2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 #include "xfs_trans.h"
27 #include "xfs_alloc.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_quota.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_btree.h"
39 #include "xfs_ialloc.h"
41 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
43 #include "xfs_itable.h"
47 #include "xfs_buf_item.h"
48 #include "xfs_utils.h"
49 #include "xfs_vnodeops.h"
50 #include "xfs_vfsops.h"
51 #include "xfs_version.h"
53 #include <linux/namei.h>
54 #include <linux/init.h>
55 #include <linux/mount.h>
56 #include <linux/mempool.h>
57 #include <linux/writeback.h>
58 #include <linux/kthread.h>
59 #include <linux/freezer.h>
61 static struct quotactl_ops xfs_quotactl_operations
;
62 static struct super_operations xfs_super_operations
;
63 static kmem_zone_t
*xfs_vnode_zone
;
64 static kmem_zone_t
*xfs_ioend_zone
;
65 mempool_t
*xfs_ioend_pool
;
67 STATIC
struct xfs_mount_args
*
69 struct super_block
*sb
,
72 struct xfs_mount_args
*args
;
74 args
= kmem_zalloc(sizeof(struct xfs_mount_args
), KM_SLEEP
);
75 args
->logbufs
= args
->logbufsize
= -1;
76 strncpy(args
->fsname
, sb
->s_id
, MAXNAMELEN
);
78 /* Copy the already-parsed mount(2) flags we're interested in */
79 if (sb
->s_flags
& MS_DIRSYNC
)
80 args
->flags
|= XFSMNT_DIRSYNC
;
81 if (sb
->s_flags
& MS_SYNCHRONOUS
)
82 args
->flags
|= XFSMNT_WSYNC
;
84 args
->flags
|= XFSMNT_QUIET
;
85 args
->flags
|= XFSMNT_32BITINODES
;
92 unsigned int blockshift
)
94 unsigned int pagefactor
= 1;
95 unsigned int bitshift
= BITS_PER_LONG
- 1;
97 /* Figure out maximum filesize, on Linux this can depend on
98 * the filesystem blocksize (on 32 bit platforms).
99 * __block_prepare_write does this in an [unsigned] long...
100 * page->index << (PAGE_CACHE_SHIFT - bbits)
101 * So, for page sized blocks (4K on 32 bit platforms),
102 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
103 * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
104 * but for smaller blocksizes it is less (bbits = log2 bsize).
105 * Note1: get_block_t takes a long (implicit cast from above)
106 * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
107 * can optionally convert the [unsigned] long from above into
108 * an [unsigned] long long.
111 #if BITS_PER_LONG == 32
112 # if defined(CONFIG_LBD)
113 ASSERT(sizeof(sector_t
) == 8);
114 pagefactor
= PAGE_CACHE_SIZE
;
115 bitshift
= BITS_PER_LONG
;
117 pagefactor
= PAGE_CACHE_SIZE
>> (PAGE_CACHE_SHIFT
- blockshift
);
121 return (((__uint64_t
)pagefactor
) << bitshift
) - 1;
128 switch (inode
->i_mode
& S_IFMT
) {
130 inode
->i_op
= &xfs_inode_operations
;
131 inode
->i_fop
= &xfs_file_operations
;
132 inode
->i_mapping
->a_ops
= &xfs_address_space_operations
