oom: suppress extraneous stack and memory dump
[wrt350n-kernel.git] / drivers / net / sundance.c
blobff98f5d597f117294ec870cce330bfd339a63bca
1 /* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
2 /*
3 Written 1999-2000 by Donald Becker.
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
12 The author may be reached as becker@scyld.com, or C/O
13 Scyld Computing Corporation
14 410 Severn Ave., Suite 210
15 Annapolis MD 21403
17 Support and updates available at
18 http://www.scyld.com/network/sundance.html
19 [link no longer provides useful info -jgarzik]
20 Archives of the mailing list are still available at
21 http://www.beowulf.org/pipermail/netdrivers/
25 #define DRV_NAME "sundance"
26 #define DRV_VERSION "1.2"
27 #define DRV_RELDATE "11-Sep-2006"
30 /* The user-configurable values.
31 These may be modified when a driver module is loaded.*/
32 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
33 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
34 Typical is a 64 element hash table based on the Ethernet CRC. */
35 static const int multicast_filter_limit = 32;
37 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
38 Setting to > 1518 effectively disables this feature.
39 This chip can receive into offset buffers, so the Alpha does not
40 need a copy-align. */
41 static int rx_copybreak;
42 static int flowctrl=1;
44 /* media[] specifies the media type the NIC operates at.
45 autosense Autosensing active media.
46 10mbps_hd 10Mbps half duplex.
47 10mbps_fd 10Mbps full duplex.
48 100mbps_hd 100Mbps half duplex.
49 100mbps_fd 100Mbps full duplex.
50 0 Autosensing active media.
51 1 10Mbps half duplex.
52 2 10Mbps full duplex.
53 3 100Mbps half duplex.
54 4 100Mbps full duplex.
56 #define MAX_UNITS 8
57 static char *media[MAX_UNITS];
60 /* Operational parameters that are set at compile time. */
62 /* Keep the ring sizes a power of two for compile efficiency.
63 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
64 Making the Tx ring too large decreases the effectiveness of channel
65 bonding and packet priority, and more than 128 requires modifying the
66 Tx error recovery.
67 Large receive rings merely waste memory. */
68 #define TX_RING_SIZE 32
69 #define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */
70 #define RX_RING_SIZE 64
71 #define RX_BUDGET 32
72 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc)
73 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc)
75 /* Operational parameters that usually are not changed. */
76 /* Time in jiffies before concluding the transmitter is hung. */
77 #define TX_TIMEOUT (4*HZ)
78 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
80 /* Include files, designed to support most kernel versions 2.0.0 and later. */
81 #include <linux/module.h>
82 #include <linux/kernel.h>
83 #include <linux/string.h>
84 #include <linux/timer.h>
85 #include <linux/errno.h>
86 #include <linux/ioport.h>
87 #include <linux/slab.h>
88 #include <linux/interrupt.h>
89 #include <linux/pci.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/skbuff.h>
93 #include <linux/init.h>
94 #include <linux/bitops.h>
95 #include <asm/uaccess.h>
96 #include <asm/processor.h> /* Processor type for cache alignment. */
97 #include <asm/io.h>
98 #include <linux/delay.h>
99 #include <linux/spinlock.h>
100 #ifndef _COMPAT_WITH_OLD_KERNEL
101 #include <linux/crc32.h>
102 #include <linux/ethtool.h>
103 #include <linux/mii.h>
104 #else
105 #include "crc32.h"
106 #include "ethtool.h"
107 #include "mii.h"
108 #include "compat.h"
109 #endif
111 /* These identify the driver base version and may not be removed. */
112 static char version[] =
113 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n";
115 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
116 MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
117 MODULE_LICENSE("GPL");
119 module_param(debug, int, 0);
120 module_param(rx_copybreak, int, 0);
121 module_param_array(media, charp, NULL, 0);
122 module_param(flowctrl, int, 0);
123 MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)");
124 MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames");
125 MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]");
128 Theory of Operation
130 I. Board Compatibility
132 This driver is designed for the Sundance Technologies "Alta" ST201 chip.
134 II. Board-specific settings
136 III. Driver operation
138 IIIa. Ring buffers
140 This driver uses two statically allocated fixed-size descriptor lists
141 formed into rings by a branch from the final descriptor to the beginning of
142 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
143 Some chips explicitly use only 2^N sized rings, while others use a
144 'next descriptor' pointer that the driver forms into rings.
146 IIIb/c. Transmit/Receive Structure
148 This driver uses a zero-copy receive and transmit scheme.
149 The driver allocates full frame size skbuffs for the Rx ring buffers at
150 open() time and passes the skb->data field to the chip as receive data
151 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
152 a fresh skbuff is allocated and the frame is copied to the new skbuff.
153 When the incoming frame is larger, the skbuff is passed directly up the
154 protocol stack. Buffers consumed this way are replaced by newly allocated
155 skbuffs in a later phase of receives.
157 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
158 using a full-sized skbuff for small frames vs. the copying costs of larger
159 frames. New boards are typically used in generously configured machines
160 and the underfilled buffers have negligible impact compared to the benefit of
161 a single allocation size, so the default value of zero results in never
162 copying packets. When copying is done, the cost is usually mitigated by using
163 a combined copy/checksum routine. Copying also preloads the cache, which is
164 most useful with small frames.
166 A subtle aspect of the operation is that the IP header at offset 14 in an
167 ethernet frame isn't longword aligned for further processing.
168 Unaligned buffers are permitted by the Sundance hardware, so
169 frames are received into the skbuff at an offset of "+2", 16-byte aligning
170 the IP header.
172 IIId. Synchronization
174 The driver runs as two independent, single-threaded flows of control. One
175 is the send-packet routine, which enforces single-threaded use by the
176 dev->tbusy flag. The other thread is the interrupt handler, which is single
177 threaded by the hardware and interrupt handling software.
179 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
180 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
181 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
182 the 'lp->tx_full' flag.
184 The interrupt handler has exclusive control over the Rx ring and records stats
185 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
186 empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
187 clears both the tx_full and tbusy flags.
189 IV. Notes
191 IVb. References
193 The Sundance ST201 datasheet, preliminary version.
194 The Kendin KS8723 datasheet, preliminary version.
195 The ICplus IP100 datasheet, preliminary version.
196 http://www.scyld.com/expert/100mbps.html
197 http://www.scyld.com/expert/NWay.html
199 IVc. Errata
203 /* Work-around for Kendin chip bugs. */
204 #ifndef CONFIG_SUNDANCE_MMIO
205 #define USE_IO_OPS 1
206 #endif
208 static const struct pci_device_id sundance_pci_tbl[] = {
209 { 0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0 },
210 { 0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1 },
211 { 0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2 },
212 { 0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3 },
213 { 0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 },
214 { 0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 },
215 { 0x13F0, 0x0200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 },
218 MODULE_DEVICE_TABLE(pci, sundance_pci_tbl);
220 enum {
221 netdev_io_size = 128
224 struct pci_id_info {
225 const char *name;
227 static const struct pci_id_info pci_id_tbl[] __devinitdata = {
228 {"D-Link DFE-550TX FAST Ethernet Adapter"},
229 {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"},
230 {"D-Link DFE-580TX 4 port Server Adapter"},
231 {"D-Link DFE-530TXS FAST Ethernet Adapter"},
232 {"D-Link DL10050-based FAST Ethernet Adapter"},
233 {"Sundance Technology Alta"},
234 {"IC Plus Corporation IP100A FAST Ethernet Adapter"},
235 { } /* terminate list. */
238 /* This driver was written to use PCI memory space, however x86-oriented
239 hardware often uses I/O space accesses. */
241 /* Offsets to the device registers.
