oom: suppress extraneous stack and memory dump
[wrt350n-kernel.git] / drivers / md / dm-crypt.c
blob64fee90bb68b92f5ac897c9ebe3fff3f0e578880
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
7 */
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/crypto.h>
18 #include <linux/workqueue.h>
19 #include <linux/backing-dev.h>
20 #include <asm/atomic.h>
21 #include <linux/scatterlist.h>
22 #include <asm/page.h>
23 #include <asm/unaligned.h>
25 #include "dm.h"
27 #define DM_MSG_PREFIX "crypt"
28 #define MESG_STR(x) x, sizeof(x)
31 * per bio private data
33 struct dm_crypt_io {
34 struct dm_target *target;
35 struct bio *base_bio;
36 struct work_struct work;
37 atomic_t pending;
38 int error;
39 int post_process;
43 * context holding the current state of a multi-part conversion
45 struct convert_context {
46 struct bio *bio_in;
47 struct bio *bio_out;
48 unsigned int offset_in;
49 unsigned int offset_out;
50 unsigned int idx_in;
51 unsigned int idx_out;
52 sector_t sector;
53 int write;
56 struct crypt_config;
58 struct crypt_iv_operations {
59 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
60 const char *opts);
61 void (*dtr)(struct crypt_config *cc);
62 const char *(*status)(struct crypt_config *cc);
63 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
67 * Crypt: maps a linear range of a block device
68 * and encrypts / decrypts at the same time.
70 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
71 struct crypt_config {
72 struct dm_dev *dev;
73 sector_t start;
76 * pool for per bio private data and
77 * for encryption buffer pages
79 mempool_t *io_pool;
80 mempool_t *page_pool;
81 struct bio_set *bs;
84 * crypto related data
86 struct crypt_iv_operations *iv_gen_ops;
87 char *iv_mode;
88 union {
89 struct crypto_cipher *essiv_tfm;
90 int benbi_shift;
91 } iv_gen_private;
92 sector_t iv_offset;
93 unsigned int iv_size;
95 char cipher[CRYPTO_MAX_ALG_NAME];
96 char chainmode[CRYPTO_MAX_ALG_NAME];
97 struct crypto_blkcipher *tfm;
98 unsigned long flags;
99 unsigned int key_size;
100 u8 key[0];
103 #define MIN_IOS 16
104 #define MIN_POOL_PAGES 32
105 #define MIN_BIO_PAGES 8
107 static struct kmem_cache *_crypt_io_pool;
109 static void clone_init(struct dm_crypt_io *, struct bio *);
112 * Different IV generation algorithms:
114 * plain: the initial vector is the 32-bit little-endian version of the sector
115 * number, padded with zeros if neccessary.
117 * essiv: "encrypted sector|salt initial vector", the sector number is
118 * encrypted with the bulk cipher using a salt as key. The salt
119 * should be derived from the bulk cipher's key via hashing.
121 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
122 * (needed for LRW-32-AES and possible other narrow block modes)
124 * null: the initial vector is always zero. Provides compatibility with
125 * obsolete loop_fish2 devices. Do not use for new devices.