;
135 inode
->i_op
= &xfs_dir_inode_operations
;
136 inode
->i_fop
= &xfs_dir_file_operations
;
139 inode
->i_op
= &xfs_symlink_inode_operations
;
141 inode
->i_mapping
->a_ops
= &xfs_address_space_operations
;
144 inode
->i_op
= &xfs_inode_operations
;
145 init_special_inode(inode
, inode
->i_mode
, inode
->i_rdev
);
151 xfs_revalidate_inode(
156 struct inode
*inode
= vn_to_inode(vp
);
158 inode
->i_mode
= ip
->i_d
.di_mode
;
159 inode
->i_nlink
= ip
->i_d
.di_nlink
;
160 inode
->i_uid
= ip
->i_d
.di_uid
;
161 inode
->i_gid
= ip
->i_d
.di_gid
;
163 switch (inode
->i_mode
& S_IFMT
) {
167 MKDEV(sysv_major(ip
->i_df
.if_u2
.if_rdev
) & 0x1ff,
168 sysv_minor(ip
->i_df
.if_u2
.if_rdev
));
175 inode
->i_generation
= ip
->i_d
.di_gen
;
176 i_size_write(inode
, ip
->i_d
.di_size
);
178 XFS_FSB_TO_BB(mp
, ip
->i_d
.di_nblocks
+ ip
->i_delayed_blks
);
179 inode
->i_atime
.tv_sec
= ip
->i_d
.di_atime
.t_sec
;
180 inode
->i_atime
.tv_nsec
= ip
->i_d
.di_atime
.t_nsec
;
181 inode
->i_mtime
.tv_sec
= ip
->i_d
.di_mtime
.t_sec
;
182 inode
->i_mtime
.tv_nsec
= ip
->i_d
.di_mtime
.t_nsec
;
183 inode
->i_ctime
.tv_sec
= ip
->i_d
.di_ctime
.t_sec
;
184 inode
->i_ctime
.tv_nsec
= ip
->i_d
.di_ctime
.t_nsec
;
185 if (ip
->i_d
.di_flags
& XFS_DIFLAG_IMMUTABLE
)
186 inode
->i_flags
|= S_IMMUTABLE
;
188 inode
->i_flags
&= ~S_IMMUTABLE
;
189 if (ip
->i_d
.di_flags
& XFS_DIFLAG_APPEND
)
190 inode
->i_flags
|= S_APPEND
;
192 inode
->i_flags
&= ~S_APPEND
;
193 if (ip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
)
194 inode
->i_flags
|= S_SYNC
;
196 inode
->i_flags
&= ~S_SYNC
;
197 if (ip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
)
198 inode
->i_flags
|= S_NOATIME
;
200 inode
->i_flags
&= ~S_NOATIME
;
201 xfs_iflags_clear(ip
, XFS_IMODIFIED
);
205 xfs_initialize_vnode(
206 struct xfs_mount
*mp
,
208 struct xfs_inode
*ip
)
210 struct inode
*inode
= vn_to_inode(vp
);
214 inode
->i_private
= ip
;
218 * We need to set the ops vectors, and unlock the inode, but if
219 * we have been called during the new inode create process, it is
220 * too early to fill in the Linux inode. We will get called a
221 * second time once the inode is properly set up, and then we can
224 if (ip
->i_d
.di_mode
!= 0 && (inode
->i_state
& I_NEW
)) {
225 xfs_revalidate_inode(mp
, vp
, ip
);
226 xfs_set_inodeops(inode
);
228 xfs_iflags_clear(ip
, XFS_INEW
);
231 unlock_new_inode(inode
);
239 struct block_device
**bdevp
)
243 *bdevp
= open_bdev_excl(name
, 0, mp
);
244 if (IS_ERR(*bdevp
)) {
245 error
= PTR_ERR(*bdevp
);
246 printk("XFS: Invalid device [%s], error=%d\n", name
, error
);
254 struct block_device
*bdev
)
257 close_bdev_excl(bdev
);
261 * Try to write out the superblock using barriers.