242 Unlike software-only systems, device drivers interact with complex hardware.
243 It's not useful to define symbolic names for every register bit in the
244 device. The name can only partially document the semantics and make
245 the driver longer and more difficult to read.
246 In general, only the important configuration values or bits changed
247 multiple times should be defined symbolically.
249 enum alta_offsets {
250 DMACtrl = 0x00,
251 TxListPtr = 0x04,
252 TxDMABurstThresh = 0x08,
253 TxDMAUrgentThresh = 0x09,
254 TxDMAPollPeriod = 0x0a,
255 RxDMAStatus = 0x0c,
256 RxListPtr = 0x10,
257 DebugCtrl0 = 0x1a,
258 DebugCtrl1 = 0x1c,
259 RxDMABurstThresh = 0x14,
260 RxDMAUrgentThresh = 0x15,
261 RxDMAPollPeriod = 0x16,
262 LEDCtrl = 0x1a,
263 ASICCtrl = 0x30,
264 EEData = 0x34,
265 EECtrl = 0x36,
266 FlashAddr = 0x40,
267 FlashData = 0x44,
268 TxStatus = 0x46,
269 TxFrameId = 0x47,
270 DownCounter = 0x18,
271 IntrClear = 0x4a,
272 IntrEnable = 0x4c,
273 IntrStatus = 0x4e,
274 MACCtrl0 = 0x50,
275 MACCtrl1 = 0x52,
276 StationAddr = 0x54,
277 MaxFrameSize = 0x5A,
278 RxMode = 0x5c,
279 MIICtrl = 0x5e,
280 MulticastFilter0 = 0x60,
281 MulticastFilter1 = 0x64,
282 RxOctetsLow = 0x68,
283 RxOctetsHigh = 0x6a,
284 TxOctetsLow = 0x6c,
285 TxOctetsHigh = 0x6e,
286 TxFramesOK = 0x70,
287 RxFramesOK = 0x72,
288 StatsCarrierError = 0x74,
289 StatsLateColl = 0x75,
290 StatsMultiColl = 0x76,
291 StatsOneColl = 0x77,
292 StatsTxDefer = 0x78,
293 RxMissed = 0x79,
294 StatsTxXSDefer = 0x7a,
295 StatsTxAbort = 0x7b,
296 StatsBcastTx = 0x7c,
297 StatsBcastRx = 0x7d,
298 StatsMcastTx = 0x7e,
299 StatsMcastRx = 0x7f,
300 /* Aliased and bogus values! */
301 RxStatus = 0x0c,
303 enum ASICCtrl_HiWord_bit {
304 GlobalReset = 0x0001,
305 RxReset = 0x0002,
306 TxReset = 0x0004,
307 DMAReset = 0x0008,
308 FIFOReset = 0x0010,
309 NetworkReset = 0x0020,
310 HostReset = 0x0040,
311 ResetBusy = 0x0400,
314 /* Bits in the interrupt status/mask registers. */
315 enum intr_status_bits {
316 IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
317 IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
318 IntrDrvRqst=0x0040,
319 StatsMax=0x0080, LinkChange=0x0100,
320 IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
323 /* Bits in the RxMode register. */
324 enum rx_mode_bits {
325 AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
326 AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
328 /* Bits in MACCtrl. */
329 enum mac_ctrl0_bits {
330 EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
331 EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
333 enum mac_ctrl1_bits {
334 StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080,
335 TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
336 RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
339 /* The Rx and Tx buffer descriptors. */
340 /* Note that using only 32 bit fields simplifies conversion to big-endian
341 architectures. */
342 struct netdev_desc {
343 u32 next_desc;
344 u32 status;
345 struct desc_frag { u32 addr, length; } frag[1];
348 /* Bits in netdev_desc.status */
349 enum desc_status_bits {
350 DescOwn=0x8000,
351 DescEndPacket=0x4000,
352 DescEndRing=0x2000,
353 LastFrag=0x80000000,
354 DescIntrOnTx=0x8000,
355 DescIntrOnDMADone=0x80000000,
356 DisableAlign = 0x00000001,
359 #define PRIV_ALIGN 15 /* Required alignment mask */
360 /* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment
361 within the structure. */
362 #define MII_CNT 4
363 struct netdev_private {
364 /* Descriptor rings first for alignment. */
365 struct netdev_desc *rx_ring;
366 struct netdev_desc *tx_ring;
367 struct sk_buff* rx_skbuff[RX_RING_SIZE];
368 struct sk_buff* tx_skbuff[TX_RING_SIZE];
369 dma_addr_t tx_ring_dma;
370 dma_addr_t rx_ring_dma;
371 struct net_device_stats stats;
372 struct timer_list timer; /* Media monitoring timer. */
373 /* Frequently used values: keep some adjacent for cache effect. */
374 spinlock_t lock;
375 spinlock_t rx_lock; /* Group with Tx control cache line. */
376 int msg_enable;
377 int chip_id;
378 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
379 unsigned int rx_buf_sz; /* Based on MTU+slack. */
380 struct netdev_desc *last_tx; /* Last Tx descriptor used. */
381 unsigned int cur_tx, dirty_tx;
382 /* These values are keep track of the transceiver/media in use. */
383 unsigned int flowctrl:1;
384 unsigned int default_port:4; /* Last dev->if_port value. */
385 unsigned int an_enable:1;
386 unsigned int speed;
387 struct tasklet_struct rx_tasklet;
388 struct tasklet_struct tx_tasklet;
389 int budget;
390 int cur_task;
391 /* Multicast and receive mode. */
392 spinlock_t mcastlock; /* SMP lock multicast updates. */
393 u16 mcast_filter[4];
394 /* MII transceiver section. */
395 struct mii_if_info mii_if;
396 int mii_preamble_required;
397 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
398 struct pci_dev *pci_dev;
399 void __iomem *base;
402 /* The station address location in the EEPROM. */
403 #define EEPROM_SA_OFFSET 0x10
404 #define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \
405 IntrDrvRqst | IntrTxDone | StatsMax | \
406 LinkChange)
408 static int change_mtu(struct net_device *dev, int new_mtu);
409 static int eeprom_read(void __iomem *ioaddr, int location);
410 static int mdio_read(struct net_device *dev, int phy_id, int location);
411 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
412 static int netdev_open(struct net_device *dev);
413 static void check_duplex(struct net_device *dev);
414 static void netdev_timer(unsigned long data);
415 static void tx_timeout(struct net_device *dev);
416 static void init_ring(struct net_device *dev);
417 static int start_tx(struct sk_buff *skb, struct net_device *dev);
418 static int reset_tx (struct net_device *dev);
419 static irqreturn_t intr_handler(int irq, void *dev_instance);
420 static void rx_poll(unsigned long data);
421 static void tx_poll(unsigned long data);
422 static void refill_rx (struct net_device *dev);
423 static void netdev_error(struct net_device *dev, int intr_status);
424 static void netdev_error(struct net_device *dev, int intr_status);
425 static void set_rx_mode(struct net_device *dev);
426 static int __set_mac_addr(struct net_device *dev);
427 static struct net_device_stats *get_stats(struct net_device *dev);
428 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
429 static int netdev_close(struct net_device *dev);
430 static const struct ethtool_ops ethtool_ops;
432 static void sundance_reset(struct net_device *dev, unsigned long reset_cmd)
434 struct netdev_private *np = netdev_priv(dev);
435 void __iomem *ioaddr = np->base + ASICCtrl;
436 int countdown;
438 /* ST201 documentation states ASICCtrl is a 32bit register */
439 iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr);
440 /* ST201 documentation states reset can take up to 1 ms */
441 countdown = 10 + 1;
442 while (ioread32 (ioaddr) & (ResetBusy << 16)) {
443 if (--countdown == 0) {
444 printk(KERN_WARNING "%s : reset not completed !!\n", dev->name);
445 break;
447 udelay(100);
451 static int __devinit sundance_probe1 (struct pci_dev *pdev,