127 * plumb: unimplemented, see:
128 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
131 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
133 memset(iv, 0, cc->iv_size);
134 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
136 return 0;
139 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
140 const char *opts)
142 struct crypto_cipher *essiv_tfm;
143 struct crypto_hash *hash_tfm;
144 struct hash_desc desc;
145 struct scatterlist sg;
146 unsigned int saltsize;
147 u8 *salt;
148 int err;
150 if (opts == NULL) {
151 ti->error = "Digest algorithm missing for ESSIV mode";
152 return -EINVAL;
155 /* Hash the cipher key with the given hash algorithm */
156 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
157 if (IS_ERR(hash_tfm)) {
158 ti->error = "Error initializing ESSIV hash";
159 return PTR_ERR(hash_tfm);
162 saltsize = crypto_hash_digestsize(hash_tfm);
163 salt = kmalloc(saltsize, GFP_KERNEL);
164 if (salt == NULL) {
165 ti->error = "Error kmallocing salt storage in ESSIV";
166 crypto_free_hash(hash_tfm);
167 return -ENOMEM;
170 sg_set_buf(&sg, cc->key, cc->key_size);
171 desc.tfm = hash_tfm;
172 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
173 err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
174 crypto_free_hash(hash_tfm);
176 if (err) {
177 ti->error = "Error calculating hash in ESSIV";
178 return err;
181 /* Setup the essiv_tfm with the given salt */
182 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
183 if (IS_ERR(essiv_tfm)) {
184 ti->error = "Error allocating crypto tfm for ESSIV";
185 kfree(salt);
186 return PTR_ERR(essiv_tfm);
188 if (crypto_cipher_blocksize(essiv_tfm) !=
189 crypto_blkcipher_ivsize(cc->tfm)) {
190 ti->error = "Block size of ESSIV cipher does "
191 "not match IV size of block cipher";
192 crypto_free_cipher(essiv_tfm);
193 kfree(salt);
194 return -EINVAL;
196 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
197 if (err) {
198 ti->error = "Failed to set key for ESSIV cipher";
199 crypto_free_cipher(essiv_tfm);
200 kfree(salt);
201 return err;
203 kfree(salt);
205 cc->iv_gen_private.essiv_tfm = essiv_tfm;
206 return 0;
209 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
211 crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
212 cc->iv_gen_private.essiv_tfm = NULL;
215 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
217 memset(iv, 0, cc->iv_size);
218 *(u64 *)iv = cpu_to_le64(sector);
219 crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
220 return 0;
223 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
224 const char *opts)
226 unsigned int bs = crypto_blkcipher_blocksize(cc->tfm);
227 int log = ilog2(bs);
229 /* we need to calculate how far we must shift the sector count
230 * to get the cipher block count, we use this shift in _gen */
232 if (1 << log != bs) {
233 ti->error = "cypher blocksize is not a power of 2";
234 return -EINVAL;
237 if (log > 9) {
238 ti->error = "cypher blocksize is > 512";
239 return -EINVAL;
242 cc->iv_gen_private.benbi_shift = 9 - log;
244 return 0;
247 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
251 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
253 __be64 val;
255 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
257 val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
258 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
260 return 0;
263 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
265 memset(iv, 0, cc->iv_size);
267 return 0;
270 static struct crypt_iv_operations crypt_iv_plain_ops = {
271 .generator = crypt_iv_plain_gen
274 static struct crypt_iv_operations crypt_iv_essiv_ops = {
275 .ctr = crypt_iv_essiv_ctr,
276 .dtr = crypt_iv_essiv_dtr,
277 .generator = crypt_iv_essiv_gen
280 static struct crypt_iv_operations crypt_iv_benbi_ops = {
281 .ctr = crypt_iv_benbi_ctr,
282 .dtr = crypt_iv_benbi_dtr,
283 .generator = crypt_iv_benbi_gen
286 static struct crypt_iv_operations crypt_iv_null_ops = {
287 .generator = crypt_iv_null_gen
290 static int
291 crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
292 struct scatterlist *in, unsigned int length,
