &kvm
->memslots
[i
];
722 if (!((base_gfn
+ npages
<= s
->base_gfn
) ||
723 (base_gfn
>= s
->base_gfn
+ s
->npages
)))
727 /* Deallocate if slot is being removed */
731 /* Free page dirty bitmap if unneeded */
732 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
733 new.dirty_bitmap
= NULL
;
737 /* Allocate if a slot is being created */
738 if (npages
&& !new.phys_mem
) {
739 new.phys_mem
= vmalloc(npages
* sizeof(struct page
*));
744 memset(new.phys_mem
, 0, npages
* sizeof(struct page
*));
745 for (i
= 0; i
< npages
; ++i
) {
746 new.phys_mem
[i
] = alloc_page(GFP_HIGHUSER
748 if (!new.phys_mem
[i
])
750 set_page_private(new.phys_mem
[i
],0);
754 /* Allocate page dirty bitmap if needed */
755 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
756 unsigned dirty_bytes
= ALIGN(npages
, BITS_PER_LONG
) / 8;
758 new.dirty_bitmap
= vmalloc(dirty_bytes
);
759 if (!new.dirty_bitmap
)
761 memset(new.dirty_bitmap
, 0, dirty_bytes
);
764 if (mem
->slot
>= kvm
->nmemslots
)
765 kvm
->nmemslots
= mem
->slot
+ 1;
769 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
770 kvm_flush_remote_tlbs(kvm
);
772 mutex_unlock(&kvm
->lock
);
774 kvm_free_physmem_slot(&old
, &new);
778 mutex_unlock(&kvm
->lock
);
779 kvm_free_physmem_slot(&new, &old
);
785 * Get (and clear) the dirty memory log for a memory slot.
787 static int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
788 struct kvm_dirty_log
*log
)
790 struct kvm_memory_slot
*memslot
;
793 unsigned long any
= 0;
795 mutex_lock(&kvm
->lock
);
798 if (log
->slot
>= KVM_MEMORY_SLOTS
)
801 memslot
= &kvm
->memslots
[log
->slot
];
803 if (!memslot
->dirty_bitmap
)
806 n
= ALIGN(memslot
->npages
, BITS_PER_LONG
) / 8;
808 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
809 any
= memslot
->dirty_bitmap
[i
];
812 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
815 /* If nothing is dirty, don't bother messing with page tables. */
817 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
818 kvm_flush_remote_tlbs(kvm
);
819 memset(memslot
->dirty_bitmap
, 0, n
);
825 mutex_unlock(&kvm
->lock
);
830 * Set a new alias region. Aliases map a portion of physical memory into
831 * another portion. This is useful for memory windows, for example the PC
834 static int kvm_vm_ioctl_set_memory_alias(struct kvm
*kvm
,
835 struct kvm_memory_alias
*alias
)
838 struct kvm_mem_alias
*p
;
841 /* General sanity checks */
842 if (alias
->memory_size
& (PAGE_SIZE
- 1))
844 if (alias
->guest_phys_addr
& (PAGE_SIZE
- 1))
846 if (alias
->slot
>= KVM_ALIAS_SLOTS
)
848 if (alias
->guest_phys_addr
+ alias
->memory_size
849 < alias
->guest_phys_addr
)
851 if (alias
->target_phys_addr
+ alias
->memory_size
852 < alias
->target_phys_addr
)
855 mutex_lock(&kvm
->lock
);
857 p
= &kvm
->aliases
[alias
->slot
];
858 p
->base_gfn
= alias
->guest_phys_addr
>> PAGE_SHIFT
;
859 p
->npages
= alias
->memory_size
>> PAGE_SHIFT
;
860 p
->target_gfn
= alias
->target_phys_addr
>> PAGE_SHIFT
;
862 for (n
= KVM_ALIAS_SLOTS
; n
> 0; --n
)
863 if (kvm
->aliases
[n
- 1].npages
)
867 kvm_mmu_zap_all(kvm
);
869 mutex_unlock(&kvm
->lock
);
877 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
882 switch (chip
->chip_id
) {
883 case KVM_IRQCHIP_PIC_MASTER
:
884 memcpy (&chip
->chip
.pic
,
885 &pic_irqchip(kvm
)->pics
[0],
886 sizeof(struct kvm_pic_state
));
888 case KVM_IRQCHIP_PIC_SLAVE
:
889 memcpy (&chip
->chip
.pic
,
890 &pic_irqchip(kvm
)->pics
[1],
891 sizeof(struct kvm_pic_state
));
893 case KVM_IRQCHIP_IOAPIC
:
894 memcpy (&chip
->chip
.ioapic
,
896 sizeof(struct kvm_ioapic_state
));
905 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
910 switch (chip
->chip_id
) {
911 case KVM_IRQCHIP_PIC_MASTER
:
912 memcpy (&pic_irqchip(kvm
)->pics
[0],
914 sizeof(struct kvm_pic_state
));
916 case KVM_IRQCHIP_PIC_SLAVE
:
917 memcpy (&pic_irqchip(kvm
)->pics
[1],
919 sizeof(struct kvm_pic_state
));
921 case KVM_IRQCHIP_IOAPIC
:
922 memcpy (ioapic_irqchip(kvm
),
924 sizeof(struct kvm_ioapic_state
));
930 kvm_pic_update_irq(pic_irqchip(kvm
));
934 static gfn_t
unalias_gfn(struct kvm
*kvm
, gfn_t gfn
)
937 struct kvm_mem_alias
*alias
;
939 for (i
= 0; i
< kvm
->naliases
; ++i
) {
940 alias
= &kvm
->aliases
[i
];
941 if (gfn
>= alias
->base_gfn
942 && gfn
< alias
->base_gfn
+ alias
->npages
)
943 return alias
->target_gfn
+ gfn
- alias
->base_gfn
;
948 static struct kvm_memory_slot
*__gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
952 for (i
= 0; i
< kvm
->nmemslots
; ++i
) {
953 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[i
];
955 if (gfn
>= memslot
->base_gfn
956 && gfn
< memslot
->base_gfn
+ memslot
->npages
)
962 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
964 gfn
= unalias_gfn(kvm
, gfn
);
965 return __gfn_to_memslot(kvm
, gfn
);
968 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
970 struct kvm_memory_slot
*slot
;
972 gfn
= unalias_gfn(kvm
, gfn
);
973 slot
= __gfn_to_memslot(kvm
, gfn
);
976 return slot
->phys_mem
[gfn
- slot
->base_gfn
];
978 EXPORT_SYMBOL_GPL(gfn_to_page
);
980 /* WARNING: Does not work on aliased pages. */
981 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
983 struct kvm_memory_slot
*memslot
;
985 memslot
= __gfn_to_memslot(kvm
, gfn
);
986 if (memslot
&& memslot
->dirty_bitmap
) {
987 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
990 if (!test_bit(rel_gfn
, memslot
->dirty_bitmap
))
991 set_bit(rel_gfn
, memslot
->dirty_bitmap
);
995 int emulator_read_std(unsigned long addr
,
998 struct kvm_vcpu
*vcpu
)
1003 gpa_t gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, addr
);
1004 unsigned offset
= addr
& (PAGE_SIZE
-1);
1005 unsigned tocopy
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
1010 if (gpa
== UNMAPPED_GVA
)
1011 return X86EMUL_PROPAGATE_FAULT
;
1012 pfn
= gpa
>> PAGE_SHIFT
;
1013 page
= gfn_to_page(vcpu
->kvm
, pfn
);
1015 return X86EMUL_UNHANDLEABLE
;
1016 page_virt
= kmap_atomic(page
, KM_USER0
);
1018 memcpy(data
, page_virt
+ offset
, tocopy
);
1020 kunmap_atomic(page_virt
, KM_USER0
);
1027 return X86EMUL_CONTINUE
;
1029 EXPORT_SYMBOL_GPL(emulator_read_std
);
1031 static int emulator_write_std(unsigned long addr
,
1034 struct kvm_vcpu
*vcpu
)
1036 pr_unimpl(vcpu
, "emulator_write_std: addr %lx n %d\n", addr
, bytes
);
1037 return X86EMUL_UNHANDLEABLE
;
1041 * Only apic need an MMIO device hook, so shortcut now..
1043 static struct kvm_io_device
*vcpu_find_pervcpu_dev(struct kvm_vcpu
*vcpu
,
1046 struct kvm_io_device
*dev
;
1049 dev
= &vcpu
->apic
->dev
;
1050 if (dev
->in_range(dev
, addr
))
1056 static struct kvm_io_device
*vcpu_find_mmio_dev(struct kvm_vcpu
*vcpu
,
1059 struct kvm_io_device
*dev
;
1061 dev
= vcpu_find_pervcpu_dev(vcpu
, addr
);
1063 dev
= kvm_io_bus_find_dev(&vcpu
->kvm
->mmio_bus
, addr
);
1067 static struct kvm_io_device
*vcpu_find_pio_dev(struct kvm_vcpu
*vcpu
,
1070 return kvm_io_bus_find_dev(&vcpu
->kvm
->pio_bus
, addr
);
1073 static int emulator_read_emulated(unsigned long addr
,
1076 struct kvm_vcpu
*vcpu
)
1078 struct kvm_io_device
*mmio_dev
;
1081 if (vcpu
->mmio_read_completed
) {
1082 memcpy(val
, vcpu
->mmio_data
, bytes
);
1083 vcpu
->mmio_read_completed
= 0;
1084 return X86EMUL_CONTINUE
;
1085 } else if (emulator_read_std(addr
, val
, bytes
, vcpu
)
1086 == X86EMUL_CONTINUE
)
1087 return X86EMUL_CONTINUE
;
1089 gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, addr
);
1090 if (gpa
== UNMAPPED_GVA
)
1091 return X86EMUL_PROPAGATE_FAULT
;
1094 * Is this MMIO handled locally?