452 const struct pci_device_id *ent)
454 struct net_device *dev;
455 struct netdev_private *np;
456 static int card_idx;
457 int chip_idx = ent->driver_data;
458 int irq;
459 int i;
460 void __iomem *ioaddr;
461 u16 mii_ctl;
462 void *ring_space;
463 dma_addr_t ring_dma;
464 #ifdef USE_IO_OPS
465 int bar = 0;
466 #else
467 int bar = 1;
468 #endif
469 int phy, phy_end, phy_idx = 0;
470 DECLARE_MAC_BUF(mac);
472 /* when built into the kernel, we only print version if device is found */
473 #ifndef MODULE
474 static int printed_version;
475 if (!printed_version++)
476 printk(version);
477 #endif
479 if (pci_enable_device(pdev))
480 return -EIO;
481 pci_set_master(pdev);
483 irq = pdev->irq;
485 dev = alloc_etherdev(sizeof(*np));
486 if (!dev)
487 return -ENOMEM;
488 SET_NETDEV_DEV(dev, &pdev->dev);
490 if (pci_request_regions(pdev, DRV_NAME))
491 goto err_out_netdev;
493 ioaddr = pci_iomap(pdev, bar, netdev_io_size);
494 if (!ioaddr)
495 goto err_out_res;
497 for (i = 0; i < 3; i++)
498 ((u16 *)dev->dev_addr)[i] =
499 le16_to_cpu(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
500 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
502 dev->base_addr = (unsigned long)ioaddr;
503 dev->irq = irq;
505 np = netdev_priv(dev);
506 np->base = ioaddr;
507 np->pci_dev = pdev;
508 np->chip_id = chip_idx;
509 np->msg_enable = (1 << debug) - 1;
510 spin_lock_init(&np->lock);
511 tasklet_init(&np->rx_tasklet, rx_poll, (unsigned long)dev);
512 tasklet_init(&np->tx_tasklet, tx_poll, (unsigned long)dev);
514 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
515 if (!ring_space)
516 goto err_out_cleardev;
517 np->tx_ring = (struct netdev_desc *)ring_space;
518 np->tx_ring_dma = ring_dma;
520 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
521 if (!ring_space)
522 goto err_out_unmap_tx;
523 np->rx_ring = (struct netdev_desc *)ring_space;
524 np->rx_ring_dma = ring_dma;
526 np->mii_if.dev = dev;
527 np->mii_if.mdio_read = mdio_read;
528 np->mii_if.mdio_write = mdio_write;
529 np->mii_if.phy_id_mask = 0x1f;
530 np->mii_if.reg_num_mask = 0x1f;
532 /* The chip-specific entries in the device structure. */
533 dev->open = &netdev_open;
534 dev->hard_start_xmit = &start_tx;
535 dev->stop = &netdev_close;
536 dev->get_stats = &get_stats;
537 dev->set_multicast_list = &set_rx_mode;
538 dev->do_ioctl = &netdev_ioctl;
539 SET_ETHTOOL_OPS(dev, &ethtool_ops);
540 dev->tx_timeout = &tx_timeout;
541 dev->watchdog_timeo = TX_TIMEOUT;
542 dev->change_mtu = &change_mtu;
543 pci_set_drvdata(pdev, dev);
545 i = register_netdev(dev);
546 if (i)
547 goto err_out_unmap_rx;
549 printk(KERN_INFO "%s: %s at %p, %s, IRQ %d.\n",
550 dev->name, pci_id_tbl[chip_idx].name, ioaddr,
551 print_mac(mac, dev->dev_addr), irq);
553 np->phys[0] = 1; /* Default setting */
554 np->mii_preamble_required++;
557 * It seems some phys doesn't deal well with address 0 being accessed
558 * first
560 if (sundance_pci_tbl[np->chip_id].device == 0x0200) {
561 phy = 0;
562 phy_end = 31;
563 } else {
564 phy = 1;
565 phy_end = 32; /* wraps to zero, due to 'phy & 0x1f' */
567 for (; phy <= phy_end && phy_idx < MII_CNT; phy++) {
568 int phyx = phy & 0x1f;
569 int mii_status = mdio_read(dev, phyx, MII_BMSR);
570 if (mii_status != 0xffff && mii_status != 0x0000) {
571 np->phys[phy_idx++] = phyx;
572 np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE);
573 if ((mii_status & 0x0040) == 0)
574 np->mii_preamble_required++;
575 printk(KERN_INFO "%s: MII PHY found at address %d, status "
576 "0x%4.4x advertising %4.4x.\n",
577 dev->name, phyx, mii_status, np->mii_if.advertising);
580 np->mii_preamble_required--;
582 if (phy_idx == 0) {
583 printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n",
584 dev->name, ioread32(ioaddr + ASICCtrl));
585 goto err_out_unregister;
588 np->mii_if.phy_id = np->phys[0];
590 /* Parse override configuration */
591 np->an_enable = 1;
592 if (card_idx < MAX_UNITS) {
593 if (media[card_idx] != NULL) {
594 np->an_enable = 0;
595 if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
596 strcmp (media[card_idx], "4") == 0) {
597 np->speed = 100;
598 np->mii_if.full_duplex = 1;
599 } else if (strcmp (media[card_idx], "100mbps_hd") == 0
600 || strcmp (media[card_idx], "3") == 0) {
601 np->speed = 100;
602 np->mii_if.full_duplex = 0;
603 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
604 strcmp (media[card_idx], "2") == 0) {
605 np->speed = 10;
606 np->mii_if.full_duplex = 1;
607 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
608 strcmp (media[card_idx], "1") == 0) {
609 np->speed = 10;
610 np->mii_if.full_duplex = 0;
611 } else {
612 np->an_enable = 1;
615 if (flowctrl == 1)
616 np->flowctrl = 1;
619 /* Fibre PHY? */
620 if (ioread32 (ioaddr + ASICCtrl) & 0x80) {
621 /* Default 100Mbps Full */
622 if (np->an_enable) {
623 np->speed = 100;
624 np->mii_if.full_duplex = 1;
625 np->an_enable = 0;
628 /* Reset PHY */
629 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET);
630 mdelay (300);
631 /* If flow control enabled, we need to advertise it.*/
632 if (np->flowctrl)
633 mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400);
634 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
635 /* Force media type */
636 if (!np->an_enable) {
637 mii_ctl = 0;
638 mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0;
639 mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0;
640 mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl);
641 printk (KERN_INFO "Override speed=%d, %s duplex\n",
642 np->speed, np->mii_if.full_duplex ? "Full" : "Half");
646 /* Perhaps move the reset here? */
647 /* Reset the chip to erase previous misconfiguration. */
648 if (netif_msg_hw(np))
649 printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl));
650 sundance_reset(dev, 0x00ff << 16);
651 if (netif_msg_hw(np))
652 printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl));
654 card_idx++;
655 return 0;
657 err_out_unregister:
658 unregister_netdev(dev);
659 err_out_unmap_rx:
660 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
661 err_out_unmap_tx:
662 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
663 err_out_cleardev:
664 pci_set_drvdata(pdev, NULL);
665 pci_iounmap(pdev, ioaddr);
666 err_out_res:
667 pci_release_regions(pdev);
668 err_out_netdev:
669 free_netdev (dev);
670 return -ENODEV;
673 static int change_mtu(struct net_device *dev, int new_mtu)
675 if ((new_mtu < 68) || (new_mtu > 8191)) /* Set by RxDMAFrameLen */
676 return -EINVAL;
677 if (netif_running(dev))
678 return -EBUSY;
679 dev->mtu = new_mtu;
680 return 0;
683 #define eeprom_delay(ee_addr) ioread32(ee_addr)
684 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
685 static int __devinit eeprom_read(void __iomem *ioaddr, int location)
687 int boguscnt = 10000; /* Typical 1900 ticks. */
688 iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl);
689 do {
690 eeprom_delay(ioaddr + EECtrl);
691 if (! (ioread16(ioaddr + EECtrl) & 0x8000)) {
692 return ioread16(ioaddr + EEData);
694 } while (--boguscnt > 0);
695 return 0;
698 /* MII transceiver control section.