293 int write, sector_t sector)
295 u8 iv[cc->iv_size] __attribute__ ((aligned(__alignof__(u64))));
296 struct blkcipher_desc desc = {
297 .tfm = cc->tfm,
298 .info = iv,
299 .flags = CRYPTO_TFM_REQ_MAY_SLEEP,
301 int r;
303 if (cc->iv_gen_ops) {
304 r = cc->iv_gen_ops->generator(cc, iv, sector);
305 if (r < 0)
306 return r;
308 if (write)
309 r = crypto_blkcipher_encrypt_iv(&desc, out, in, length);
310 else
311 r = crypto_blkcipher_decrypt_iv(&desc, out, in, length);
312 } else {
313 if (write)
314 r = crypto_blkcipher_encrypt(&desc, out, in, length);
315 else
316 r = crypto_blkcipher_decrypt(&desc, out, in, length);
319 return r;
322 static void
323 crypt_convert_init(struct crypt_config *cc, struct convert_context *ctx,
324 struct bio *bio_out, struct bio *bio_in,
325 sector_t sector, int write)
327 ctx->bio_in = bio_in;
328 ctx->bio_out = bio_out;
329 ctx->offset_in = 0;
330 ctx->offset_out = 0;
331 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
332 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
333 ctx->sector = sector + cc->iv_offset;
334 ctx->write = write;
338 * Encrypt / decrypt data from one bio to another one (can be the same one)
340 static int crypt_convert(struct crypt_config *cc,
341 struct convert_context *ctx)
343 int r = 0;
345 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
346 ctx->idx_out < ctx->bio_out->bi_vcnt) {
347 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
348 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
349 struct scatterlist sg_in = {
350 .page = bv_in->bv_page,
351 .offset = bv_in->bv_offset + ctx->offset_in,
352 .length = 1 << SECTOR_SHIFT
354 struct scatterlist sg_out = {
355 .page = bv_out->bv_page,
356 .offset = bv_out->bv_offset + ctx->offset_out,
357 .length = 1 << SECTOR_SHIFT
360 ctx->offset_in += sg_in.length;
361 if (ctx->offset_in >= bv_in->bv_len) {
362 ctx->offset_in = 0;
363 ctx->idx_in++;
366 ctx->offset_out += sg_out.length;
367 if (ctx->offset_out >= bv_out->bv_len) {
368 ctx->offset_out = 0;
369 ctx->idx_out++;
372 r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
373 ctx->write, ctx->sector);
374 if (r < 0)
375 break;
377 ctx->sector++;
380 return r;
383 static void dm_crypt_bio_destructor(struct bio *bio)
385 struct dm_crypt_io *io = bio->bi_private;
386 struct crypt_config *cc = io->target->private;
388 bio_free(bio, cc->bs);
392 * Generate a new unfragmented bio with the given size
393 * This should never violate the device limitations
394 * May return a smaller bio when running out of pages
396 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
398 struct crypt_config *cc = io->target->private;
399 struct bio *clone;
400 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
401 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
402 unsigned int i;
404 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
405 if (!clone)
406 return NULL;
408 clone_init(io, clone);
410 for (i = 0; i < nr_iovecs; i++) {
411 struct bio_vec *bv = bio_iovec_idx(clone, i);
413 bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask);
414 if (!bv->bv_page)
415 break;
418 * if additional pages cannot be allocated without waiting,
419 * return a partially allocated bio, the caller will then try
420 * to allocate additional bios while submitting this partial bio
422 if (i == (MIN_BIO_PAGES - 1))
423 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
425 bv->bv_offset = 0;
426 if (size > PAGE_SIZE)
427 bv->bv_len = PAGE_SIZE;
428 else
429 bv->bv_len = size;
431 clone->bi_size += bv->bv_len;
432 clone->bi_vcnt++;
433 size -= bv->bv_len;
436 if (!clone->bi_size) {
437 bio_put(clone);
438 return NULL;
441 return clone;
444 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
446 unsigned int i;
447 struct bio_vec *bv;
449 for (i = 0; i < clone->bi_vcnt; i++) {
450 bv = bio_iovec_idx(clone, i);
451 BUG_ON(!bv->bv_page);
452 mempool_free(bv->bv_page, cc->page_pool);
453 bv->bv_page = NULL;
458 * One of the bios was finished. Check for completion of
459 * the whole request and correctly clean up the buffer.