1096 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
);
1098 kvm_iodevice_read(mmio_dev
, gpa
, bytes
, val
);
1099 return X86EMUL_CONTINUE
;
1102 vcpu
->mmio_needed
= 1;
1103 vcpu
->mmio_phys_addr
= gpa
;
1104 vcpu
->mmio_size
= bytes
;
1105 vcpu
->mmio_is_write
= 0;
1107 return X86EMUL_UNHANDLEABLE
;
1110 static int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1111 const void *val
, int bytes
)
1116 if (((gpa
+ bytes
- 1) >> PAGE_SHIFT
) != (gpa
>> PAGE_SHIFT
))
1118 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
1121 mark_page_dirty(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
1122 virt
= kmap_atomic(page
, KM_USER0
);
1123 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
);
1124 memcpy(virt
+ offset_in_page(gpa
), val
, bytes
);
1125 kunmap_atomic(virt
, KM_USER0
);
1129 static int emulator_write_emulated_onepage(unsigned long addr
,
1132 struct kvm_vcpu
*vcpu
)
1134 struct kvm_io_device
*mmio_dev
;
1135 gpa_t gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, addr
);
1137 if (gpa
== UNMAPPED_GVA
) {
1138 kvm_x86_ops
->inject_page_fault(vcpu
, addr
, 2);
1139 return X86EMUL_PROPAGATE_FAULT
;
1142 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
1143 return X86EMUL_CONTINUE
;
1146 * Is this MMIO handled locally?
1148 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
);
1150 kvm_iodevice_write(mmio_dev
, gpa
, bytes
, val
);
1151 return X86EMUL_CONTINUE
;
1154 vcpu
->mmio_needed
= 1;
1155 vcpu
->mmio_phys_addr
= gpa
;
1156 vcpu
->mmio_size
= bytes
;
1157 vcpu
->mmio_is_write
= 1;
1158 memcpy(vcpu
->mmio_data
, val
, bytes
);
1160 return X86EMUL_CONTINUE
;
1163 int emulator_write_emulated(unsigned long addr
,
1166 struct kvm_vcpu
*vcpu
)
1168 /* Crossing a page boundary? */
1169 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
1172 now
= -addr
& ~PAGE_MASK
;
1173 rc
= emulator_write_emulated_onepage(addr
, val
, now
, vcpu
);
1174 if (rc
!= X86EMUL_CONTINUE
)
1180 return emulator_write_emulated_onepage(addr
, val
, bytes
, vcpu
);
1182 EXPORT_SYMBOL_GPL(emulator_write_emulated
);
1184 static int emulator_cmpxchg_emulated(unsigned long addr
,
1188 struct kvm_vcpu
*vcpu
)
1190 static int reported
;
1194 printk(KERN_WARNING
"kvm: emulating exchange as write\n");
1196 return emulator_write_emulated(addr
, new, bytes
, vcpu
);
1199 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1201 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
1204 int emulate_invlpg(struct kvm_vcpu
*vcpu
, gva_t address
)
1206 return X86EMUL_CONTINUE
;
1209 int emulate_clts(struct kvm_vcpu
*vcpu
)
1211 vcpu
->cr0
&= ~X86_CR0_TS
;
1212 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->cr0
);
1213 return X86EMUL_CONTINUE
;
1216 int emulator_get_dr(struct x86_emulate_ctxt
* ctxt
, int dr
, unsigned long *dest
)
1218 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
1222 *dest
= kvm_x86_ops
->get_dr(vcpu
, dr
);
1223 return X86EMUL_CONTINUE
;
1225 pr_unimpl(vcpu
, "%s: unexpected dr %u\n", __FUNCTION__
, dr
);
1226 return X86EMUL_UNHANDLEABLE
;
1230 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
1232 unsigned long mask
= (ctxt
->mode
== X86EMUL_MODE_PROT64
) ? ~0ULL : ~0U;
1235 kvm_x86_ops
->set_dr(ctxt
->vcpu
, dr
, value
& mask
, &exception
);
1237 /* FIXME: better handling */
1238 return X86EMUL_UNHANDLEABLE
;
1240 return X86EMUL_CONTINUE
;
1243 void kvm_report_emulation_failure(struct kvm_vcpu
*vcpu
, const char *context
)
1245 static int reported
;
1247 unsigned long rip
= vcpu
->rip
;
1248 unsigned long rip_linear
;
1250 rip_linear
= rip
+ get_segment_base(vcpu
, VCPU_SREG_CS
);
1255 emulator_read_std(rip_linear
, (void *)opcodes
, 4, vcpu
);
1257 printk(KERN_ERR
"emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
1258 context
, rip
, opcodes
[0], opcodes
[1], opcodes
[2], opcodes
[3]);
1261 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure
);
1263 struct x86_emulate_ops emulate_ops
= {
1264 .read_std
= emulator_read_std
,
1265 .write_std
= emulator_write_std
,
1266 .read_emulated
= emulator_read_emulated
,
1267 .write_emulated
= emulator_write_emulated
,
1268 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
1271 int emulate_instruction(struct kvm_vcpu
*vcpu
,
1272 struct kvm_run
*run
,
1276 struct x86_emulate_ctxt emulate_ctxt
;
1280 vcpu
->mmio_fault_cr2
= cr2
;
1281 kvm_x86_ops
->cache_regs(vcpu
);
1283 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
1285 emulate_ctxt
.vcpu
= vcpu
;
1286 emulate_ctxt
.eflags
= kvm_x86_ops
->get_rflags(vcpu
);
1287 emulate_ctxt
.cr2
= cr2
;
1288 emulate_ctxt
.mode
= (emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
1289 ? X86EMUL_MODE_REAL
: cs_l
1290 ? X86EMUL_MODE_PROT64
: cs_db
1291 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
1293 if (emulate_ctxt
.mode
== X86EMUL_MODE_PROT64
) {
1294 emulate_ctxt
.cs_base
= 0;
1295 emulate_ctxt
.ds_base
= 0;
1296 emulate_ctxt
.es_base
= 0;
1297 emulate_ctxt
.ss_base
= 0;
1299 emulate_ctxt
.cs_base
= get_segment_base(vcpu
, VCPU_SREG_CS
);
1300 emulate_ctxt
.ds_base
= get_segment_base(vcpu
, VCPU_SREG_DS
);
1301 emulate_ctxt
.es_base
= get_segment_base(vcpu
, VCPU_SREG_ES
);
1302 emulate_ctxt
.ss_base
= get_segment_base(vcpu
, VCPU_SREG_SS
);
1305 emulate_ctxt
.gs_base
= get_segment_base(vcpu
, VCPU_SREG_GS
);
1306 emulate_ctxt
.fs_base
= get_segment_base(vcpu
, VCPU_SREG_FS
);
1308 vcpu
->mmio_is_write
= 0;
1309 vcpu
->pio
.string
= 0;
1310 r
= x86_emulate_memop(&emulate_ctxt
, &emulate_ops
);
1311 if (vcpu
->pio
.string
)
1312 return EMULATE_DO_MMIO
;
1314 if ((r
|| vcpu
->mmio_is_write
) && run
) {
1315 run
->exit_reason
= KVM_EXIT_MMIO
;
1316 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
;
1317 memcpy(run
->mmio
.data
, vcpu
->mmio_data
, 8);
1318 run
->mmio
.len
= vcpu
->mmio_size
;
1319 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
1323 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
1324 return EMULATE_DONE
;
1325 if (!vcpu
->mmio_needed
) {
1326 kvm_report_emulation_failure(vcpu
, "mmio");
1327 return EMULATE_FAIL
;
1329 return EMULATE_DO_MMIO
;
1332 kvm_x86_ops
->decache_regs(vcpu
);
1333 kvm_x86_ops
->set_rflags(vcpu
, emulate_ctxt
.eflags
);
1335 if (vcpu
->mmio_is_write
) {
1336 vcpu
->mmio_needed
= 0;
1337 return EMULATE_DO_MMIO
;
1340 return EMULATE_DONE
;
1342 EXPORT_SYMBOL_GPL(emulate_instruction
);
1345 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1347 static void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
1349 DECLARE_WAITQUEUE(wait
, current
);
1351 add_wait_queue(&vcpu
->wq
, &wait
);
1354 * We will block until either an interrupt or a signal wakes us up
1356 while (!kvm_cpu_has_interrupt(vcpu
)
1357 && !signal_pending(current
)
1358 && vcpu
->mp_state
!= VCPU_MP_STATE_RUNNABLE
1359 && vcpu
->mp_state
!= VCPU_MP_STATE_SIPI_RECEIVED
) {
1360 set_current_state(TASK_INTERRUPTIBLE
);
1366 __set_current_state(TASK_RUNNING
);
1367 remove_wait_queue(&vcpu
->wq
, &wait
);
1370 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
1372 ++vcpu
->stat
.halt_exits
;
1373 if (irqchip_in_kernel(vcpu
->kvm
)) {
1374 vcpu
->mp_state
= VCPU_MP_STATE_HALTED
;
1375 kvm_vcpu_block(vcpu
);
1376 if (vcpu
->mp_state
!= VCPU_MP_STATE_RUNNABLE
)
1380 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
1384 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