267 xfs_buf_t
*sbp
= xfs_getsb(mp
, 0);
272 XFS_BUF_UNDELAYWRITE(sbp
);
274 XFS_BUF_UNASYNC(sbp
);
275 XFS_BUF_ORDERED(sbp
);
278 error
= xfs_iowait(sbp
);
281 * Clear all the flags we set and possible error state in the
282 * buffer. We only did the write to try out whether barriers
283 * worked and shouldn't leave any traces in the superblock
287 XFS_BUF_ERROR(sbp
, 0);
288 XFS_BUF_UNORDERED(sbp
);
295 xfs_mountfs_check_barriers(xfs_mount_t
*mp
)
299 if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
) {
300 xfs_fs_cmn_err(CE_NOTE
, mp
,
301 "Disabling barriers, not supported with external log device");
302 mp
->m_flags
&= ~XFS_MOUNT_BARRIER
;
306 if (mp
->m_ddev_targp
->bt_bdev
->bd_disk
->queue
->ordered
==
307 QUEUE_ORDERED_NONE
) {
308 xfs_fs_cmn_err(CE_NOTE
, mp
,
309 "Disabling barriers, not supported by the underlying device");
310 mp
->m_flags
&= ~XFS_MOUNT_BARRIER
;
314 if (xfs_readonly_buftarg(mp
->m_ddev_targp
)) {
315 xfs_fs_cmn_err(CE_NOTE
, mp
,
316 "Disabling barriers, underlying device is readonly");
317 mp
->m_flags
&= ~XFS_MOUNT_BARRIER
;
321 error
= xfs_barrier_test(mp
);
323 xfs_fs_cmn_err(CE_NOTE
, mp
,
324 "Disabling barriers, trial barrier write failed");
325 mp
->m_flags
&= ~XFS_MOUNT_BARRIER
;
331 xfs_blkdev_issue_flush(
332 xfs_buftarg_t
*buftarg
)
334 blkdev_issue_flush(buftarg
->bt_bdev
, NULL
);
337 STATIC
struct inode
*
339 struct super_block
*sb
)
343 vp
= kmem_zone_alloc(xfs_vnode_zone
, KM_SLEEP
);
346 return vn_to_inode(vp
);
350 xfs_fs_destroy_inode(
353 kmem_zone_free(xfs_vnode_zone
, vn_from_inode(inode
));
357 xfs_fs_inode_init_once(
361 inode_init_once(vn_to_inode((bhv_vnode_t
*)vnode
));
367 xfs_vnode_zone
= kmem_zone_init_flags(sizeof(bhv_vnode_t
), "xfs_vnode",
368 KM_ZONE_HWALIGN
| KM_ZONE_RECLAIM
|
370 xfs_fs_inode_init_once
);
374 xfs_ioend_zone
= kmem_zone_init(sizeof(xfs_ioend_t
), "xfs_ioend");
376 goto out_destroy_vnode_zone
;
378 xfs_ioend_pool
= mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE
,
381 goto out_free_ioend_zone
;
385 kmem_zone_destroy(xfs_ioend_zone
);
386 out_destroy_vnode_zone
:
387 kmem_zone_destroy(xfs_vnode_zone
);
393 xfs_destroy_zones(void)
395 mempool_destroy(xfs_ioend_pool
);
396 kmem_zone_destroy(xfs_vnode_zone
);
397 kmem_zone_destroy(xfs_ioend_zone
);
401 * Attempt to flush the inode, this will actually fail
402 * if the inode is pinned, but we dirty the inode again
403 * at the point when it is unpinned after a log write,
404 * since this is when the inode itself becomes flushable.
411 int error
= 0, flags
= FLUSH_INODE
;
413 vn_trace_entry(XFS_I(inode
), __FUNCTION__
,
414 (inst_t
*)__return_address
);
416 filemap_fdatawait(inode
->i_mapping
);
419 error
= xfs_inode_flush(XFS_I(inode
), flags
);
421 * if we failed to write out the inode then mark
422 * it dirty again so we'll try again later.
425 mark_inode_dirty_sync(inode
);
434 xfs_inode_t
*ip
= XFS_I(inode
);
437 * ip can be null when xfs_iget_core calls xfs_idestroy if we
438 * find an inode with di_mode == 0 but without IGET_CREATE set.
441 vn_trace_entry(ip
, __FUNCTION__
, (inst_t
*)__return_address
);
443 XFS_STATS_INC(vn_rele
);
444 XFS_STATS_INC(vn_remove
);
445 XFS_STATS_INC(vn_reclaim
);
446 XFS_STATS_DEC(vn_active
);
449 xfs_iflags_clear(ip
, XFS_IMODIFIED
);
451 panic("%s: cannot reclaim 0x%p\n", __FUNCTION__
, inode
);
454 ASSERT(XFS_I(inode
) == NULL
);
458 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
459 * Doing this has two advantages:
460 * - It saves on stack space, which is tight in certain situations
461 * - It can be used (with care) as a mechanism to avoid deadlocks.
462 * Flushing while allocating in a full filesystem requires both.