461 static void dec_pending(struct dm_crypt_io *io, int error)
463 struct crypt_config *cc = (struct crypt_config *) io->target->private;
465 if (error < 0)
466 io->error = error;
468 if (!atomic_dec_and_test(&io->pending))
469 return;
471 bio_endio(io->base_bio, io->error);
473 mempool_free(io, cc->io_pool);
477 * kcryptd:
479 * Needed because it would be very unwise to do decryption in an
480 * interrupt context.
482 static struct workqueue_struct *_kcryptd_workqueue;
483 static void kcryptd_do_work(struct work_struct *work);
485 static void kcryptd_queue_io(struct dm_crypt_io *io)
487 INIT_WORK(&io->work, kcryptd_do_work);
488 queue_work(_kcryptd_workqueue, &io->work);
491 static void crypt_endio(struct bio *clone, int error)
493 struct dm_crypt_io *io = clone->bi_private;
494 struct crypt_config *cc = io->target->private;
495 unsigned read_io = bio_data_dir(clone) == READ;
498 * free the processed pages
500 if (!read_io) {
501 crypt_free_buffer_pages(cc, clone);
502 goto out;
505 if (unlikely(!bio_flagged(clone, BIO_UPTODATE))) {
506 error = -EIO;
507 goto out;
510 bio_put(clone);
511 io->post_process = 1;
512 kcryptd_queue_io(io);
513 return;
515 out:
516 bio_put(clone);
517 dec_pending(io, error);
520 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
522 struct crypt_config *cc = io->target->private;
524 clone->bi_private = io;
525 clone->bi_end_io = crypt_endio;
526 clone->bi_bdev = cc->dev->bdev;
527 clone->bi_rw = io->base_bio->bi_rw;
528 clone->bi_destructor = dm_crypt_bio_destructor;
531 static void process_read(struct dm_crypt_io *io)
533 struct crypt_config *cc = io->target->private;
534 struct bio *base_bio = io->base_bio;
535 struct bio *clone;
536 sector_t sector = base_bio->bi_sector - io->target->begin;
538 atomic_inc(&io->pending);
541 * The block layer might modify the bvec array, so always
542 * copy the required bvecs because we need the original
543 * one in order to decrypt the whole bio data *afterwards*.
545 clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
546 if (unlikely(!clone)) {
547 dec_pending(io, -ENOMEM);
548 return;
551 clone_init(io, clone);
552 clone->bi_idx = 0;
553 clone->bi_vcnt = bio_segments(base_bio);
554 clone->bi_size = base_bio->bi_size;
555 clone->bi_sector = cc->start + sector;
556 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
557 sizeof(struct bio_vec) * clone->bi_vcnt);
559 generic_make_request(clone);
562 static void process_write(struct dm_crypt_io *io)
564 struct crypt_config *cc = io->target->private;
565 struct bio *base_bio = io->base_bio;
566 struct bio *clone;
567 struct convert_context ctx;
568 unsigned remaining = base_bio->bi_size;
569 sector_t sector = base_bio->bi_sector - io->target->begin;
571 atomic_inc(&io->pending);
573 crypt_convert_init(cc, &ctx, NULL, base_bio, sector, 1);
576 * The allocated buffers can be smaller than the whole bio,
577 * so repeat the whole process until all the data can be handled.