1386 int kvm_hypercall(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1388 unsigned long nr
, a0
, a1
, a2
, a3
, a4
, a5
, ret
;
1390 kvm_x86_ops
->cache_regs(vcpu
);
1392 #ifdef CONFIG_X86_64
1393 if (is_long_mode(vcpu
)) {
1394 nr
= vcpu
->regs
[VCPU_REGS_RAX
];
1395 a0
= vcpu
->regs
[VCPU_REGS_RDI
];
1396 a1
= vcpu
->regs
[VCPU_REGS_RSI
];
1397 a2
= vcpu
->regs
[VCPU_REGS_RDX
];
1398 a3
= vcpu
->regs
[VCPU_REGS_RCX
];
1399 a4
= vcpu
->regs
[VCPU_REGS_R8
];
1400 a5
= vcpu
->regs
[VCPU_REGS_R9
];
1404 nr
= vcpu
->regs
[VCPU_REGS_RBX
] & -1u;
1405 a0
= vcpu
->regs
[VCPU_REGS_RAX
] & -1u;
1406 a1
= vcpu
->regs
[VCPU_REGS_RCX
] & -1u;
1407 a2
= vcpu
->regs
[VCPU_REGS_RDX
] & -1u;
1408 a3
= vcpu
->regs
[VCPU_REGS_RSI
] & -1u;
1409 a4
= vcpu
->regs
[VCPU_REGS_RDI
] & -1u;
1410 a5
= vcpu
->regs
[VCPU_REGS_RBP
] & -1u;
1414 run
->hypercall
.nr
= nr
;
1415 run
->hypercall
.args
[0] = a0
;
1416 run
->hypercall
.args
[1] = a1
;
1417 run
->hypercall
.args
[2] = a2
;
1418 run
->hypercall
.args
[3] = a3
;
1419 run
->hypercall
.args
[4] = a4
;
1420 run
->hypercall
.args
[5] = a5
;
1421 run
->hypercall
.ret
= ret
;
1422 run
->hypercall
.longmode
= is_long_mode(vcpu
);
1423 kvm_x86_ops
->decache_regs(vcpu
);
1426 vcpu
->regs
[VCPU_REGS_RAX
] = ret
;
1427 kvm_x86_ops
->decache_regs(vcpu
);
1430 EXPORT_SYMBOL_GPL(kvm_hypercall
);
1432 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
1434 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
1437 void realmode_lgdt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
1439 struct descriptor_table dt
= { limit
, base
};
1441 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
1444 void realmode_lidt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
1446 struct descriptor_table dt
= { limit
, base
};
1448 kvm_x86_ops
->set_idt(vcpu
, &dt
);
1451 void realmode_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
,
1452 unsigned long *rflags
)
1455 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
1458 unsigned long realmode_get_cr(struct kvm_vcpu
*vcpu
, int cr
)
1460 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
1471 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __FUNCTION__
, cr
);
1476 void realmode_set_cr(struct kvm_vcpu
*vcpu
, int cr
, unsigned long val
,
1477 unsigned long *rflags
)
1481 set_cr0(vcpu
, mk_cr_64(vcpu
->cr0
, val
));
1482 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
1491 set_cr4(vcpu
, mk_cr_64(vcpu
->cr4
, val
));
1494 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __FUNCTION__
, cr
);
1499 * Register the para guest with the host:
1501 static int vcpu_register_para(struct kvm_vcpu
*vcpu
, gpa_t para_state_gpa
)
1503 struct kvm_vcpu_para_state
*para_state
;
1504 hpa_t para_state_hpa
, hypercall_hpa
;
1505 struct page
*para_state_page
;
1506 unsigned char *hypercall
;
1507 gpa_t hypercall_gpa
;
1509 printk(KERN_DEBUG
"kvm: guest trying to enter paravirtual mode\n");
1510 printk(KERN_DEBUG
".... para_state_gpa: %08Lx\n", para_state_gpa
);
1513 * Needs to be page aligned:
1515 if (para_state_gpa
!= PAGE_ALIGN(para_state_gpa
))
1518 para_state_hpa
= gpa_to_hpa(vcpu
, para_state_gpa
);
1519 printk(KERN_DEBUG
".... para_state_hpa: %08Lx\n", para_state_hpa
);
1520 if (is_error_hpa(para_state_hpa
))
1523 mark_page_dirty(vcpu
->kvm
, para_state_gpa
>> PAGE_SHIFT
);
1524 para_state_page
= pfn_to_page(para_state_hpa
>> PAGE_SHIFT
);
1525 para_state
= kmap(para_state_page
);
1527 printk(KERN_DEBUG
".... guest version: %d\n", para_state
->guest_version
);
1528 printk(KERN_DEBUG
".... size: %d\n", para_state
->size
);
1530 para_state
->host_version
= KVM_PARA_API_VERSION
;
1532 * We cannot support guests that try to register themselves
1533 * with a newer API version than the host supports:
1535 if (para_state
->guest_version
> KVM_PARA_API_VERSION
) {
1536 para_state
->ret
= -KVM_EINVAL
;
1537 goto err_kunmap_skip
;
1540 hypercall_gpa
= para_state
->hypercall_gpa
;
1541 hypercall_hpa
= gpa_to_hpa(vcpu
, hypercall_gpa
);
1542 printk(KERN_DEBUG
".... hypercall_hpa: %08Lx\n", hypercall_hpa
);
1543 if (is_error_hpa(hypercall_hpa
)) {
1544 para_state
->ret
= -KVM_EINVAL
;
1545 goto err_kunmap_skip
;
1548 printk(KERN_DEBUG
"kvm: para guest successfully registered.\n");
1549 vcpu
->para_state_page
= para_state_page
;
1550 vcpu
->para_state_gpa
= para_state_gpa
;
1551 vcpu
->hypercall_gpa
= hypercall_gpa
;
1553 mark_page_dirty(vcpu
->kvm
, hypercall_gpa
>> PAGE_SHIFT
);
1554 hypercall
= kmap_atomic(pfn_to_page(hypercall_hpa
>> PAGE_SHIFT
),
1555 KM_USER1
) + (hypercall_hpa
& ~PAGE_MASK
);
1556 kvm_x86_ops
->patch_hypercall(vcpu
, hypercall
);
1557 kunmap_atomic(hypercall
, KM_USER1
);
1559 para_state
->ret
= 0;
1561 kunmap(para_state_page
);
1567 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1572 case 0xc0010010: /* SYSCFG */
1573 case 0xc0010015: /* HWCR */
1574 case MSR_IA32_PLATFORM_ID
:
1575 case MSR_IA32_P5_MC_ADDR
:
1576 case MSR_IA32_P5_MC_TYPE
:
1577 case MSR_IA32_MC0_CTL
:
1578 case MSR_IA32_MCG_STATUS
:
1579 case MSR_IA32_MCG_CAP
:
1580 case MSR_IA32_MC0_MISC
:
1581 case MSR_IA32_MC0_MISC
+4:
1582 case MSR_IA32_MC0_MISC
+8:
1583 case MSR_IA32_MC0_MISC
+12:
1584 case MSR_IA32_MC0_MISC
+16:
1585 case MSR_IA32_UCODE_REV
:
1586 case MSR_IA32_PERF_STATUS
:
1587 case MSR_IA32_EBL_CR_POWERON
:
1588 /* MTRR registers */
1590 case 0x200 ... 0x2ff:
1593 case 0xcd: /* fsb frequency */
1596 case MSR_IA32_APICBASE
:
1597 data
= kvm_get_apic_base(vcpu
);
1599 case MSR_IA32_MISC_ENABLE
:
1600 data
= vcpu
->ia32_misc_enable_msr
;
1602 #ifdef CONFIG_X86_64
1604 data
= vcpu
->shadow_efer
;
1608 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
1614 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
1617 * Reads an msr value (of 'msr_index') into 'pdata'.
1618 * Returns 0 on success, non-0 otherwise.
1619 * Assumes vcpu_load() was already called.
1621 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
1623 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
1626 #ifdef CONFIG_X86_64
1628 static void set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1630 if (efer
& EFER_RESERVED_BITS
) {
1631 printk(KERN_DEBUG
"set_efer: 0x%llx #GP, reserved bits\n",
1638 && (vcpu
->shadow_efer
& EFER_LME
) != (efer
& EFER_LME
)) {
1639 printk(KERN_DEBUG
"set_efer: #GP, change LME while paging\n");
1644 kvm_x86_ops
->set_efer(vcpu
, efer
);
1647 efer
|= vcpu
->shadow_efer
& EFER_LMA
;
1649 vcpu
->shadow_efer
= efer
;
1654 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1657 #ifdef CONFIG_X86_64
1659 set_efer(vcpu
, data
);
1662 case MSR_IA32_MC0_STATUS
:
1663 pr_unimpl(vcpu
, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1664 __FUNCTION__
, data
);
1666 case MSR_IA32_MCG_STATUS
:
1667 pr_unimpl(vcpu
, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1668 __FUNCTION__
, data
);
1670 case MSR_IA32_UCODE_REV
:
1671 case MSR_IA32_UCODE_WRITE
:
1672 case 0x200 ... 0x2ff: /* MTRRs */
1674 case MSR_IA32_APICBASE
:
1675 kvm_set_apic_base(vcpu
, data
);
1677 case MSR_IA32_MISC_ENABLE
:
1678 vcpu
->ia32_misc_enable_msr
= data
;
1681 * This is the 'probe whether the host is KVM' logic:
1683 case MSR_KVM_API_MAGIC
:
1684 return vcpu_register_para(vcpu
, data
);
1687 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x\n", msr
);
1692 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
1695 * Writes msr value into into the appropriate "register".
