sched: retune wake granularity
[wrt350n-kernel.git] / arch / arm / mm / mmu.c
blobd41a75ed3dce27431fd11c78f7cf27553bbbe61c
1 /*
2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
18 #include <asm/mach-types.h>
19 #include <asm/setup.h>
20 #include <asm/sizes.h>
21 #include <asm/tlb.h>
23 #include <asm/mach/arch.h>
24 #include <asm/mach/map.h>
26 #include "mm.h"
28 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
30 extern void _stext, _etext, __data_start, _end;
31 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
34 * empty_zero_page is a special page that is used for
35 * zero-initialized data and COW.
37 struct page *empty_zero_page;
40 * The pmd table for the upper-most set of pages.
42 pmd_t *top_pmd;
44 #define CPOLICY_UNCACHED 0
45 #define CPOLICY_BUFFERED 1
46 #define CPOLICY_WRITETHROUGH 2
47 #define CPOLICY_WRITEBACK 3
48 #define CPOLICY_WRITEALLOC 4
50 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
51 static unsigned int ecc_mask __initdata = 0;
52 pgprot_t pgprot_user;
53 pgprot_t pgprot_kernel;
55 EXPORT_SYMBOL(pgprot_user);
56 EXPORT_SYMBOL(pgprot_kernel);
58 struct cachepolicy {
59 const char policy[16];
60 unsigned int cr_mask;
61 unsigned int pmd;
62 unsigned int pte;
65 static struct cachepolicy cache_policies[] __initdata = {
67 .policy = "uncached",
68 .cr_mask = CR_W|CR_C,
69 .pmd = PMD_SECT_UNCACHED,
70 .pte = 0,
71 }, {
72 .policy = "buffered",
73 .cr_mask = CR_C,
74 .pmd = PMD_SECT_BUFFERED,
75 .pte = PTE_BUFFERABLE,
76 }, {
77 .policy = "writethrough",
78 .cr_mask = 0,
79 .pmd = PMD_SECT_WT,
80 .pte = PTE_CACHEABLE,
81 }, {
82 .policy = "writeback",
83 .cr_mask = 0,
84 .pmd = PMD_SECT_WB,
85 .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
86 }, {
87 .policy = "writealloc",
88 .cr_mask = 0,
89 .pmd = PMD_SECT_WBWA,
90 .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
95 * These are useful for identifying cache coherency
96 * problems by allowing the cache or the cache and
97 * writebuffer to be turned off. (Note: the write
98 * buffer should not be on and the cache off).
100 static void __init early_cachepolicy(char **p)
102 int i;
104 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
105 int len = strlen(cache_policies[i].policy);
107 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
108 cachepolicy = i;
109 cr_alignment &= ~cache_policies[i].cr_mask;
110 cr_no_alignment &= ~cache_policies[i].cr_mask;
111 *p += len;
112 break;
115 if (i == ARRAY_SIZE(cache_policies))
116 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
117 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
118 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
119 cachepolicy = CPOLICY_WRITEBACK;
121 flush_cache_all();
122 set_cr(cr_alignment);
124 __early_param("cachepolicy=", early_cachepolicy);
126 static void __init early_nocache(char **__unused)
128 char *p = "buffered";
129 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
130 early_cachepolicy(&p);
132 __early_param("nocache", early_nocache);
134 static void __init early_nowrite(char **__unused)
136 char *p = "uncached";
137 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
138 early_cachepolicy(&p);
140 __early_param("nowb", early_nowrite);
142 static void __init early_ecc(char **p)
144 if (memcmp(*p, "on", 2) == 0) {
145 ecc_mask = PMD_PROTECTION;
146 *p += 2;
147 } else if (memcmp(*p, "off", 3) == 0) {