579 while (remaining) {
580 clone = crypt_alloc_buffer(io, remaining);
581 if (unlikely(!clone)) {
582 dec_pending(io, -ENOMEM);
583 return;
586 ctx.bio_out = clone;
587 ctx.idx_out = 0;
589 if (unlikely(crypt_convert(cc, &ctx) < 0)) {
590 crypt_free_buffer_pages(cc, clone);
591 bio_put(clone);
592 dec_pending(io, -EIO);
593 return;
596 /* crypt_convert should have filled the clone bio */
597 BUG_ON(ctx.idx_out < clone->bi_vcnt);
599 clone->bi_sector = cc->start + sector;
600 remaining -= clone->bi_size;
601 sector += bio_sectors(clone);
603 /* Grab another reference to the io struct
604 * before we kick off the request */
605 if (remaining)
606 atomic_inc(&io->pending);
608 generic_make_request(clone);
610 /* Do not reference clone after this - it
611 * may be gone already. */
613 /* out of memory -> run queues */
614 if (remaining)
615 congestion_wait(WRITE, HZ/100);
619 static void process_read_endio(struct dm_crypt_io *io)
621 struct crypt_config *cc = io->target->private;
622 struct convert_context ctx;
624 crypt_convert_init(cc, &ctx, io->base_bio, io->base_bio,
625 io->base_bio->bi_sector - io->target->begin, 0);
627 dec_pending(io, crypt_convert(cc, &ctx));
630 static void kcryptd_do_work(struct work_struct *work)
632 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
634 if (io->post_process)
635 process_read_endio(io);
636 else if (bio_data_dir(io->base_bio) == READ)
637 process_read(io);
638 else
639 process_write(io);
643 * Decode key from its hex representation
645 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
647 char buffer[3];
648 char *endp;
649 unsigned int i;
651 buffer[2] = '\0';
653 for (i = 0; i < size; i++) {
654 buffer[0] = *hex++;
655 buffer[1] = *hex++;
657 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
659 if (endp != &buffer[2])
660 return -EINVAL;
663 if (*hex != '\0')
664 return -EINVAL;
666 return 0;
670 * Encode key into its hex representation
672 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
674 unsigned int i;
676 for (i = 0; i < size; i++) {
677 sprintf(hex, "%02x", *key);
678 hex += 2;
679 key++;
683 static int crypt_set_key(struct crypt_config *cc, char *key)
685 unsigned key_size = strlen(key) >> 1;
687 if (cc->key_size && cc->key_size != key_size)
688 return -EINVAL;
690 cc->key_size = key_size; /* initial settings */
692 if ((!key_size && strcmp(key, "-")) ||
693 (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
694 return -EINVAL;
696 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
698 return 0;
701 static int crypt_wipe_key(struct crypt_config *cc)
703 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
704 memset(&cc->key, 0, cc->key_size * sizeof(u8));
705 return 0;
709 * Construct an encryption mapping:
710 * <cipher> <key> <iv_offset> <dev_path> <start>
712 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
714 struct crypt_config *cc;
715 struct crypto_blkcipher *tfm;
716 char *tmp;
717 char *cipher;
718 char *chainmode;
719 char *ivmode;
720 char *ivopts;
721 unsigned int key_size;
722 unsigned long long tmpll;
724 if (argc != 5) {
725 ti->error = "Not enough arguments";
726 return -EINVAL;
729 tmp = argv[0];
730 cipher = strsep(&tmp, "-");
731 chainmode = strsep(&tmp, "-");
732 ivopts = strsep(&tmp, "-");
733 ivmode = strsep(&ivopts, ":");
735 if (tmp)
736 DMWARN("Unexpected additional cipher options");
738 key_size = strlen(argv[1]) >> 1;
740 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
741 if (cc == NULL) {
742 ti->error =
743 "Cannot allocate transparent encryption context";
744 return -ENOMEM;
747 if (crypt_set_key(cc, argv[1])) {
748 ti->error = "Error decoding key";
749 goto bad1;
752 /* Compatiblity mode for old dm-crypt cipher strings */
753 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
754 chainmode = "cbc";
755 ivmode = "plain";
758 if (strcmp(chainmode, "ecb") && !ivmode) {