1696 * Returns 0 on success, non-0 otherwise.
1697 * Assumes vcpu_load() was already called.
1699 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
1701 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
1704 void kvm_resched(struct kvm_vcpu
*vcpu
)
1706 if (!need_resched())
1710 EXPORT_SYMBOL_GPL(kvm_resched
);
1712 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
1716 struct kvm_cpuid_entry
*e
, *best
;
1718 kvm_x86_ops
->cache_regs(vcpu
);
1719 function
= vcpu
->regs
[VCPU_REGS_RAX
];
1720 vcpu
->regs
[VCPU_REGS_RAX
] = 0;
1721 vcpu
->regs
[VCPU_REGS_RBX
] = 0;
1722 vcpu
->regs
[VCPU_REGS_RCX
] = 0;
1723 vcpu
->regs
[VCPU_REGS_RDX
] = 0;
1725 for (i
= 0; i
< vcpu
->cpuid_nent
; ++i
) {
1726 e
= &vcpu
->cpuid_entries
[i
];
1727 if (e
->function
== function
) {
1732 * Both basic or both extended?
1734 if (((e
->function
^ function
) & 0x80000000) == 0)
1735 if (!best
|| e
->function
> best
->function
)
1739 vcpu
->regs
[VCPU_REGS_RAX
] = best
->eax
;
1740 vcpu
->regs
[VCPU_REGS_RBX
] = best
->ebx
;
1741 vcpu
->regs
[VCPU_REGS_RCX
] = best
->ecx
;
1742 vcpu
->regs
[VCPU_REGS_RDX
] = best
->edx
;
1744 kvm_x86_ops
->decache_regs(vcpu
);
1745 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
1747 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
1749 static int pio_copy_data(struct kvm_vcpu
*vcpu
)
1751 void *p
= vcpu
->pio_data
;
1754 int nr_pages
= vcpu
->pio
.guest_pages
[1] ? 2 : 1;
1756 q
= vmap(vcpu
->pio
.guest_pages
, nr_pages
, VM_READ
|VM_WRITE
,
1759 free_pio_guest_pages(vcpu
);
1762 q
+= vcpu
->pio
.guest_page_offset
;
1763 bytes
= vcpu
->pio
.size
* vcpu
->pio
.cur_count
;
1765 memcpy(q
, p
, bytes
);
1767 memcpy(p
, q
, bytes
);
1768 q
-= vcpu
->pio
.guest_page_offset
;
1770 free_pio_guest_pages(vcpu
);
1774 static int complete_pio(struct kvm_vcpu
*vcpu
)
1776 struct kvm_pio_request
*io
= &vcpu
->pio
;
1780 kvm_x86_ops
->cache_regs(vcpu
);
1784 memcpy(&vcpu
->regs
[VCPU_REGS_RAX
], vcpu
->pio_data
,
1788 r
= pio_copy_data(vcpu
);
1790 kvm_x86_ops
->cache_regs(vcpu
);
1797 delta
*= io
->cur_count
;
1799 * The size of the register should really depend on
1800 * current address size.
1802 vcpu
->regs
[VCPU_REGS_RCX
] -= delta
;
1808 vcpu
->regs
[VCPU_REGS_RDI
] += delta
;
1810 vcpu
->regs
[VCPU_REGS_RSI
] += delta
;
1813 kvm_x86_ops
->decache_regs(vcpu
);
1815 io
->count
-= io
->cur_count
;
1821 static void kernel_pio(struct kvm_io_device
*pio_dev
,
1822 struct kvm_vcpu
*vcpu
,
1825 /* TODO: String I/O for in kernel device */
1827 mutex_lock(&vcpu
->kvm
->lock
);
1829 kvm_iodevice_read(pio_dev
, vcpu
->pio
.port
,
1833 kvm_iodevice_write(pio_dev
, vcpu
->pio
.port
,
1836 mutex_unlock(&vcpu
->kvm
->lock
);
1839 static void pio_string_write(struct kvm_io_device
*pio_dev
,
1840 struct kvm_vcpu
*vcpu
)
1842 struct kvm_pio_request
*io
= &vcpu
->pio
;
1843 void *pd
= vcpu
->pio_data
;
1846 mutex_lock(&vcpu
->kvm
->lock
);
1847 for (i
= 0; i
< io
->cur_count
; i
++) {
1848 kvm_iodevice_write(pio_dev
, io
->port
,
1853 mutex_unlock(&vcpu
->kvm
->lock
);
1856 int kvm_emulate_pio (struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
1857 int size
, unsigned port
)
1859 struct kvm_io_device
*pio_dev
;
1861 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
1862 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
1863 vcpu
->run
->io
.size
= vcpu
->pio
.size
= size
;
1864 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
1865 vcpu
->run
->io
.count
= vcpu
->pio
.count
= vcpu
->pio
.cur_count
= 1;
1866 vcpu
->run
->io
.port
= vcpu
->pio
.port
= port
;
1868 vcpu
->pio
.string
= 0;
1870 vcpu
->pio
.guest_page_offset
= 0;
1873 kvm_x86_ops
->cache_regs(vcpu
);
1874 memcpy(vcpu
->pio_data
, &vcpu
->regs
[VCPU_REGS_RAX
], 4);
1875 kvm_x86_ops
->decache_regs(vcpu
);
1877 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
1879 pio_dev
= vcpu_find_pio_dev(vcpu
, port
);
1881 kernel_pio(pio_dev
, vcpu
, vcpu
->pio_data
);
1887 EXPORT_SYMBOL_GPL(kvm_emulate_pio
);
1889 int kvm_emulate_pio_string(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
1890 int size
, unsigned long count
, int down
,
1891 gva_t address
, int rep
, unsigned port
)
1893 unsigned now
, in_page
;
1897 struct kvm_io_device
*pio_dev
;
1899 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
1900 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
1901 vcpu
->run
->io
.size
= vcpu
->pio
.size
= size
;
1902 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
1903 vcpu
->run
->io
.count
= vcpu
->pio
.count
= vcpu
->pio
.cur_count
= count
;
1904 vcpu
->run
->io
.port
= vcpu
->pio
.port
= port
;
1906 vcpu
->pio
.string
= 1;
1907 vcpu
->pio
.down
= down
;
1908 vcpu
->pio
.guest_page_offset
= offset_in_page(address
);
1909 vcpu
->pio
.rep
= rep
;
1912 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
1917 in_page
= PAGE_SIZE
- offset_in_page(address
);
1919 in_page
= offset_in_page(address
) + size
;
1920 now
= min(count
, (unsigned long)in_page
/ size
);
1923 * String I/O straddles page boundary. Pin two guest pages
1924 * so that we satisfy atomicity constraints. Do just one
1925 * transaction to avoid complexity.
1932 * String I/O in reverse. Yuck. Kill the guest, fix later.
1934 pr_unimpl(vcpu
, "guest string pio down\n");
1938 vcpu
->run
->io
.count
= now
;
1939 vcpu
->pio
.cur_count
= now
;
1941 if (vcpu
->pio
.cur_count
== vcpu
->pio
.count
)
1942 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
1944 for (i
= 0; i
< nr_pages
; ++i
) {
1945 mutex_lock(&vcpu
->kvm
->lock
);
1946 page
= gva_to_page(vcpu
, address
+ i
* PAGE_SIZE
);
1949 vcpu
->pio
.guest_pages
[i
] = page
;
1950 mutex_unlock(&vcpu
->kvm
->lock
);
1953 free_pio_guest_pages(vcpu
);
1958 pio_dev
= vcpu_find_pio_dev(vcpu
, port
);
1959 if (!vcpu
->pio
.in
) {
1960 /* string PIO write */
1961 ret
= pio_copy_data(vcpu
);
1962 if (ret
>= 0 && pio_dev
) {
1963 pio_string_write(pio_dev
, vcpu
);
1965 if (vcpu
->pio
.count
== 0)
1969 pr_unimpl(vcpu
, "no string pio read support yet, "
1970 "port %x size %d count %ld\n",
1975 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string
);
1978 * Check if userspace requested an interrupt window, and that the
1979 * interrupt window is open.
1981 * No need to exit to userspace if we already have an interrupt queued.