699 Read and write the MII registers using software-generated serial
700 MDIO protocol. See the MII specifications or DP83840A data sheet
701 for details.
703 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
704 met by back-to-back 33Mhz PCI cycles. */
705 #define mdio_delay() ioread8(mdio_addr)
707 enum mii_reg_bits {
708 MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
710 #define MDIO_EnbIn (0)
711 #define MDIO_WRITE0 (MDIO_EnbOutput)
712 #define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)
714 /* Generate the preamble required for initial synchronization and
715 a few older transceivers. */
716 static void mdio_sync(void __iomem *mdio_addr)
718 int bits = 32;
720 /* Establish sync by sending at least 32 logic ones. */
721 while (--bits >= 0) {
722 iowrite8(MDIO_WRITE1, mdio_addr);
723 mdio_delay();
724 iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
725 mdio_delay();
729 static int mdio_read(struct net_device *dev, int phy_id, int location)
731 struct netdev_private *np = netdev_priv(dev);
732 void __iomem *mdio_addr = np->base + MIICtrl;
733 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
734 int i, retval = 0;
736 if (np->mii_preamble_required)
737 mdio_sync(mdio_addr);
739 /* Shift the read command bits out. */
740 for (i = 15; i >= 0; i--) {
741 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
743 iowrite8(dataval, mdio_addr);
744 mdio_delay();
745 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
746 mdio_delay();
748 /* Read the two transition, 16 data, and wire-idle bits. */
749 for (i = 19; i > 0; i--) {
750 iowrite8(MDIO_EnbIn, mdio_addr);
751 mdio_delay();
752 retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0);
753 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
754 mdio_delay();
756 return (retval>>1) & 0xffff;
759 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
761 struct netdev_private *np = netdev_priv(dev);
762 void __iomem *mdio_addr = np->base + MIICtrl;
763 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
764 int i;
766 if (np->mii_preamble_required)
767 mdio_sync(mdio_addr);
769 /* Shift the command bits out. */
770 for (i = 31; i >= 0; i--) {
771 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
773 iowrite8(dataval, mdio_addr);
774 mdio_delay();
775 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
776 mdio_delay();
778 /* Clear out extra bits. */
779 for (i = 2; i > 0; i--) {
780 iowrite8(MDIO_EnbIn, mdio_addr);
781 mdio_delay();
782 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
783 mdio_delay();
785 return;
788 static int netdev_open(struct net_device *dev)
790 struct netdev_private *np = netdev_priv(dev);
791 void __iomem *ioaddr = np->base;
792 unsigned long flags;
793 int i;
795 /* Do we need to reset the chip??? */
797 i = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
798 if (i)
799 return i;
801 if (netif_msg_ifup(np))
802 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
803 dev->name, dev->irq);
804 init_ring(dev);
806 iowrite32(np->rx_ring_dma, ioaddr + RxListPtr);
807 /* The Tx list pointer is written as packets are queued. */
809 /* Initialize other registers. */
810 __set_mac_addr(dev);
811 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
812 iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize);
813 #else
814 iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize);
815 #endif
816 if (dev->mtu > 2047)
817 iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl);
819 /* Configure the PCI bus bursts and FIFO thresholds. */
821 if (dev->if_port == 0)
822 dev->if_port = np->default_port;
824 spin_lock_init(&np->mcastlock);
826 set_rx_mode(dev);
827 iowrite16(0, ioaddr + IntrEnable);
828 iowrite16(0, ioaddr + DownCounter);
829 /* Set the chip to poll every N*320nsec. */
830 iowrite8(100, ioaddr + RxDMAPollPeriod);
831 iowrite8(127, ioaddr + TxDMAPollPeriod);
832 /* Fix DFE-580TX packet drop issue */
833 if (np->pci_dev->revision >= 0x14)
834 iowrite8(0x01, ioaddr + DebugCtrl1);
835 netif_start_queue(dev);
837 spin_lock_irqsave(&np->lock, flags);
838 reset_tx(dev);
839 spin_unlock_irqrestore(&np->lock, flags);
841 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
843 if (netif_msg_ifup(np))
844 printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
845 "MAC Control %x, %4.4x %4.4x.\n",
846 dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus),
847 ioread32(ioaddr + MACCtrl0),
848 ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0));
850 /* Set the timer to check for link beat. */
851 init_timer(&np->timer);
852 np->timer.expires = jiffies + 3*HZ;
853 np->timer.data = (unsigned long)dev;
854 np->timer.function = &netdev_timer; /* timer handler */
855 add_timer(&np->timer);
857 /* Enable interrupts by setting the interrupt mask. */
858 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
860 return 0;
863 static void check_duplex(struct net_device *dev)
865 struct netdev_private *np = netdev_priv(dev);
866 void __iomem *ioaddr = np->base;
867 int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
868 int negotiated = mii_lpa & np->mii_if.advertising;
869 int duplex;
871 /* Force media */
872 if (!np->an_enable || mii_lpa == 0xffff) {
873 if (np->mii_if.full_duplex)
874 iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex,
875 ioaddr + MACCtrl0);
876 return;
879 /* Autonegotiation */
880 duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
881 if (np->mii_if.full_duplex != duplex) {
882 np->mii_if.full_duplex = duplex;
883 if (netif_msg_link(np))
884 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
885 "negotiated capability %4.4x.\n", dev->name,
886 duplex ? "full" : "half", np->phys[0], negotiated);
887 iowrite16(ioread16(ioaddr + MACCtrl0) | duplex ? 0x20 : 0, ioaddr + MACCtrl0);
891 static void netdev_timer(unsigned long data)
893 struct net_device *dev = (struct net_device *)data;
894 struct netdev_private *np = netdev_priv(dev);
895 void __iomem *ioaddr = np->base;
896 int next_tick = 10*HZ;
898 if (netif_msg_timer(np)) {
899 printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
900 "Tx %x Rx %x.\n",
901 dev->name, ioread16(ioaddr + IntrEnable),
902 ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
904 check_duplex(dev);
905 np->timer.expires = jiffies + next_tick;
906 add_timer(&np->timer);
909 static void tx_timeout(struct net_device *dev)
911 struct netdev_private *np = netdev_priv(dev);
912 void __iomem *ioaddr = np->base;
913 unsigned long flag;
915 netif_stop_queue(dev);
916 tasklet_disable(&np->tx_tasklet);
917 iowrite16(0, ioaddr + IntrEnable);
918 printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x "
919 "TxFrameId %2.2x,"
920 " resetting...\n", dev->name, ioread8(ioaddr + TxStatus),
921 ioread8(ioaddr + TxFrameId));
924 int i;
925 for (i=0; i<TX_RING_SIZE; i++) {
926 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
927 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
928 le32_to_cpu(np->tx_ring[i].next_desc),
929 le32_to_cpu(np->tx_ring[i].status),
930 (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff,