465 xfs_syncd_queue_work(
466 struct xfs_mount
*mp
,
468 void (*syncer
)(struct xfs_mount
*, void *))
470 struct bhv_vfs_sync_work
*work
;
472 work
= kmem_alloc(sizeof(struct bhv_vfs_sync_work
), KM_SLEEP
);
473 INIT_LIST_HEAD(&work
->w_list
);
474 work
->w_syncer
= syncer
;
477 spin_lock(&mp
->m_sync_lock
);
478 list_add_tail(&work
->w_list
, &mp
->m_sync_list
);
479 spin_unlock(&mp
->m_sync_lock
);
480 wake_up_process(mp
->m_sync_task
);
484 * Flush delayed allocate data, attempting to free up reserved space
485 * from existing allocations. At this point a new allocation attempt
486 * has failed with ENOSPC and we are in the process of scratching our
487 * heads, looking about for more room...
490 xfs_flush_inode_work(
491 struct xfs_mount
*mp
,
494 struct inode
*inode
= arg
;
495 filemap_flush(inode
->i_mapping
);
503 struct inode
*inode
= ip
->i_vnode
;
506 xfs_syncd_queue_work(ip
->i_mount
, inode
, xfs_flush_inode_work
);
507 delay(msecs_to_jiffies(500));
511 * This is the "bigger hammer" version of xfs_flush_inode_work...
512 * (IOW, "If at first you don't succeed, use a Bigger Hammer").
515 xfs_flush_device_work(
516 struct xfs_mount
*mp
,
519 struct inode
*inode
= arg
;
520 sync_blockdev(mp
->m_super
->s_bdev
);
528 struct inode
*inode
= vn_to_inode(XFS_ITOV(ip
));
531 xfs_syncd_queue_work(ip
->i_mount
, inode
, xfs_flush_device_work
);
532 delay(msecs_to_jiffies(500));
533 xfs_log_force(ip
->i_mount
, (xfs_lsn_t
)0, XFS_LOG_FORCE
|XFS_LOG_SYNC
);
538 struct xfs_mount
*mp
,
543 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
))
544 error
= xfs_sync(mp
, SYNC_FSDATA
| SYNC_BDFLUSH
| SYNC_ATTR
|
545 SYNC_REFCACHE
| SYNC_SUPER
);
547 wake_up(&mp
->m_wait_single_sync_task
);
554 struct xfs_mount
*mp
= arg
;
556 bhv_vfs_sync_work_t
*work
, *n
;
560 timeleft
= xfs_syncd_centisecs
* msecs_to_jiffies(10);
562 timeleft
= schedule_timeout_interruptible(timeleft
);
565 if (kthread_should_stop() && list_empty(&mp
->m_sync_list
))
568 spin_lock(&mp
->m_sync_lock
);
570 * We can get woken by laptop mode, to do a sync -
571 * that's the (only!) case where the list would be
572 * empty with time remaining.
574 if (!timeleft
|| list_empty(&mp
->m_sync_list
)) {
576 timeleft
= xfs_syncd_centisecs
*
577 msecs_to_jiffies(10);
578 INIT_LIST_HEAD(&mp
->m_sync_work
.w_list
);
579 list_add_tail(&mp
->m_sync_work
.w_list
,
582 list_for_each_entry_safe(work
, n
, &mp
->m_sync_list
, w_list
)
583 list_move(&work
->w_list
, &tmp
);
584 spin_unlock(&mp
->m_sync_lock
);
586 list_for_each_entry_safe(work
, n
, &tmp
, w_list
) {
587 (*work
->w_syncer
)(mp
, work
->w_data
);
588 list_del(&work
->w_list
);
589 if (work
== &mp
->m_sync_work
)
591 kmem_free(work
, sizeof(struct bhv_vfs_sync_work
));
600 struct super_block
*sb
)
602 struct xfs_mount
*mp
= XFS_M(sb
);
605 kthread_stop(mp
->m_sync_task
);
607 xfs_sync(mp
, SYNC_ATTR
| SYNC_DELWRI
);
608 error
= xfs_unmount(mp
, 0, NULL
);
610 printk("XFS: unmount got error=%d\n", error
);
615 struct super_block
*sb
)
617 if (!(sb
->s_flags
& MS_RDONLY
))
618 xfs_sync(XFS_M(sb
), SYNC_FSDATA
);
624 struct super_block
*sb
,
627 struct xfs_mount
*mp
= XFS_M(sb
);
632 * Treat a sync operation like a freeze. This is to work
633 * around a race in sync_inodes() which works in two phases
634 * - an asynchronous flush, which can write out an inode
635 * without waiting for file size updates to complete, and a
636 * synchronous flush, which wont do anything because the
637 * async flush removed the inode's dirty flag. Also
638 * sync_inodes() will not see any files that just have
639 * outstanding transactions to be flushed because we don't
640 * dirty the Linux inode until after the transaction I/O
643 if (wait
|| unlikely(sb
->s_frozen
== SB_FREEZE_WRITE
)) {
645 * First stage of freeze - no more writers will make progress
646 * now we are here, so we flush delwri and delalloc buffers
647 * here, then wait for all I/O to complete. Data is frozen at
648 * that point. Metadata is not frozen, transactions can still
649 * occur here so don't bother flushing the buftarg (i.e
650 * SYNC_QUIESCE) because it'll just get dirty again.