1983 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
,
1984 struct kvm_run
*kvm_run
)
1986 return (!vcpu
->irq_summary
&&
1987 kvm_run
->request_interrupt_window
&&
1988 vcpu
->interrupt_window_open
&&
1989 (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
));
1992 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
,
1993 struct kvm_run
*kvm_run
)
1995 kvm_run
->if_flag
= (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
1996 kvm_run
->cr8
= get_cr8(vcpu
);
1997 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
1998 if (irqchip_in_kernel(vcpu
->kvm
))
1999 kvm_run
->ready_for_interrupt_injection
= 1;
2001 kvm_run
->ready_for_interrupt_injection
=
2002 (vcpu
->interrupt_window_open
&&
2003 vcpu
->irq_summary
== 0);
2006 static int __vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2010 if (unlikely(vcpu
->mp_state
== VCPU_MP_STATE_SIPI_RECEIVED
)) {
2011 printk("vcpu %d received sipi with vector # %x\n",
2012 vcpu
->vcpu_id
, vcpu
->sipi_vector
);
2013 kvm_lapic_reset(vcpu
);
2014 kvm_x86_ops
->vcpu_reset(vcpu
);
2015 vcpu
->mp_state
= VCPU_MP_STATE_RUNNABLE
;
2019 if (vcpu
->guest_debug
.enabled
)
2020 kvm_x86_ops
->guest_debug_pre(vcpu
);
2023 r
= kvm_mmu_reload(vcpu
);
2029 kvm_x86_ops
->prepare_guest_switch(vcpu
);
2030 kvm_load_guest_fpu(vcpu
);
2032 local_irq_disable();
2034 if (signal_pending(current
)) {
2038 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
2039 ++vcpu
->stat
.signal_exits
;
2043 if (irqchip_in_kernel(vcpu
->kvm
))
2044 kvm_x86_ops
->inject_pending_irq(vcpu
);
2045 else if (!vcpu
->mmio_read_completed
)
2046 kvm_x86_ops
->inject_pending_vectors(vcpu
, kvm_run
);
2048 vcpu
->guest_mode
= 1;
2052 if (test_and_clear_bit(KVM_TLB_FLUSH
, &vcpu
->requests
))
2053 kvm_x86_ops
->tlb_flush(vcpu
);
2055 kvm_x86_ops
->run(vcpu
, kvm_run
);
2058 vcpu
->guest_mode
= 0;
2066 * Profile KVM exit RIPs:
2068 if (unlikely(prof_on
== KVM_PROFILING
)) {
2069 kvm_x86_ops
->cache_regs(vcpu
);
2070 profile_hit(KVM_PROFILING
, (void *)vcpu
->rip
);
2073 r
= kvm_x86_ops
->handle_exit(kvm_run
, vcpu
);
2076 if (dm_request_for_irq_injection(vcpu
, kvm_run
)) {
2078 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
2079 ++vcpu
->stat
.request_irq_exits
;
2082 if (!need_resched()) {
2083 ++vcpu
->stat
.light_exits
;
2094 post_kvm_run_save(vcpu
, kvm_run
);
2100 static int kvm_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2107 if (unlikely(vcpu
->mp_state
== VCPU_MP_STATE_UNINITIALIZED
)) {
2108 kvm_vcpu_block(vcpu
);
2113 if (vcpu
->sigset_active
)
2114 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
2116 /* re-sync apic's tpr */
2117 if (!irqchip_in_kernel(vcpu
->kvm
))
2118 set_cr8(vcpu
, kvm_run
->cr8
);
2120 if (vcpu
->pio
.cur_count
) {
2121 r
= complete_pio(vcpu
);
2126 if (vcpu
->mmio_needed
) {
2127 memcpy(vcpu
->mmio_data
, kvm_run
->mmio
.data
, 8);
2128 vcpu
->mmio_read_completed
= 1;
2129 vcpu
->mmio_needed
= 0;
2130 r
= emulate_instruction(vcpu
, kvm_run
,
2131 vcpu
->mmio_fault_cr2
, 0);
2132 if (r
== EMULATE_DO_MMIO
) {
2134 * Read-modify-write. Back to userspace.
2141 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
) {
2142 kvm_x86_ops
->cache_regs(vcpu
);
2143 vcpu
->regs
[VCPU_REGS_RAX
] = kvm_run
->hypercall
.ret
;
2144 kvm_x86_ops
->decache_regs(vcpu
);
2147 r
= __vcpu_run(vcpu
, kvm_run
);
2150 if (vcpu
->sigset_active
)
2151 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
2157 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
,
2158 struct kvm_regs
*regs
)
2162 kvm_x86_ops
->cache_regs(vcpu
);
2164 regs
->rax
= vcpu
->regs
[VCPU_REGS_RAX
];
2165 regs
->rbx
= vcpu
->regs
[VCPU_REGS_RBX
];
2166 regs
->rcx
= vcpu
->regs
[VCPU_REGS_RCX
];
2167 regs
->rdx
= vcpu
->regs
[VCPU_REGS_RDX
];
2168 regs
->rsi
= vcpu
->regs
[VCPU_REGS_RSI
];
2169 regs
->rdi
= vcpu
->regs
[VCPU_REGS_RDI
];
2170 regs
->rsp
= vcpu
->regs
[VCPU_REGS_RSP
];
2171 regs
->rbp
= vcpu
->regs
[VCPU_REGS_RBP
];
2172 #ifdef CONFIG_X86_64
2173 regs
->r8
= vcpu
->regs
[VCPU_REGS_R8
];
2174 regs
->r9
= vcpu
->regs
[VCPU_REGS_R9
];
2175 regs
->r10
= vcpu
->regs
[VCPU_REGS_R10
];
2176 regs
->r11
= vcpu
->regs
[VCPU_REGS_R11
];
2177 regs
->r12
= vcpu
->regs
[VCPU_REGS_R12
];
2178 regs
->r13
= vcpu
->regs
[VCPU_REGS_R13
];
2179 regs
->r14
= vcpu
->regs
[VCPU_REGS_R14
];
2180 regs
->r15
= vcpu
->regs
[VCPU_REGS_R15
];
2183 regs
->rip
= vcpu
->rip
;
2184 regs
->rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2187 * Don't leak debug flags in case they were set for guest debugging
2189 if (vcpu
->guest_debug
.enabled
&& vcpu
->guest_debug
.singlestep
)
2190 regs
->rflags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
2197 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
,
2198 struct kvm_regs
*regs
)
2202 vcpu
->regs
[VCPU_REGS_RAX
] = regs
->rax
;
2203 vcpu
->regs
[VCPU_REGS_RBX
] = regs
->rbx
;
2204 vcpu
->regs
[VCPU_REGS_RCX
] = regs
->rcx
;
2205 vcpu
->regs
[VCPU_REGS_RDX
] = regs
->rdx
;
2206 vcpu
->regs
[VCPU_REGS_RSI
] = regs
->rsi
;
2207 vcpu
->regs
[VCPU_REGS_RDI
] = regs
->rdi
;
2208 vcpu
->regs
[VCPU_REGS_RSP
] = regs
->rsp
;
2209 vcpu
->regs
[VCPU_REGS_RBP
] = regs
->rbp
;
2210 #ifdef CONFIG_X86_64
2211 vcpu
->regs
[VCPU_REGS_R8
] = regs
->r8
;
2212 vcpu
->regs
[VCPU_REGS_R9
] = regs
->r9
;
2213 vcpu
->regs
[VCPU_REGS_R10
] = regs
->r10
;
2214 vcpu
->regs
[VCPU_REGS_R11
] = regs
->r11
;
2215 vcpu
->regs
[VCPU_REGS_R12
] = regs
->r12
;
2216 vcpu
->regs
[VCPU_REGS_R13
] = regs
->r13
;
2217 vcpu
->regs
[VCPU_REGS_R14
] = regs
->r14
;
2218 vcpu
->regs
[VCPU_REGS_R15
] = regs
->r15
;
2221 vcpu
->rip
= regs
->rip
;
2222 kvm_x86_ops
->set_rflags(vcpu
, regs
->rflags
);
2224 kvm_x86_ops
->decache_regs(vcpu
);
2231 static void get_segment(struct kvm_vcpu
*vcpu
,
2232 struct kvm_segment
*var
, int seg
)
2234 return kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
2237 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
2238 struct kvm_sregs
*sregs
)
2240 struct descriptor_table dt
;
2245 get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
2246 get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
2247 get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
2248 get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
2249 get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
2250 get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
2252 get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
2253 get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
2255 kvm_x86_ops
->get_idt(vcpu
, &dt
);
2256 sregs
->idt
.limit
= dt
.limit
;
2257 sregs
->idt
.base
= dt
.base
;
2258 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
2259 sregs
->gdt
.limit
= dt
.limit
;
2260 sregs
->gdt
.base
= dt
.base
;
2262 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
2263 sregs
->cr0
= vcpu
->cr0
;
2264 sregs
->cr2
= vcpu
->cr2
;
2265 sregs
->cr3
= vcpu
->cr3
;
2266 sregs
->cr4
= vcpu
->cr4
;
2267 sregs
->cr8
= get_cr8(vcpu
);
2268 sregs
->efer
= vcpu
->shadow_efer
;
2269 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
2271 if (irqchip_in_kernel(vcpu
->kvm
)) {
2272 memset(sregs
->interrupt_bitmap
, 0,
2273 sizeof sregs
->interrupt_bitmap
);
2274 pending_vec
= kvm_x86_ops
->get_irq(vcpu
);
2275 if (pending_vec
>= 0)
2276 set_bit(pending_vec
, (unsigned long *)sregs
->interrupt_bitmap
);
2278 memcpy(sregs
->interrupt_bitmap
, vcpu
->irq_pending
,
2279 sizeof sregs
->interrupt_bitmap
);
2286 static void set_segment(struct kvm_vcpu
*vcpu
,
2287 struct kvm_segment
*var
, int seg
)
2289 return kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
2292 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
2293 struct kvm_sregs
*sregs
)
2295 int mmu_reset_needed
= 0;
2296 int i
, pending_vec
, max_bits
;
2297 struct descriptor_table dt
;
2301 dt
.limit
= sregs
->idt
.limit
;
2302 dt
.base
= sregs
->idt
.base
;
2303 kvm_x86_ops
->set_idt(vcpu
, &dt
);
2304 dt
.limit
= sregs
->gdt
.limit
;
2305 dt
.base
= sregs
->gdt
.base
;
2306 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
2308 vcpu
->cr2
= sregs
->cr2
;
2309 mmu_reset_needed
|= vcpu
->cr3
!= sregs
->cr3
;
2310 vcpu
->cr3
= sregs
->cr3
;
2312 set_cr8(vcpu
, sregs
->cr8
);
2314 mmu_reset_needed
|= vcpu
->shadow_efer
!= sregs
->efer
;
2315 #ifdef CONFIG_X86_64
2316 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
2318 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
2320 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
2322 mmu_reset_needed
|= vcpu
->cr0
!= sregs
->cr0
;
2323 vcpu
->cr0
= sregs
->cr0
;
2324 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
2326 mmu_reset_needed
|= vcpu
->cr4
!= sregs
->cr4
;
2327 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
2328 if (!is_long_mode(vcpu
) && is_pae(vcpu
))
2329 load_pdptrs(vcpu
, vcpu
->cr3
);
2331 if (mmu_reset_needed
)
2332 kvm_mmu_reset_context(vcpu
);
2334 if (!irqchip_in_kernel(vcpu
->kvm
)) {
2335 memcpy(vcpu
->irq_pending
, sregs
->interrupt_bitmap
,
2336 sizeof vcpu
->irq_pending
);
2337 vcpu
->irq_summary
= 0;
2338 for (i
= 0; i
< ARRAY_SIZE(vcpu
->irq_pending
); ++i
)
2339 if (vcpu
->irq_pending
[i
])
2340 __set_bit(i
, &vcpu
->irq_summary
);
2342 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
2343 pending_vec
= find_first_bit(
2344 (const unsigned long *)sregs
->interrupt_bitmap
,
2346 /* Only pending external irq is handled here */
2347 if (pending_vec
< max_bits
) {
2348 kvm_x86_ops
->set_irq(vcpu
, pending_vec
);
2349 printk("Set back pending irq %d\n", pending_vec
);
2353 set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
2354 set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
2355 set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
2356 set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
2357 set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
2358 set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
2360 set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
2361 set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
2368 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
2370 struct kvm_segment cs
;
2372 get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
2376 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
2379 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2380 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2382 * This list is modified at module load time to reflect the
2383 * capabilities of the host cpu.