931 le32_to_cpu(np->tx_ring[i].frag[0].addr),
932 le32_to_cpu(np->tx_ring[i].frag[0].length));
934 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
935 ioread32(np->base + TxListPtr),
936 netif_queue_stopped(dev));
937 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
938 np->cur_tx, np->cur_tx % TX_RING_SIZE,
939 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
940 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
941 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
943 spin_lock_irqsave(&np->lock, flag);
945 /* Stop and restart the chip's Tx processes . */
946 reset_tx(dev);
947 spin_unlock_irqrestore(&np->lock, flag);
949 dev->if_port = 0;
951 dev->trans_start = jiffies;
952 np->stats.tx_errors++;
953 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
954 netif_wake_queue(dev);
956 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
957 tasklet_enable(&np->tx_tasklet);
961 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
962 static void init_ring(struct net_device *dev)
964 struct netdev_private *np = netdev_priv(dev);
965 int i;
967 np->cur_rx = np->cur_tx = 0;
968 np->dirty_rx = np->dirty_tx = 0;
969 np->cur_task = 0;
971 np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16);
973 /* Initialize all Rx descriptors. */
974 for (i = 0; i < RX_RING_SIZE; i++) {
975 np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma +
976 ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring));
977 np->rx_ring[i].status = 0;
978 np->rx_ring[i].frag[0].length = 0;
979 np->rx_skbuff[i] = NULL;
982 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
983 for (i = 0; i < RX_RING_SIZE; i++) {
984 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
985 np->rx_skbuff[i] = skb;
986 if (skb == NULL)
987 break;
988 skb->dev = dev; /* Mark as being used by this device. */
989 skb_reserve(skb, 2); /* 16 byte align the IP header. */
990 np->rx_ring[i].frag[0].addr = cpu_to_le32(
991 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz,
992 PCI_DMA_FROMDEVICE));
993 np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag);
995 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
997 for (i = 0; i < TX_RING_SIZE; i++) {
998 np->tx_skbuff[i] = NULL;
999 np->tx_ring[i].status = 0;
1001 return;
1004 static void tx_poll (unsigned long data)
1006 struct net_device *dev = (struct net_device *)data;
1007 struct netdev_private *np = netdev_priv(dev);
1008 unsigned head = np->cur_task % TX_RING_SIZE;
1009 struct netdev_desc *txdesc =
1010 &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE];
1012 /* Chain the next pointer */
1013 for (; np->cur_tx - np->cur_task > 0; np->cur_task++) {
1014 int entry = np->cur_task % TX_RING_SIZE;
1015 txdesc = &np->tx_ring[entry];
1016 if (np->last_tx) {
1017 np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma +
1018 entry*sizeof(struct netdev_desc));
1020 np->last_tx = txdesc;
1022 /* Indicate the latest descriptor of tx ring */
1023 txdesc->status |= cpu_to_le32(DescIntrOnTx);
1025 if (ioread32 (np->base + TxListPtr) == 0)
1026 iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc),
1027 np->base + TxListPtr);
1028 return;
1031 static int
1032 start_tx (struct sk_buff *skb, struct net_device *dev)
1034 struct netdev_private *np = netdev_priv(dev);
1035 struct netdev_desc *txdesc;
1036 unsigned entry;
1038 /* Calculate the next Tx descriptor entry. */
1039 entry = np->cur_tx % TX_RING_SIZE;
1040 np->tx_skbuff[entry] = skb;
1041 txdesc = &np->tx_ring[entry];
1043 txdesc->next_desc = 0;
1044 txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign);
1045 txdesc->frag[0].addr = cpu_to_le32 (pci_map_single (np->pci_dev, skb->data,
1046 skb->len,
1047 PCI_DMA_TODEVICE));
1048 txdesc->frag[0].length = cpu_to_le32 (skb->len | LastFrag);
1050 /* Increment cur_tx before tasklet_schedule() */
1051 np->cur_tx++;
1052 mb();
1053 /* Schedule a tx_poll() task */
1054 tasklet_schedule(&np->tx_tasklet);
1056 /* On some architectures: explicitly flush cache lines here. */
1057 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1
1058 && !netif_queue_stopped(dev)) {
1059 /* do nothing */
1060 } else {
1061 netif_stop_queue (dev);
1063 dev->trans_start = jiffies;
1064 if (netif_msg_tx_queued(np)) {
1065 printk (KERN_DEBUG
1066 "%s: Transmit frame #%d queued in slot %d.\n",
1067 dev->name, np->cur_tx, entry);
1069 return 0;
1072 /* Reset hardware tx and free all of tx buffers */
1073 static int
1074 reset_tx (struct net_device *dev)
1076 struct netdev_private *np = netdev_priv(dev);
1077 void __iomem *ioaddr = np->base;
1078 struct sk_buff *skb;
1079 int i;
1080 int irq = in_interrupt();
1082 /* Reset tx logic, TxListPtr will be cleaned */
1083 iowrite16 (TxDisable, ioaddr + MACCtrl1);
1084 sundance_reset(dev, (NetworkReset|FIFOReset|DMAReset|TxReset) << 16);
1086 /* free all tx skbuff */
1087 for (i = 0; i < TX_RING_SIZE; i++) {
1088 np->tx_ring[i].next_desc = 0;
1090 skb = np->tx_skbuff[i];
1091 if (skb) {
1092 pci_unmap_single(np->pci_dev,
1093 np->tx_ring[i].frag[0].addr, skb->len,
1094 PCI_DMA_TODEVICE);
1095 if (irq)
1096 dev_kfree_skb_irq (skb);
1097 else
1098 dev_kfree_skb (skb);
1099 np->tx_skbuff[i] = NULL;
1100 np->stats.tx_dropped++;
1103 np->cur_tx = np->dirty_tx = 0;
1104 np->cur_task = 0;
1106 np->last_tx = NULL;
1107 iowrite8(127, ioaddr + TxDMAPollPeriod);
1109 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
1110 return 0;
1113 /* The interrupt handler cleans up after the Tx thread,
1114 and schedule a Rx thread work */
1115 static irqreturn_t intr_handler(int irq, void *dev_instance)
1117 struct net_device *dev = (struct net_device *)dev_instance;
1118 struct netdev_private *np = netdev_priv(dev);
1119 void __iomem *ioaddr = np->base;
1120 int hw_frame_id;
1121 int tx_cnt;
1122 int tx_status;
1123 int handled = 0;
1124 int i;
1127 do {
1128 int intr_status = ioread16(ioaddr + IntrStatus);
1129 iowrite16(intr_status, ioaddr + IntrStatus);
1131 if (netif_msg_intr(np))
1132 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
1133 dev->name, intr_status);
1135 if (!(intr_status & DEFAULT_INTR))
1136 break;
1138 handled = 1;
1140 if (intr_status & (IntrRxDMADone)) {
1141 iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone),
1142 ioaddr + IntrEnable);
1143 if (np->budget < 0)
1144 np->budget = RX_BUDGET;
1145 tasklet_schedule(&np->rx_tasklet);
1147 if (intr_status & (IntrTxDone | IntrDrvRqst)) {
1148 tx_status = ioread16 (ioaddr + TxStatus);
1149 for (tx_cnt=32; tx_status & 0x80; --tx_cnt) {
1150 if (netif_msg_tx_done(np))
1151 printk
1152 ("%s: Transmit status is %2.2x.\n",
1153 dev->name, tx_status);
1154 if (tx_status & 0x1e) {
1155 if (netif_msg_tx_err(np))
1156 printk("%s: Transmit error status %4.4x.\n",
1157 dev->name, tx_status);
1158 np->stats.tx_errors++;
1159 if (tx_status & 0x10)
1160 np->stats.tx_fifo_errors++;
1161 if (tx_status & 0x08)
1162 np->stats.collisions++;
1163 if (tx_status & 0x04)
1164 np->stats.tx_fifo_errors++;
1165 if (tx_status & 0x02)
1166 np->stats.tx_window_errors++;
1169 ** This reset has been verified on
1170 ** DFE-580TX boards ! phdm@macqel.be.