148 ecc_mask = 0;
149 *p += 3;
152 __early_param("ecc=", early_ecc);
154 static int __init noalign_setup(char *__unused)
156 cr_alignment &= ~CR_A;
157 cr_no_alignment &= ~CR_A;
158 set_cr(cr_alignment);
159 return 1;
161 __setup("noalign", noalign_setup);
163 #ifndef CONFIG_SMP
164 void adjust_cr(unsigned long mask, unsigned long set)
166 unsigned long flags;
168 mask &= ~CR_A;
170 set &= mask;
172 local_irq_save(flags);
174 cr_no_alignment = (cr_no_alignment & ~mask) | set;
175 cr_alignment = (cr_alignment & ~mask) | set;
177 set_cr((get_cr() & ~mask) | set);
179 local_irq_restore(flags);
181 #endif
183 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
184 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_XN|PMD_SECT_AP_WRITE
186 static struct mem_type mem_types[] = {
187 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
188 .prot_pte = PROT_PTE_DEVICE,
189 .prot_l1 = PMD_TYPE_TABLE,
190 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_UNCACHED,
191 .domain = DOMAIN_IO,
193 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
194 .prot_pte = PROT_PTE_DEVICE,
195 .prot_pte_ext = PTE_EXT_TEX(2),
196 .prot_l1 = PMD_TYPE_TABLE,
197 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_TEX(2),
198 .domain = DOMAIN_IO,
200 [MT_DEVICE_CACHED] = { /* ioremap_cached */
201 .prot_pte = PROT_PTE_DEVICE | L_PTE_CACHEABLE | L_PTE_BUFFERABLE,
202 .prot_l1 = PMD_TYPE_TABLE,
203 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
204 .domain = DOMAIN_IO,
206 [MT_DEVICE_IXP2000] = { /* IXP2400 requires XCB=101 for on-chip I/O */
207 .prot_pte = PROT_PTE_DEVICE,
208 .prot_l1 = PMD_TYPE_TABLE,
209 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_BUFFERABLE |
210 PMD_SECT_TEX(1),
211 .domain = DOMAIN_IO,
213 [MT_CACHECLEAN] = {
214 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
215 .domain = DOMAIN_KERNEL,
217 [MT_MINICLEAN] = {
218 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
219 .domain = DOMAIN_KERNEL,
221 [MT_LOW_VECTORS] = {
222 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
223 L_PTE_EXEC,
224 .prot_l1 = PMD_TYPE_TABLE,
225 .domain = DOMAIN_USER,
227 [MT_HIGH_VECTORS] = {
228 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
229 L_PTE_USER | L_PTE_EXEC,
230 .prot_l1 = PMD_TYPE_TABLE,
231 .domain = DOMAIN_USER,
233 [MT_MEMORY] = {
234 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
235 .domain = DOMAIN_KERNEL,
237 [MT_ROM] = {
238 .prot_sect = PMD_TYPE_SECT,
239 .domain = DOMAIN_KERNEL,
243 const struct mem_type *get_mem_type(unsigned int type)
245 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
249 * Adjust the PMD section entries according to the CPU in use.
251 static void __init build_mem_type_table(void)
253 struct cachepolicy *cp;
254 unsigned int cr = get_cr();
255 unsigned int user_pgprot, kern_pgprot;
256 int cpu_arch = cpu_architecture();
257 int i;
259 if (cpu_arch < CPU_ARCH_ARMv6) {
260 #if defined(CONFIG_CPU_DCACHE_DISABLE)
261 if (cachepolicy > CPOLICY_BUFFERED)
262 cachepolicy = CPOLICY_BUFFERED;
263 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
264 if (cachepolicy > CPOLICY_WRITETHROUGH)
265 cachepolicy = CPOLICY_WRITETHROUGH;
266 #endif
268 if (cpu_arch < CPU_ARCH_ARMv5) {
269 if (cachepolicy >= CPOLICY_WRITEALLOC)
270 cachepolicy = CPOLICY_WRITEBACK;
271 ecc_mask = 0;
275 * ARMv5 and lower, bit 4 must be set for page tables.