2385 static u32 msrs_to_save
[] = {
2386 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
2388 #ifdef CONFIG_X86_64
2389 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
2391 MSR_IA32_TIME_STAMP_COUNTER
,
2394 static unsigned num_msrs_to_save
;
2396 static u32 emulated_msrs
[] = {
2397 MSR_IA32_MISC_ENABLE
,
2400 static __init
void kvm_init_msr_list(void)
2405 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
2406 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
2409 msrs_to_save
[j
] = msrs_to_save
[i
];
2412 num_msrs_to_save
= j
;
2416 * Adapt set_msr() to msr_io()'s calling convention
2418 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
2420 return kvm_set_msr(vcpu
, index
, *data
);
2424 * Read or write a bunch of msrs. All parameters are kernel addresses.
2426 * @return number of msrs set successfully.
2428 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2429 struct kvm_msr_entry
*entries
,
2430 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2431 unsigned index
, u64
*data
))
2437 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2438 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2447 * Read or write a bunch of msrs. Parameters are user addresses.
2449 * @return number of msrs set successfully.
2451 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2452 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2453 unsigned index
, u64
*data
),
2456 struct kvm_msrs msrs
;
2457 struct kvm_msr_entry
*entries
;
2462 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2466 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2470 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2471 entries
= vmalloc(size
);
2476 if (copy_from_user(entries
, user_msrs
->entries
, size
))
2479 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2484 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2496 * Translate a guest virtual address to a guest physical address.
2498 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
2499 struct kvm_translation
*tr
)
2501 unsigned long vaddr
= tr
->linear_address
;
2505 mutex_lock(&vcpu
->kvm
->lock
);
2506 gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, vaddr
);
2507 tr
->physical_address
= gpa
;
2508 tr
->valid
= gpa
!= UNMAPPED_GVA
;
2511 mutex_unlock(&vcpu
->kvm
->lock
);
2517 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2518 struct kvm_interrupt
*irq
)
2520 if (irq
->irq
< 0 || irq
->irq
>= 256)
2522 if (irqchip_in_kernel(vcpu
->kvm
))
2526 set_bit(irq
->irq
, vcpu
->irq_pending
);
2527 set_bit(irq
->irq
/ BITS_PER_LONG
, &vcpu
->irq_summary
);
2534 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu
*vcpu
,
2535 struct kvm_debug_guest
*dbg
)
2541 r
= kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
2548 static struct page
*kvm_vcpu_nopage(struct vm_area_struct
*vma
,
2549 unsigned long address
,
2552 struct kvm_vcpu
*vcpu
= vma
->vm_file
->private_data
;
2553 unsigned long pgoff
;
2556 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2558 page
= virt_to_page(vcpu
->run
);
2559 else if (pgoff
== KVM_PIO_PAGE_OFFSET
)
2560 page
= virt_to_page(vcpu
->pio_data
);
2562 return NOPAGE_SIGBUS
;
2565 *type
= VM_FAULT_MINOR
;
2570 static struct vm_operations_struct kvm_vcpu_vm_ops
= {
2571 .nopage
= kvm_vcpu_nopage
,
2574 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2576 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
2580 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
2582 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2584 fput(vcpu
->kvm
->filp
);
2588 static struct file_operations kvm_vcpu_fops
= {
2589 .release
= kvm_vcpu_release
,
2590 .unlocked_ioctl
= kvm_vcpu_ioctl
,
2591 .compat_ioctl
= kvm_vcpu_ioctl
,
2592 .mmap
= kvm_vcpu_mmap
,
2596 * Allocates an inode for the vcpu.
2598 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
2601 struct inode
*inode
;
2604 r
= anon_inode_getfd(&fd
, &inode
, &file
,
2605 "kvm-vcpu", &kvm_vcpu_fops
, vcpu
);
2608 atomic_inc(&vcpu
->kvm
->filp
->f_count
);
2613 * Creates some virtual cpus. Good luck creating more than one.
2615 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, int n
)
2618 struct kvm_vcpu
*vcpu
;
2623 vcpu
= kvm_x86_ops
->vcpu_create(kvm
, n
);
2625 return PTR_ERR(vcpu
);
2627 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
2629 /* We do fxsave: this must be aligned. */
2630 BUG_ON((unsigned long)&vcpu
->host_fx_image
& 0xF);
2633 r
= kvm_mmu_setup(vcpu
);
2638 mutex_lock(&kvm
->lock
);
2639 if (kvm
->vcpus
[n
]) {
2641 mutex_unlock(&kvm
->lock
);
2644 kvm
->vcpus
[n
] = vcpu
;
2645 mutex_unlock(&kvm
->lock
);
2647 /* Now it's all set up, let userspace reach it */
2648 r
= create_vcpu_fd(vcpu
);
2654 mutex_lock(&kvm
->lock
);
2655 kvm
->vcpus
[n
] = NULL
;
2656 mutex_unlock(&kvm
->lock
);
2660 kvm_mmu_unload(vcpu
);
2664 kvm_x86_ops
->vcpu_free(vcpu
);
2668 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
2672 struct kvm_cpuid_entry
*e
, *entry
;
2674 rdmsrl(MSR_EFER
, efer
);
2676 for (i
= 0; i
< vcpu
->cpuid_nent
; ++i
) {
2677 e
= &vcpu
->cpuid_entries
[i
];
2678 if (e
->function
== 0x80000001) {
2683 if (entry
&& (entry
->edx
& (1 << 20)) && !(efer
& EFER_NX
)) {
2684 entry
->edx
&= ~(1 << 20);
2685 printk(KERN_INFO
"kvm: guest NX capability removed\n");
2689 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
2690 struct kvm_cpuid
*cpuid
,
2691 struct kvm_cpuid_entry __user
*entries
)
2696 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
2699 if (copy_from_user(&vcpu
->cpuid_entries
, entries
,
2700 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
2702 vcpu
->cpuid_nent
= cpuid
->nent
;
2703 cpuid_fix_nx_cap(vcpu
);
2710 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
2713 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2714 vcpu
->sigset_active
= 1;
2715 vcpu
->sigset
= *sigset
;
2717 vcpu
->sigset_active
= 0;
2722 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2723 * we have asm/x86/processor.h
2734 u32 st_space
[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2735 #ifdef CONFIG_X86_64
2736 u32 xmm_space
[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2738 u32 xmm_space
[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2742 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
2744 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->guest_fx_image
;
2748 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
2749 fpu
->fcw
= fxsave
->cwd
;
2750 fpu
->fsw
= fxsave
->swd
;
2751 fpu
->ftwx
= fxsave
->twd
;
2752 fpu
->last_opcode
= fxsave
->fop
;
2753 fpu
->last_ip
= fxsave
->rip
;
2754 fpu
->last_dp
= fxsave
->rdp
;
2755 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
2762 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
2764 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->guest_fx_image
;
2768 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
2769 fxsave
->cwd
= fpu
->fcw
;
2770 fxsave
->swd
= fpu
->fsw
;
2771 fxsave
->twd
= fpu
->ftwx
;
2772 fxsave
->fop
= fpu
->last_opcode
;
2773 fxsave
->rip
= fpu
->last_ip
;
2774 fxsave
->rdp
= fpu
->last_dp
;
2775 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
2782 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2783 struct kvm_lapic_state