1172 if (tx_status & 0x10) { /* TxUnderrun */
1173 /* Restart Tx FIFO and transmitter */
1174 sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16);
1175 /* No need to reset the Tx pointer here */
1177 /* Restart the Tx. Need to make sure tx enabled */
1178 i = 10;
1179 do {
1180 iowrite16(ioread16(ioaddr + MACCtrl1) | TxEnable, ioaddr + MACCtrl1);
1181 if (ioread16(ioaddr + MACCtrl1) & TxEnabled)
1182 break;
1183 mdelay(1);
1184 } while (--i);
1186 /* Yup, this is a documentation bug. It cost me *hours*. */
1187 iowrite16 (0, ioaddr + TxStatus);
1188 if (tx_cnt < 0) {
1189 iowrite32(5000, ioaddr + DownCounter);
1190 break;
1192 tx_status = ioread16 (ioaddr + TxStatus);
1194 hw_frame_id = (tx_status >> 8) & 0xff;
1195 } else {
1196 hw_frame_id = ioread8(ioaddr + TxFrameId);
1199 if (np->pci_dev->revision >= 0x14) {
1200 spin_lock(&np->lock);
1201 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1202 int entry = np->dirty_tx % TX_RING_SIZE;
1203 struct sk_buff *skb;
1204 int sw_frame_id;
1205 sw_frame_id = (le32_to_cpu(
1206 np->tx_ring[entry].status) >> 2) & 0xff;
1207 if (sw_frame_id == hw_frame_id &&
1208 !(le32_to_cpu(np->tx_ring[entry].status)
1209 & 0x00010000))
1210 break;
1211 if (sw_frame_id == (hw_frame_id + 1) %
1212 TX_RING_SIZE)
1213 break;
1214 skb = np->tx_skbuff[entry];
1215 /* Free the original skb. */
1216 pci_unmap_single(np->pci_dev,
1217 np->tx_ring[entry].frag[0].addr,
1218 skb->len, PCI_DMA_TODEVICE);
1219 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1220 np->tx_skbuff[entry] = NULL;
1221 np->tx_ring[entry].frag[0].addr = 0;
1222 np->tx_ring[entry].frag[0].length = 0;
1224 spin_unlock(&np->lock);
1225 } else {
1226 spin_lock(&np->lock);
1227 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1228 int entry = np->dirty_tx % TX_RING_SIZE;
1229 struct sk_buff *skb;
1230 if (!(le32_to_cpu(np->tx_ring[entry].status)
1231 & 0x00010000))
1232 break;
1233 skb = np->tx_skbuff[entry];
1234 /* Free the original skb. */
1235 pci_unmap_single(np->pci_dev,
1236 np->tx_ring[entry].frag[0].addr,
1237 skb->len, PCI_DMA_TODEVICE);
1238 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1239 np->tx_skbuff[entry] = NULL;
1240 np->tx_ring[entry].frag[0].addr = 0;
1241 np->tx_ring[entry].frag[0].length = 0;
1243 spin_unlock(&np->lock);
1246 if (netif_queue_stopped(dev) &&
1247 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1248 /* The ring is no longer full, clear busy flag. */
1249 netif_wake_queue (dev);
1251 /* Abnormal error summary/uncommon events handlers. */
1252 if (intr_status & (IntrPCIErr | LinkChange | StatsMax))
1253 netdev_error(dev, intr_status);
1254 } while (0);
1255 if (netif_msg_intr(np))
1256 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1257 dev->name, ioread16(ioaddr + IntrStatus));
1258 return IRQ_RETVAL(handled);
1261 static void rx_poll(unsigned long data)
1263 struct net_device *dev = (struct net_device *)data;
1264 struct netdev_private *np = netdev_priv(dev);
1265 int entry = np->cur_rx % RX_RING_SIZE;
1266 int boguscnt = np->budget;
1267 void __iomem *ioaddr = np->base;
1268 int received = 0;
1270 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1271 while (1) {
1272 struct netdev_desc *desc = &(np->rx_ring[entry]);
1273 u32 frame_status = le32_to_cpu(desc->status);
1274 int pkt_len;
1276 if (--boguscnt < 0) {
1277 goto not_done;
1279 if (!(frame_status & DescOwn))
1280 break;
1281 pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */
1282 if (netif_msg_rx_status(np))
1283 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n",
1284 frame_status);
1285 if (frame_status & 0x001f4000) {
1286 /* There was a error. */
1287 if (netif_msg_rx_err(np))
1288 printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n",
1289 frame_status);
1290 np->stats.rx_errors++;
1291 if (frame_status & 0x00100000) np->stats.rx_length_errors++;
1292 if (frame_status & 0x00010000) np->stats.rx_fifo_errors++;
1293 if (frame_status & 0x00060000) np->stats.rx_frame_errors++;
1294 if (frame_status & 0x00080000) np->stats.rx_crc_errors++;
1295 if (frame_status & 0x00100000) {
1296 printk(KERN_WARNING "%s: Oversized Ethernet frame,"
1297 " status %8.8x.\n",
1298 dev->name, frame_status);
1300 } else {
1301 struct sk_buff *skb;
1302 #ifndef final_version
1303 if (netif_msg_rx_status(np))
1304 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1305 ", bogus_cnt %d.\n",
1306 pkt_len, boguscnt);
1307 #endif
1308 /* Check if the packet is long enough to accept without copying
1309 to a minimally-sized skbuff. */
1310 if (pkt_len < rx_copybreak
1311 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1312 skb_reserve(skb, 2); /* 16 byte align the IP header */
1313 pci_dma_sync_single_for_cpu(np->pci_dev,
1314 desc->frag[0].addr,
1315 np->rx_buf_sz,
1316 PCI_DMA_FROMDEVICE);
1318 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
1319 pci_dma_sync_single_for_device(np->pci_dev,
1320 desc->frag[0].addr,
1321 np->rx_buf_sz,
1322 PCI_DMA_FROMDEVICE);
1323 skb_put(skb, pkt_len);
1324 } else {
1325 pci_unmap_single(np->pci_dev,
1326 desc->frag[0].addr,
1327 np->rx_buf_sz,
1328 PCI_DMA_FROMDEVICE);
1329 skb_put(skb = np->rx_skbuff[entry], pkt_len);
1330 np->rx_skbuff[entry] = NULL;
1332 skb->protocol = eth_type_trans(skb, dev);
1333 /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
1334 netif_rx(skb);
1335 dev->last_rx = jiffies;
1337 entry = (entry + 1) % RX_RING_SIZE;
1338 received++;
1340 np->cur_rx = entry;
1341 refill_rx (dev);
1342 np->budget -= received;
1343 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1344 return;
1346 not_done:
1347 np->cur_rx = entry;
1348 refill_rx (dev);
1349 if (!received)
1350 received = 1;
1351 np->budget -= received;
1352 if (np->budget <= 0)
1353 np->budget = RX_BUDGET;
1354 tasklet_schedule(&np->rx_tasklet);
1355 return;
1358 static void refill_rx (struct net_device *dev)
1360 struct netdev_private *np = netdev_priv(dev);
1361 int entry;
1362 int cnt = 0;
1364 /* Refill the Rx ring buffers. */
1365 for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0;
1366 np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) {
1367 struct sk_buff *skb;
1368 entry = np->dirty_rx % RX_RING_SIZE;
1369 if (np->rx_skbuff[entry] == NULL) {