759 ti->error = "This chaining mode requires an IV mechanism";
760 goto bad1;
763 if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)", chainmode,
764 cipher) >= CRYPTO_MAX_ALG_NAME) {
765 ti->error = "Chain mode + cipher name is too long";
766 goto bad1;
769 tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
770 if (IS_ERR(tfm)) {
771 ti->error = "Error allocating crypto tfm";
772 goto bad1;
775 strcpy(cc->cipher, cipher);
776 strcpy(cc->chainmode, chainmode);
777 cc->tfm = tfm;
780 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
781 * See comments at iv code
784 if (ivmode == NULL)
785 cc->iv_gen_ops = NULL;
786 else if (strcmp(ivmode, "plain") == 0)
787 cc->iv_gen_ops = &crypt_iv_plain_ops;
788 else if (strcmp(ivmode, "essiv") == 0)
789 cc->iv_gen_ops = &crypt_iv_essiv_ops;
790 else if (strcmp(ivmode, "benbi") == 0)
791 cc->iv_gen_ops = &crypt_iv_benbi_ops;
792 else if (strcmp(ivmode, "null") == 0)
793 cc->iv_gen_ops = &crypt_iv_null_ops;
794 else {
795 ti->error = "Invalid IV mode";
796 goto bad2;
799 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
800 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
801 goto bad2;
803 cc->iv_size = crypto_blkcipher_ivsize(tfm);
804 if (cc->iv_size)
805 /* at least a 64 bit sector number should fit in our buffer */
806 cc->iv_size = max(cc->iv_size,
807 (unsigned int)(sizeof(u64) / sizeof(u8)));
808 else {
809 if (cc->iv_gen_ops) {
810 DMWARN("Selected cipher does not support IVs");
811 if (cc->iv_gen_ops->dtr)
812 cc->iv_gen_ops->dtr(cc);
813 cc->iv_gen_ops = NULL;
817 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
818 if (!cc->io_pool) {
819 ti->error = "Cannot allocate crypt io mempool";
820 goto bad3;
823 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
824 if (!cc->page_pool) {
825 ti->error = "Cannot allocate page mempool";
826 goto bad4;
829 cc->bs = bioset_create(MIN_IOS, MIN_IOS);
830 if (!cc->bs) {
831 ti->error = "Cannot allocate crypt bioset";
832 goto bad_bs;
835 if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) {
836 ti->error = "Error setting key";
837 goto bad5;
840 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
841 ti->error = "Invalid iv_offset sector";
842 goto bad5;
844 cc->iv_offset = tmpll;
846 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
847 ti->error = "Invalid device sector";
848 goto bad5;
850 cc->start = tmpll;
852 if (dm_get_device(ti, argv[3], cc->start, ti->len,
853 dm_table_get_mode(ti->table), &cc->dev)) {
854 ti->error = "Device lookup failed";
855 goto bad5;
858 if (ivmode && cc->iv_gen_ops) {
859 if (ivopts)
860 *(ivopts - 1) = ':';
861 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
862 if (!cc->iv_mode) {
863 ti->error = "Error kmallocing iv_mode string";
864 goto bad5;
866 strcpy(cc->iv_mode, ivmode);
867 } else
868 cc->iv_mode = NULL;
870 ti->private = cc;
871 return 0;
873 bad5:
874 bioset_free(cc->bs);
875 bad_bs:
876 mempool_destroy(cc->page_pool);
877 bad4:
878 mempool_destroy(cc->io_pool);
879 bad3:
880 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
881 cc->iv_gen_ops->dtr(cc);
882 bad2:
883 crypto_free_blkcipher(tfm);
884 bad1:
885 /* Must zero key material before freeing */
886 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
887 kfree(cc);
888 return -EINVAL;
891 static void crypt_dtr(struct dm_target *ti)
893 struct crypt_config *cc = (struct crypt_config *) ti->private;
895 flush_workqueue(_kcryptd_workqueue);
897 bioset_free(cc->bs);
898 mempool_destroy(cc->page_pool);
899 mempool_destroy(cc->io_pool);
901 kfree(cc->iv_mode);
902 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
903 cc->iv_gen_ops->dtr(cc);
904 crypto_free_blkcipher(cc->tfm);
905 dm_put_device(ti, cc->dev);
907 /* Must zero key material before freeing */
908 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