*s
)
2786 memcpy(s
->regs
, vcpu
->apic
->regs
, sizeof *s
);
2792 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2793 struct kvm_lapic_state
*s
)
2796 memcpy(vcpu
->apic
->regs
, s
->regs
, sizeof *s
);
2797 kvm_apic_post_state_restore(vcpu
);
2803 static long kvm_vcpu_ioctl(struct file
*filp
,
2804 unsigned int ioctl
, unsigned long arg
)
2806 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2807 void __user
*argp
= (void __user
*)arg
;
2815 r
= kvm_vcpu_ioctl_run(vcpu
, vcpu
->run
);
2817 case KVM_GET_REGS
: {
2818 struct kvm_regs kvm_regs
;
2820 memset(&kvm_regs
, 0, sizeof kvm_regs
);
2821 r
= kvm_vcpu_ioctl_get_regs(vcpu
, &kvm_regs
);
2825 if (copy_to_user(argp
, &kvm_regs
, sizeof kvm_regs
))
2830 case KVM_SET_REGS
: {
2831 struct kvm_regs kvm_regs
;
2834 if (copy_from_user(&kvm_regs
, argp
, sizeof kvm_regs
))
2836 r
= kvm_vcpu_ioctl_set_regs(vcpu
, &kvm_regs
);
2842 case KVM_GET_SREGS
: {
2843 struct kvm_sregs kvm_sregs
;
2845 memset(&kvm_sregs
, 0, sizeof kvm_sregs
);
2846 r
= kvm_vcpu_ioctl_get_sregs(vcpu
, &kvm_sregs
);
2850 if (copy_to_user(argp
, &kvm_sregs
, sizeof kvm_sregs
))
2855 case KVM_SET_SREGS
: {
2856 struct kvm_sregs kvm_sregs
;
2859 if (copy_from_user(&kvm_sregs
, argp
, sizeof kvm_sregs
))
2861 r
= kvm_vcpu_ioctl_set_sregs(vcpu
, &kvm_sregs
);
2867 case KVM_TRANSLATE
: {
2868 struct kvm_translation tr
;
2871 if (copy_from_user(&tr
, argp
, sizeof tr
))
2873 r
= kvm_vcpu_ioctl_translate(vcpu
, &tr
);
2877 if (copy_to_user(argp
, &tr
, sizeof tr
))
2882 case KVM_INTERRUPT
: {
2883 struct kvm_interrupt irq
;
2886 if (copy_from_user(&irq
, argp
, sizeof irq
))
2888 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
2894 case KVM_DEBUG_GUEST
: {
2895 struct kvm_debug_guest dbg
;
2898 if (copy_from_user(&dbg
, argp
, sizeof dbg
))
2900 r
= kvm_vcpu_ioctl_debug_guest(vcpu
, &dbg
);
2907 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
2910 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
2912 case KVM_SET_CPUID
: {
2913 struct kvm_cpuid __user
*cpuid_arg
= argp
;
2914 struct kvm_cpuid cpuid
;
2917 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2919 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
2924 case KVM_SET_SIGNAL_MASK
: {
2925 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2926 struct kvm_signal_mask kvm_sigmask
;
2927 sigset_t sigset
, *p
;
2932 if (copy_from_user(&kvm_sigmask
, argp
,
2933 sizeof kvm_sigmask
))
2936 if (kvm_sigmask
.len
!= sizeof sigset
)
2939 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
2944 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
2950 memset(&fpu
, 0, sizeof fpu
);
2951 r
= kvm_vcpu_ioctl_get_fpu(vcpu
, &fpu
);
2955 if (copy_to_user(argp
, &fpu
, sizeof fpu
))
2964 if (copy_from_user(&fpu
, argp
, sizeof fpu
))
2966 r
= kvm_vcpu_ioctl_set_fpu(vcpu
, &fpu
);
2972 case KVM_GET_LAPIC
: {
2973 struct kvm_lapic_state lapic
;
2975 memset(&lapic
, 0, sizeof lapic
);
2976 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, &lapic
);
2980 if (copy_to_user(argp
, &lapic
, sizeof lapic
))
2985 case KVM_SET_LAPIC
: {
2986 struct kvm_lapic_state lapic
;
2989 if (copy_from_user(&lapic
, argp
, sizeof lapic
))
2991 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, &lapic
);;
3004 static long kvm_vm_ioctl(struct file
*filp
,
3005 unsigned int ioctl
, unsigned long arg
)
3007 struct kvm
*kvm
= filp
->private_data
;
3008 void __user
*argp
= (void __user
*)arg
;
3012 case KVM_CREATE_VCPU
:
3013 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
3017 case KVM_SET_MEMORY_REGION
: {
3018 struct kvm_memory_region kvm_mem
;
3021 if (copy_from_user(&kvm_mem
, argp
, sizeof kvm_mem
))
3023 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_mem
);
3028 case KVM_GET_DIRTY_LOG
: {
3029 struct kvm_dirty_log log
;
3032 if (copy_from_user(&log
, argp
, sizeof log
))
3034 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
3039 case KVM_SET_MEMORY_ALIAS
: {
3040 struct kvm_memory_alias alias
;
3043 if (copy_from_user(&alias
, argp
, sizeof alias
))
3045 r
= kvm_vm_ioctl_set_memory_alias(kvm
, &alias
);
3050 case KVM_CREATE_IRQCHIP
:
3052 kvm
->vpic
= kvm_create_pic(kvm
);
3054 r
= kvm_ioapic_init(kvm
);
3064 case KVM_IRQ_LINE
: {
3065 struct kvm_irq_level irq_event
;
3068 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
3070 if (irqchip_in_kernel(kvm
)) {
3071 mutex_lock(&kvm
->lock
);
3072 if (irq_event
.irq
< 16)
3073 kvm_pic_set_irq(pic_irqchip(kvm
),
3076 kvm_ioapic_set_irq(kvm
->vioapic
,
3079 mutex_unlock(&kvm
->lock
);
3084 case KVM_GET_IRQCHIP
: {
3085 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3086 struct kvm_irqchip chip
;
3089 if (copy_from_user(&chip
, argp
, sizeof chip
))
3092 if (!irqchip_in_kernel(kvm
))
3094 r
= kvm_vm_ioctl_get_irqchip(kvm
, &chip
);
3098 if (copy_to_user(argp
, &chip
, sizeof chip
))
3103 case KVM_SET_IRQCHIP
: {
3104 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3105 struct kvm_irqchip chip
;
3108 if (copy_from_user(&chip
, argp
, sizeof chip
))
3111 if (!irqchip_in_kernel(kvm
))
3113 r
= kvm_vm_ioctl_set_irqchip(kvm
, &chip
);
3126 static struct page
*kvm_vm_nopage(struct vm_area_struct
*vma
,
3127 unsigned long address
,
3130 struct kvm
*kvm
= vma
->vm_file
->private_data
;
3131 unsigned long pgoff
;
3134 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
3135 page
= gfn_to_page(kvm
, pgoff
);
3137 return NOPAGE_SIGBUS
;
3140 *type
= VM_FAULT_MINOR
;
3145 static struct vm_operations_struct kvm_vm_vm_ops
= {
3146 .nopage
= kvm_vm_nopage
,
3149 static int kvm_vm_mmap(struct file
*file
, struct vm_area_struct
*vma
)
3151 vma
->vm_ops
= &kvm_vm_vm_ops
;
3155 static struct file_operations kvm_vm_fops
= {
3156 .release
= kvm_vm_release
,
3157 .unlocked_ioctl
= kvm_vm_ioctl
,
3158 .compat_ioctl
= kvm_vm_ioctl
,
3159 .mmap
= kvm_vm_mmap
,
3162 static int kvm_dev_ioctl_create_vm(void)
3165 struct inode
*inode
;
3169 kvm
= kvm_create_vm();
3171 return PTR_ERR(kvm
);
3172 r
= anon_inode_getfd(&fd
, &inode
, &file
, "kvm-vm", &kvm_vm_fops
, kvm
);
3174 kvm_destroy_vm(kvm
);
3183 static long kvm_dev_ioctl(struct file
*filp
,
3184 unsigned int ioctl
, unsigned long arg
)
3186 void __user
*argp
= (void __user
*)arg
;
3190 case KVM_GET_API_VERSION
:
3194 r
= KVM_API_VERSION
;
3200 r
= kvm_dev_ioctl_create_vm();
3202 case KVM_GET_MSR_INDEX_LIST
: {
3203 struct kvm_msr_list __user
*user_msr_list
= argp
;
3204 struct kvm_msr_list msr_list
;
3208 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
3211 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
3212 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
3215 if (n
< num_msrs_to_save
)
3218 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
3219 num_msrs_to_save
* sizeof(u32
)))
3221 if (copy_to_user(user_msr_list
->indices
3222 + num_msrs_to_save
* sizeof(u32
),
3224 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
3229 case KVM_CHECK_EXTENSION
: {
3230 int ext
= (long)argp
;
3233 case KVM_CAP_IRQCHIP
:
3243 case KVM_GET_VCPU_MMAP_SIZE
:
3256 static struct file_operations kvm_chardev_ops
= {
3257 .unlocked_ioctl
= kvm_dev_ioctl
,
3258 .compat_ioctl
= kvm_dev_ioctl
,
3261 static struct miscdevice kvm_dev
= {
3268 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