1370 skb = dev_alloc_skb(np->rx_buf_sz);
1371 np->rx_skbuff[entry] = skb;
1372 if (skb == NULL)
1373 break; /* Better luck next round. */
1374 skb->dev = dev; /* Mark as being used by this device. */
1375 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1376 np->rx_ring[entry].frag[0].addr = cpu_to_le32(
1377 pci_map_single(np->pci_dev, skb->data,
1378 np->rx_buf_sz, PCI_DMA_FROMDEVICE));
1380 /* Perhaps we need not reset this field. */
1381 np->rx_ring[entry].frag[0].length =
1382 cpu_to_le32(np->rx_buf_sz | LastFrag);
1383 np->rx_ring[entry].status = 0;
1384 cnt++;
1386 return;
1388 static void netdev_error(struct net_device *dev, int intr_status)
1390 struct netdev_private *np = netdev_priv(dev);
1391 void __iomem *ioaddr = np->base;
1392 u16 mii_ctl, mii_advertise, mii_lpa;
1393 int speed;
1395 if (intr_status & LinkChange) {
1396 if (np->an_enable) {
1397 mii_advertise = mdio_read (dev, np->phys[0], MII_ADVERTISE);
1398 mii_lpa= mdio_read (dev, np->phys[0], MII_LPA);
1399 mii_advertise &= mii_lpa;
1400 printk (KERN_INFO "%s: Link changed: ", dev->name);
1401 if (mii_advertise & ADVERTISE_100FULL) {
1402 np->speed = 100;
1403 printk ("100Mbps, full duplex\n");
1404 } else if (mii_advertise & ADVERTISE_100HALF) {
1405 np->speed = 100;
1406 printk ("100Mbps, half duplex\n");
1407 } else if (mii_advertise & ADVERTISE_10FULL) {
1408 np->speed = 10;
1409 printk ("10Mbps, full duplex\n");
1410 } else if (mii_advertise & ADVERTISE_10HALF) {
1411 np->speed = 10;
1412 printk ("10Mbps, half duplex\n");
1413 } else
1414 printk ("\n");
1416 } else {
1417 mii_ctl = mdio_read (dev, np->phys[0], MII_BMCR);
1418 speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10;
1419 np->speed = speed;
1420 printk (KERN_INFO "%s: Link changed: %dMbps ,",
1421 dev->name, speed);
1422 printk ("%s duplex.\n", (mii_ctl & BMCR_FULLDPLX) ?
1423 "full" : "half");
1425 check_duplex (dev);
1426 if (np->flowctrl && np->mii_if.full_duplex) {
1427 iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200,
1428 ioaddr + MulticastFilter1+2);
1429 iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl,
1430 ioaddr + MACCtrl0);
1433 if (intr_status & StatsMax) {
1434 get_stats(dev);
1436 if (intr_status & IntrPCIErr) {
1437 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1438 dev->name, intr_status);
1439 /* We must do a global reset of DMA to continue. */
1443 static struct net_device_stats *get_stats(struct net_device *dev)
1445 struct netdev_private *np = netdev_priv(dev);
1446 void __iomem *ioaddr = np->base;
1447 int i;
1449 /* We should lock this segment of code for SMP eventually, although
1450 the vulnerability window is very small and statistics are
1451 non-critical. */
1452 /* The chip only need report frame silently dropped. */
1453 np->stats.rx_missed_errors += ioread8(ioaddr + RxMissed);
1454 np->stats.tx_packets += ioread16(ioaddr + TxFramesOK);
1455 np->stats.rx_packets += ioread16(ioaddr + RxFramesOK);
1456 np->stats.collisions += ioread8(ioaddr + StatsLateColl);
1457 np->stats.collisions += ioread8(ioaddr + StatsMultiColl);
1458 np->stats.collisions += ioread8(ioaddr + StatsOneColl);
1459 np->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError);
1460 ioread8(ioaddr + StatsTxDefer);
1461 for (i = StatsTxDefer; i <= StatsMcastRx; i++)
1462 ioread8(ioaddr + i);
1463 np->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow);
1464 np->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16;
1465 np->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow);
1466 np->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16;
1468 return &np->stats;
1471 static void set_rx_mode(struct net_device *dev)
1473 struct netdev_private *np = netdev_priv(dev);
1474 void __iomem *ioaddr = np->base;
1475 u16 mc_filter[4]; /* Multicast hash filter */
1476 u32 rx_mode;
1477 int i;
1479 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1480 memset(mc_filter, 0xff, sizeof(mc_filter));
1481 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
1482 } else if ((dev->mc_count > multicast_filter_limit)
1483 || (dev->flags & IFF_ALLMULTI)) {
1484 /* Too many to match, or accept all multicasts. */
1485 memset(mc_filter, 0xff, sizeof(mc_filter));
1486 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1487 } else if (dev->mc_count) {
1488 struct dev_mc_list *mclist;
1489 int bit;
1490 int index;
1491 int crc;
1492 memset (mc_filter, 0, sizeof (mc_filter));
1493 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1494 i++, mclist = mclist->next) {
1495 crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr);
1496 for (index=0, bit=0; bit < 6; bit++, crc <<= 1)
1497 if (crc & 0x80000000) index |= 1 << bit;
1498 mc_filter[index/16] |= (1 << (index % 16));
1500 rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
1501 } else {
1502 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1503 return;
1505 if (np->mii_if.full_duplex && np->flowctrl)
1506 mc_filter[3] |= 0x0200;
1508 for (i = 0; i < 4; i++)
1509 iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
1510 iowrite8(rx_mode, ioaddr + RxMode);
1513 static int __set_mac_addr(struct net_device *dev)
1515 struct netdev_private *np = netdev_priv(dev);
1516 u16 addr16;
1518 addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8));
1519 iowrite16(addr16, np->base + StationAddr);
1520 addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8));
1521 iowrite16(addr16, np->base + StationAddr+2);
1522 addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8));
1523 iowrite16(addr16, np->base + StationAddr+4);
1524 return 0;
1527 static int check_if_running(struct net_device *dev)
1529 if (!netif_running(dev))
1530 return -EINVAL;
1531 return 0;
1534 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1536 struct netdev_private *np = netdev_priv(dev);
1537 strcpy(info->driver, DRV_NAME);
1538 strcpy(info->version, DRV_VERSION);
1539 strcpy(info->bus_info, pci_name(np->pci_dev));
1542 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1544 struct netdev_private *np = netdev_priv(dev);
1545 spin_lock_irq(&np->lock);
1546 mii_ethtool_gset(&np->mii_if, ecmd);
1547 spin_unlock_irq(&np->lock);
1548 return 0;
1551 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1553 struct netdev_private *np = netdev_priv(dev);