909 kfree(cc);
912 static int crypt_map(struct dm_target *ti, struct bio *bio,
913 union map_info *map_context)
915 struct crypt_config *cc = ti->private;
916 struct dm_crypt_io *io;
918 io = mempool_alloc(cc->io_pool, GFP_NOIO);
919 io->target = ti;
920 io->base_bio = bio;
921 io->error = io->post_process = 0;
922 atomic_set(&io->pending, 0);
923 kcryptd_queue_io(io);
925 return DM_MAPIO_SUBMITTED;
928 static int crypt_status(struct dm_target *ti, status_type_t type,
929 char *result, unsigned int maxlen)
931 struct crypt_config *cc = (struct crypt_config *) ti->private;
932 unsigned int sz = 0;
934 switch (type) {
935 case STATUSTYPE_INFO:
936 result[0] = '\0';
937 break;
939 case STATUSTYPE_TABLE:
940 if (cc->iv_mode)
941 DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
942 cc->iv_mode);
943 else
944 DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
946 if (cc->key_size > 0) {
947 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
948 return -ENOMEM;
950 crypt_encode_key(result + sz, cc->key, cc->key_size);
951 sz += cc->key_size << 1;
952 } else {
953 if (sz >= maxlen)
954 return -ENOMEM;
955 result[sz++] = '-';
958 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
959 cc->dev->name, (unsigned long long)cc->start);
960 break;
962 return 0;
965 static void crypt_postsuspend(struct dm_target *ti)
967 struct crypt_config *cc = ti->private;
969 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
972 static int crypt_preresume(struct dm_target *ti)
974 struct crypt_config *cc = ti->private;
976 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
977 DMERR("aborting resume - crypt key is not set.");
978 return -EAGAIN;
981 return 0;
984 static void crypt_resume(struct dm_target *ti)
986 struct crypt_config *cc = ti->private;
988 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
991 /* Message interface
992 * key set <key>
993 * key wipe
995 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
997 struct crypt_config *cc = ti->private;
999 if (argc < 2)
1000 goto error;
1002 if (!strnicmp(argv[0], MESG_STR("key"))) {
1003 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1004 DMWARN("not suspended during key manipulation.");
1005 return -EINVAL;
1007 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1008 return crypt_set_key(cc, argv[2]);
1009 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1010 return crypt_wipe_key(cc);
1013 error:
1014 DMWARN("unrecognised message received.");
1015 return -EINVAL;
1018 static struct target_type crypt_target = {
1019 .name = "crypt",
1020 .version= {1, 5, 0},
1021 .module = THIS_MODULE,
1022 .ctr = crypt_ctr,
1023 .dtr = crypt_dtr,
1024 .map = crypt_map,
1025 .status = crypt_status,
1026 .postsuspend = crypt_postsuspend,
1027 .preresume = crypt_preresume,
1028 .resume = crypt_resume,
1029 .message = crypt_message,
1032 static int __init dm_crypt_init(void)
1034 int r;
1036 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1037 if (!_crypt_io_pool)
1038 return -ENOMEM;
1040 _kcryptd_workqueue = create_workqueue("kcryptd");
1041 if (!_kcryptd_workqueue) {
1042 r = -ENOMEM;
1043 DMERR("couldn't create kcryptd");
1044 goto bad1;
1047 r = dm_register_target(&crypt_target);
1048 if (r < 0) {
1049 DMERR("register failed %d", r);
1050 goto bad2;
1053 return 0;
1055 bad2:
1056 destroy_workqueue(_kcryptd_workqueue);
1057 bad1:
1058 kmem_cache_destroy(_crypt_io_pool);
1059 return r;
1062 static void __exit dm_crypt_exit(void)
1064 int r = dm_unregister_target(&crypt_target);
1066 if (r < 0)
1067 DMERR("unregister failed %d", r);
1069 destroy_workqueue(_kcryptd_workqueue);
1070 kmem_cache_destroy(_crypt_io_pool);
1073 module_init(dm_crypt_init);
1074 module_exit(dm_crypt_exit);
1076 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1077 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1078 MODULE_LICENSE("GPL");