3271 static void decache_vcpus_on_cpu(int cpu
)
3274 struct kvm_vcpu
*vcpu
;
3277 spin_lock(&kvm_lock
);
3278 list_for_each_entry(vm
, &vm_list
, vm_list
)
3279 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
3280 vcpu
= vm
->vcpus
[i
];
3284 * If the vcpu is locked, then it is running on some
3285 * other cpu and therefore it is not cached on the
3288 * If it's not locked, check the last cpu it executed
3291 if (mutex_trylock(&vcpu
->mutex
)) {
3292 if (vcpu
->cpu
== cpu
) {
3293 kvm_x86_ops
->vcpu_decache(vcpu
);
3296 mutex_unlock(&vcpu
->mutex
);
3299 spin_unlock(&kvm_lock
);
3302 static void hardware_enable(void *junk
)
3304 int cpu
= raw_smp_processor_id();
3306 if (cpu_isset(cpu
, cpus_hardware_enabled
))
3308 cpu_set(cpu
, cpus_hardware_enabled
);
3309 kvm_x86_ops
->hardware_enable(NULL
);
3312 static void hardware_disable(void *junk
)
3314 int cpu
= raw_smp_processor_id();
3316 if (!cpu_isset(cpu
, cpus_hardware_enabled
))
3318 cpu_clear(cpu
, cpus_hardware_enabled
);
3319 decache_vcpus_on_cpu(cpu
);
3320 kvm_x86_ops
->hardware_disable(NULL
);
3323 static int kvm_cpu_hotplug(struct notifier_block
*notifier
, unsigned long val
,
3330 case CPU_DYING_FROZEN
:
3331 printk(KERN_INFO
"kvm: disabling virtualization on CPU%d\n",
3333 hardware_disable(NULL
);
3335 case CPU_UP_CANCELED
:
3336 case CPU_UP_CANCELED_FROZEN
:
3337 printk(KERN_INFO
"kvm: disabling virtualization on CPU%d\n",
3339 smp_call_function_single(cpu
, hardware_disable
, NULL
, 0, 1);
3342 case CPU_ONLINE_FROZEN
:
3343 printk(KERN_INFO
"kvm: enabling virtualization on CPU%d\n",
3345 smp_call_function_single(cpu
, hardware_enable
, NULL
, 0, 1);
3351 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
3354 if (val
== SYS_RESTART
) {
3356 * Some (well, at least mine) BIOSes hang on reboot if
3359 printk(KERN_INFO
"kvm: exiting hardware virtualization\n");
3360 on_each_cpu(hardware_disable
, NULL
, 0, 1);
3365 static struct notifier_block kvm_reboot_notifier
= {
3366 .notifier_call
= kvm_reboot
,
3370 void kvm_io_bus_init(struct kvm_io_bus
*bus
)
3372 memset(bus
, 0, sizeof(*bus
));
3375 void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
3379 for (i
= 0; i
< bus
->dev_count
; i
++) {
3380 struct kvm_io_device
*pos
= bus
->devs
[i
];
3382 kvm_iodevice_destructor(pos
);
3386 struct kvm_io_device
*kvm_io_bus_find_dev(struct kvm_io_bus
*bus
, gpa_t addr
)
3390 for (i
= 0; i
< bus
->dev_count
; i
++) {
3391 struct kvm_io_device
*pos
= bus
->devs
[i
];
3393 if (pos
->in_range(pos
, addr
))
3400 void kvm_io_bus_register_dev(struct kvm_io_bus
*bus
, struct kvm_io_device
*dev
)
3402 BUG_ON(bus
->dev_count
> (NR_IOBUS_DEVS
-1));
3404 bus
->devs
[bus
->dev_count
++] = dev
;
3407 static struct notifier_block kvm_cpu_notifier
= {
3408 .notifier_call
= kvm_cpu_hotplug
,
3409 .priority
= 20, /* must be > scheduler priority */
3412 static u64
stat_get(void *_offset
)
3414 unsigned offset
= (long)_offset
;
3417 struct kvm_vcpu
*vcpu
;
3420 spin_lock(&kvm_lock
);
3421 list_for_each_entry(kvm
, &vm_list
, vm_list
)
3422 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
3423 vcpu
= kvm
->vcpus
[i
];
3425 total
+= *(u32
*)((void *)vcpu
+ offset
);
3427 spin_unlock(&kvm_lock
);
3431 DEFINE_SIMPLE_ATTRIBUTE(stat_fops
, stat_get
, NULL
, "%llu\n");
3433 static __init
void kvm_init_debug(void)
3435 struct kvm_stats_debugfs_item
*p
;
3437 debugfs_dir
= debugfs_create_dir("kvm", NULL
);
3438 for (p
= debugfs_entries
; p
->name
; ++p
)
3439 p
->dentry
= debugfs_create_file(p
->name
, 0444, debugfs_dir
,
3440 (void *)(long)p
->offset
,
3444 static void kvm_exit_debug(void)
3446 struct kvm_stats_debugfs_item
*p
;
3448 for (p
= debugfs_entries
; p
->name
; ++p
)
3449 debugfs_remove(p
->dentry
);
3450 debugfs_remove(debugfs_dir
);
3453 static int kvm_suspend(struct sys_device
*dev
, pm_message_t state
)
3455 hardware_disable(NULL
);
3459 static int kvm_resume(struct sys_device
*dev
)
3461 hardware_enable(NULL
);
3465 static struct sysdev_class kvm_sysdev_class
= {
3466 set_kset_name("kvm"),
3467 .suspend
= kvm_suspend
,
3468 .resume
= kvm_resume
,
3471 static struct sys_device kvm_sysdev
= {
3473 .cls
= &kvm_sysdev_class
,
3476 hpa_t bad_page_address
;
3479 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
3481 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
3484 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
3486 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3488 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
3491 static void kvm_sched_out(struct preempt_notifier
*pn
,
3492 struct task_struct
*next
)
3494 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3496 kvm_x86_ops
->vcpu_put(vcpu
);
3499 int kvm_init_x86(struct kvm_x86_ops
*ops
, unsigned int vcpu_size
,
3500 struct module
*module
)
3506 printk(KERN_ERR
"kvm: already loaded the other module\n");
3510 if (!ops
->cpu_has_kvm_support()) {
3511 printk(KERN_ERR
"kvm: no hardware support\n");
3514 if (ops
->disabled_by_bios()) {
3515 printk(KERN_ERR
"kvm: disabled by bios\n");
3521 r
= kvm_x86_ops
->hardware_setup();
3525 for_each_online_cpu(cpu
) {
3526 smp_call_function_single(cpu
,
3527 kvm_x86_ops
->check_processor_compatibility
,
3533 on_each_cpu(hardware_enable
, NULL
, 0, 1);
3534 r
= register_cpu_notifier(&kvm_cpu_notifier
);
3537 register_reboot_notifier(&kvm_reboot_notifier
);
3539 r
= sysdev_class_register(&kvm_sysdev_class
);
3543 r
= sysdev_register(&kvm_sysdev
);
3547 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3548 kvm_vcpu_cache
= kmem_cache_create("kvm_vcpu", vcpu_size
,
3549 __alignof__(struct kvm_vcpu
), 0, 0);
3550 if (!kvm_vcpu_cache
) {
3555 kvm_chardev_ops
.owner
= module
;
3557 r
= misc_register(&kvm_dev
);
3559 printk (KERN_ERR
"kvm: misc device register failed\n");
3563 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
3564 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
3569 kmem_cache_destroy(kvm_vcpu_cache
);
3571 sysdev_unregister(&kvm_sysdev
);
3573 sysdev_class_unregister(&kvm_sysdev_class
);
3575 unregister_reboot_notifier(&kvm_reboot_notifier
);
3576 unregister_cpu_notifier(&kvm_cpu_notifier
);
3578 on_each_cpu(hardware_disable
, NULL
, 0, 1);
3580 kvm_x86_ops
->hardware_unsetup();
3586 void kvm_exit_x86(void)
3588 misc_deregister(&kvm_dev
);
3589 kmem_cache_destroy(kvm_vcpu_cache
);
3590 sysdev_unregister(&kvm_sysdev
);
3591 sysdev_class_unregister(&kvm_sysdev_class
);
3592 unregister_reboot_notifier(&kvm_reboot_notifier
);
3593 unregister_cpu_notifier(&kvm_cpu_notifier
);
3594 on_each_cpu(hardware_disable
, NULL
, 0, 1);
3595 kvm_x86_ops
->hardware_unsetup();
3599 static __init
int kvm_init(void)
3601 static struct page
*bad_page
;
3604 r
= kvm_mmu_module_init();
3610 kvm_init_msr_list();
3612 if ((bad_page
= alloc_page(GFP_KERNEL
)) == NULL
) {
3617 bad_page_address
= page_to_pfn(bad_page
) << PAGE_SHIFT
;
3618 memset(__va(bad_page_address
), 0, PAGE_SIZE
);
3624 kvm_mmu_module_exit();
3629 static __exit
void kvm_exit(void)
3632 __free_page(pfn_to_page(bad_page_address
>> PAGE_SHIFT
));
3633 kvm_mmu_module_exit();
3636 module_init(kvm_init
)
3637 module_exit(kvm_exit
)
3639 EXPORT_SYMBOL_GPL(kvm_init_x86
);
3640 EXPORT_SYMBOL_GPL(kvm_exit_x86
);