652 flags
= SYNC_DATA_QUIESCE
;
656 error
= xfs_sync(mp
, flags
);
659 if (unlikely(laptop_mode
)) {
660 int prev_sync_seq
= mp
->m_sync_seq
;
663 * The disk must be active because we're syncing.
664 * We schedule xfssyncd now (now that the disk is
665 * active) instead of later (when it might not be).
667 wake_up_process(mp
->m_sync_task
);
669 * We have to wait for the sync iteration to complete.
670 * If we don't, the disk activity caused by the sync
671 * will come after the sync is completed, and that
672 * triggers another sync from laptop mode.
674 wait_event(mp
->m_wait_single_sync_task
,
675 mp
->m_sync_seq
!= prev_sync_seq
);
683 struct dentry
*dentry
,
684 struct kstatfs
*statp
)
686 return -xfs_statvfs(XFS_M(dentry
->d_sb
), statp
,
687 vn_from_inode(dentry
->d_inode
));
692 struct super_block
*sb
,
696 struct xfs_mount
*mp
= XFS_M(sb
);
697 struct xfs_mount_args
*args
= xfs_args_allocate(sb
, 0);
700 error
= xfs_parseargs(mp
, options
, args
, 1);
702 error
= xfs_mntupdate(mp
, flags
, args
);
703 kmem_free(args
, sizeof(*args
));
709 struct super_block
*sb
)
711 xfs_freeze(XFS_M(sb
));
717 struct vfsmount
*mnt
)
719 return -xfs_showargs(XFS_M(mnt
->mnt_sb
), m
);
724 struct super_block
*sb
,
727 return -XFS_QM_QUOTACTL(XFS_M(sb
), Q_XQUOTASYNC
, 0, NULL
);
732 struct super_block
*sb
,
733 struct fs_quota_stat
*fqs
)
735 return -XFS_QM_QUOTACTL(XFS_M(sb
), Q_XGETQSTAT
, 0, (caddr_t
)fqs
);
740 struct super_block
*sb
,
744 return -XFS_QM_QUOTACTL(XFS_M(sb
), op
, 0, (caddr_t
)&flags
);
749 struct super_block
*sb
,
752 struct fs_disk_quota
*fdq
)
754 return -XFS_QM_QUOTACTL(XFS_M(sb
),
755 (type
== USRQUOTA
) ? Q_XGETQUOTA
:
756 ((type
== GRPQUOTA
) ? Q_XGETGQUOTA
:
757 Q_XGETPQUOTA
), id
, (caddr_t
)fdq
);
762 struct super_block
*sb
,
765 struct fs_disk_quota
*fdq
)
767 return -XFS_QM_QUOTACTL(XFS_M(sb
),
768 (type
== USRQUOTA
) ? Q_XSETQLIM
:
769 ((type
== GRPQUOTA
) ? Q_XSETGQLIM
:
770 Q_XSETPQLIM
), id
, (caddr_t
)fdq
);
775 struct super_block
*sb
,
779 struct inode
*rootvp
;
780 struct xfs_mount
*mp
= NULL
;
781 struct xfs_mount_args
*args
= xfs_args_allocate(sb
, silent
);
782 struct kstatfs statvfs
;
785 mp
= xfs_mount_init();
787 INIT_LIST_HEAD(&mp
->m_sync_list
);
788 spin_lock_init(&mp
->m_sync_lock
);
789 init_waitqueue_head(&mp
->m_wait_single_sync_task
);
794 if (sb
->s_flags
& MS_RDONLY
)
795 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
797 error
= xfs_parseargs(mp
, (char *)data
, args
, 0);
801 sb_min_blocksize(sb
, BBSIZE
);
802 sb
->s_export_op
= &xfs_export_operations