1554 int res;
1555 spin_lock_irq(&np->lock);
1556 res = mii_ethtool_sset(&np->mii_if, ecmd);
1557 spin_unlock_irq(&np->lock);
1558 return res;
1561 static int nway_reset(struct net_device *dev)
1563 struct netdev_private *np = netdev_priv(dev);
1564 return mii_nway_restart(&np->mii_if);
1567 static u32 get_link(struct net_device *dev)
1569 struct netdev_private *np = netdev_priv(dev);
1570 return mii_link_ok(&np->mii_if);
1573 static u32 get_msglevel(struct net_device *dev)
1575 struct netdev_private *np = netdev_priv(dev);
1576 return np->msg_enable;
1579 static void set_msglevel(struct net_device *dev, u32 val)
1581 struct netdev_private *np = netdev_priv(dev);
1582 np->msg_enable = val;
1585 static const struct ethtool_ops ethtool_ops = {
1586 .begin = check_if_running,
1587 .get_drvinfo = get_drvinfo,
1588 .get_settings = get_settings,
1589 .set_settings = set_settings,
1590 .nway_reset = nway_reset,
1591 .get_link = get_link,
1592 .get_msglevel = get_msglevel,
1593 .set_msglevel = set_msglevel,
1596 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1598 struct netdev_private *np = netdev_priv(dev);
1599 void __iomem *ioaddr = np->base;
1600 int rc;
1601 int i;
1603 if (!netif_running(dev))
1604 return -EINVAL;
1606 spin_lock_irq(&np->lock);
1607 rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL);
1608 spin_unlock_irq(&np->lock);
1609 switch (cmd) {
1610 case SIOCDEVPRIVATE:
1611 for (i=0; i<TX_RING_SIZE; i++) {
1612 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
1613 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
1614 le32_to_cpu(np->tx_ring[i].next_desc),
1615 le32_to_cpu(np->tx_ring[i].status),
1616 (le32_to_cpu(np->tx_ring[i].status) >> 2)
1617 & 0xff,
1618 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1619 le32_to_cpu(np->tx_ring[i].frag[0].length));
1621 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
1622 ioread32(np->base + TxListPtr),
1623 netif_queue_stopped(dev));
1624 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
1625 np->cur_tx, np->cur_tx % TX_RING_SIZE,
1626 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
1627 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
1628 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
1629 printk(KERN_DEBUG "TxStatus=%04x\n", ioread16(ioaddr + TxStatus));
1630 return 0;
1634 return rc;
1637 static int netdev_close(struct net_device *dev)
1639 struct netdev_private *np = netdev_priv(dev);
1640 void __iomem *ioaddr = np->base;
1641 struct sk_buff *skb;
1642 int i;
1644 /* Wait and kill tasklet */
1645 tasklet_kill(&np->rx_tasklet);
1646 tasklet_kill(&np->tx_tasklet);
1647 np->cur_tx = 0;
1648 np->dirty_tx = 0;
1649 np->cur_task = 0;
1650 np->last_tx = NULL;
1652 netif_stop_queue(dev);
1654 if (netif_msg_ifdown(np)) {
1655 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
1656 "Rx %4.4x Int %2.2x.\n",
1657 dev->name, ioread8(ioaddr + TxStatus),
1658 ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus));
1659 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1660 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
1663 /* Disable interrupts by clearing the interrupt mask. */
1664 iowrite16(0x0000, ioaddr + IntrEnable);
1666 /* Disable Rx and Tx DMA for safely release resource */
1667 iowrite32(0x500, ioaddr + DMACtrl);
1669 /* Stop the chip's Tx and Rx processes. */
1670 iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);
1672 for (i = 2000; i > 0; i--) {
1673 if ((ioread32(ioaddr + DMACtrl) & 0xc000) == 0)
1674 break;
1675 mdelay(1);
1678 iowrite16(GlobalReset | DMAReset | FIFOReset | NetworkReset,
1679 ioaddr +ASICCtrl + 2);
1681 for (i = 2000; i > 0; i--) {
1682 if ((ioread16(ioaddr + ASICCtrl +2) & ResetBusy) == 0)
1683 break;
1684 mdelay(1);
1687 #ifdef __i386__
1688 if (netif_msg_hw(np)) {
1689 printk("\n"KERN_DEBUG" Tx ring at %8.8x:\n",
1690 (int)(np->tx_ring_dma));
1691 for (i = 0; i < TX_RING_SIZE; i++)
1692 printk(" #%d desc. %4.4x %8.8x %8.8x.\n",
1693 i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr,
1694 np->tx_ring[i].frag[0].length);
1695 printk("\n"KERN_DEBUG " Rx ring %8.8x:\n",
1696 (int)(np->rx_ring_dma));
1697 for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
1698 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
1699 i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr,
1700 np->rx_ring[i].frag[0].length);
1703 #endif /* __i386__ debugging only */
1705 free_irq(dev->irq, dev);
1707 del_timer_sync(&np->timer);
1709 /* Free all the skbuffs in the Rx queue. */
1710 for (i = 0; i < RX_RING_SIZE; i++) {
1711 np->rx_ring[i].status = 0;
1712 np->rx_ring[i].frag[0].addr = 0xBADF00D0; /* An invalid address. */
1713 skb = np->rx_skbuff[i];
1714 if (skb) {
1715 pci_unmap_single(np->pci_dev,
1716 np->rx_ring[i].frag[0].addr, np->rx_buf_sz,
1717 PCI_DMA_FROMDEVICE);
1718 dev_kfree_skb(skb);
1719 np->rx_skbuff[i] = NULL;
1722 for (i = 0; i < TX_RING_SIZE; i++) {
1723 np->tx_ring[i].next_desc = 0;
1724 skb = np->tx_skbuff[i];
1725 if (skb) {
1726 pci_unmap_single(np->pci_dev,
1727 np->tx_ring[i].frag[0].addr, skb->len,
1728 PCI_DMA_TODEVICE);
1729 dev_kfree_skb(skb);
1730 np->tx_skbuff[i] = NULL;
1734 return 0;
1737 static void __devexit sundance_remove1 (struct pci_dev *pdev)
1739 struct net_device *dev = pci_get_drvdata(pdev);
1741 if (dev) {
1742 struct netdev_private *np = netdev_priv(dev);
1744 unregister_netdev(dev);
1745 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring,
1746 np->rx_ring_dma);
1747 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring,
1748 np->tx_ring_dma);
1749 pci_iounmap(pdev, np->base);
1750 pci_release_regions(pdev);
1751 free_netdev(dev);
1752 pci_set_drvdata(pdev, NULL);
1756 static struct pci_driver sundance_driver = {
1757 .name = DRV_NAME,
1758 .id_table = sundance_pci_tbl,
1759 .probe = sundance_probe1,
1760 .remove = __devexit_p(sundance_remove1),
1763 static int __init sundance_init(void)
1765 /* when a module, this is printed whether or not devices are found in probe */
1766 #ifdef MODULE
1767 printk(version);
1768 #endif
1769 return pci_register_driver(&sundance_driver);
1772 static void __exit sundance_exit(void)
1774 pci_unregister_driver(&sundance_driver);
1777 module_init(sundance_init);
1778 module_exit(sundance_exit);