;
803 sb
->s_qcop
= &xfs_quotactl_operations
;
804 sb
->s_op
= &xfs_super_operations
;
806 error
= xfs_mount(mp
, args
, NULL
);
810 error
= xfs_statvfs(mp
, &statvfs
, NULL
);
815 sb
->s_magic
= statvfs
.f_type
;
816 sb
->s_blocksize
= statvfs
.f_bsize
;
817 sb
->s_blocksize_bits
= ffs(statvfs
.f_bsize
) - 1;
818 sb
->s_maxbytes
= xfs_max_file_offset(sb
->s_blocksize_bits
);
820 set_posix_acl_flag(sb
);
822 error
= xfs_root(mp
, &rootvp
);
826 sb
->s_root
= d_alloc_root(vn_to_inode(rootvp
));
831 if (is_bad_inode(sb
->s_root
->d_inode
)) {
836 mp
->m_sync_work
.w_syncer
= xfs_sync_worker
;
837 mp
->m_sync_work
.w_mount
= mp
;
838 mp
->m_sync_task
= kthread_run(xfssyncd
, mp
, "xfssyncd");
839 if (IS_ERR(mp
->m_sync_task
)) {
840 error
= -PTR_ERR(mp
->m_sync_task
);
844 vn_trace_exit(XFS_I(sb
->s_root
->d_inode
), __FUNCTION__
,
845 (inst_t
*)__return_address
);
847 kmem_free(args
, sizeof(*args
));
859 xfs_unmount(mp
, 0, NULL
);
862 kmem_free(args
, sizeof(*args
));
868 struct file_system_type
*fs_type
,
870 const char *dev_name
,
872 struct vfsmount
*mnt
)
874 return get_sb_bdev(fs_type
, flags
, dev_name
, data
, xfs_fs_fill_super
,
878 static struct super_operations xfs_super_operations
= {
879 .alloc_inode
= xfs_fs_alloc_inode
,
880 .destroy_inode
= xfs_fs_destroy_inode
,
881 .write_inode
= xfs_fs_write_inode
,
882 .clear_inode
= xfs_fs_clear_inode
,
883 .put_super
= xfs_fs_put_super
,
884 .write_super
= xfs_fs_write_super
,
885 .sync_fs
= xfs_fs_sync_super
,
886 .write_super_lockfs
= xfs_fs_lockfs
,
887 .statfs
= xfs_fs_statfs
,
888 .remount_fs
= xfs_fs_remount
,
889 .show_options
= xfs_fs_show_options
,
892 static struct quotactl_ops xfs_quotactl_operations
= {
893 .quota_sync
= xfs_fs_quotasync
,
894 .get_xstate
= xfs_fs_getxstate
,
895 .set_xstate
= xfs_fs_setxstate
,
896 .get_xquota
= xfs_fs_getxquota
,
897 .set_xquota
= xfs_fs_setxquota
,
900 static struct file_system_type xfs_fs_type
= {
901 .owner
= THIS_MODULE
,
903 .get_sb
= xfs_fs_get_sb
,
904 .kill_sb
= kill_block_super
,
905 .fs_flags
= FS_REQUIRES_DEV
,
913 static char message
[] __initdata
= KERN_INFO \
914 XFS_VERSION_STRING
" with " XFS_BUILD_OPTIONS
" enabled\n";
920 error
= xfs_init_zones();
924 error
= xfs_buf_init();
933 error
= register_filesystem(&xfs_fs_type
);
952 unregister_filesystem(&xfs_fs_type
);
959 module_init(init_xfs_fs
);
960 module_exit(exit_xfs_fs
);
962 MODULE_AUTHOR("Silicon Graphics, Inc.");
963 MODULE_DESCRIPTION(XFS_VERSION_STRING
" with " XFS_BUILD_OPTIONS
" enabled");
964 MODULE_LICENSE("GPL");