276 * (was: cache "update-able on write" bit on ARM610)
277 * However, Xscale cores require this bit to be cleared.
279 if (cpu_is_xscale()) {
280 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
281 mem_types[i].prot_sect &= ~PMD_BIT4;
282 mem_types[i].prot_l1 &= ~PMD_BIT4;
284 } else if (cpu_arch < CPU_ARCH_ARMv6) {
285 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
286 if (mem_types[i].prot_l1)
287 mem_types[i].prot_l1 |= PMD_BIT4;
288 if (mem_types[i].prot_sect)
289 mem_types[i].prot_sect |= PMD_BIT4;
293 cp = &cache_policies[cachepolicy];
294 kern_pgprot = user_pgprot = cp->pte;
297 * Enable CPU-specific coherency if supported.
298 * (Only available on XSC3 at the moment.)
300 if (arch_is_coherent()) {
301 if (cpu_is_xsc3()) {
302 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
303 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
308 * ARMv6 and above have extended page tables.
310 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
312 * Mark cache clean areas and XIP ROM read only
313 * from SVC mode and no access from userspace.
315 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
316 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
317 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
320 * Mark the device area as "shared device"
322 mem_types[MT_DEVICE].prot_pte |= L_PTE_BUFFERABLE;
323 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
325 #ifdef CONFIG_SMP
327 * Mark memory with the "shared" attribute for SMP systems
329 user_pgprot |= L_PTE_SHARED;
330 kern_pgprot |= L_PTE_SHARED;
331 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
332 #endif
335 for (i = 0; i < 16; i++) {
336 unsigned long v = pgprot_val(protection_map[i]);
337 v = (v & ~(L_PTE_BUFFERABLE|L_PTE_CACHEABLE)) | user_pgprot;
338 protection_map[i] = __pgprot(v);
341 mem_types[MT_LOW_VECTORS].prot_pte |= kern_pgprot;
342 mem_types[MT_HIGH_VECTORS].prot_pte |= kern_pgprot;
344 if (cpu_arch >= CPU_ARCH_ARMv5) {
345 #ifndef CONFIG_SMP
347 * Only use write-through for non-SMP systems
349 mem_types[MT_LOW_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE;
350 mem_types[MT_HIGH_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE;
351 #endif
352 } else {
353 mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
356 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
357 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
358 L_PTE_DIRTY | L_PTE_WRITE |
359 L_PTE_EXEC | kern_pgprot);
361 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
362 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
363 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
364 mem_types[MT_ROM].prot_sect |= cp->pmd;
366 switch (cp->pmd) {
367 case PMD_SECT_WT:
368 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
369 break;
370 case PMD_SECT_WB:
371 case PMD_SECT_WBWA:
372 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
373 break;
375 printk("Memory policy: ECC %sabled, Data cache %s\n",
376 ecc_mask ? "en" : "dis", cp->policy);
378 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
379 struct mem_type *t = &mem_types[i];
380 if (t->prot_l1)
381 t->prot_l1 |= PMD_DOMAIN(t->domain);
382 if (t->prot_sect)
383 t->prot_sect |= PMD_DOMAIN(t->domain);
387 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
389 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
390 unsigned long end, unsigned long pfn,
391 const struct mem_type *type)
393 pte_t *pte;
395 if (pmd_none(*pmd)) {
396 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
397 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
400 pte = pte_offset_kernel(pmd, addr);
401 do {
402 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
403 type->prot_pte_ext);
404 pfn++;
405 } while (pte++, addr += PAGE_SIZE, addr != end);
408 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
409 unsigned long end, unsigned long phys,
410 const struct mem_type *type)
412 pmd_t *pmd = pmd_offset(pgd, addr);
415 * Try a section mapping - end, addr and phys must all be aligned
416 * to a section boundary. Note that PMDs refer to the individual
417 * L1 entries, whereas PGDs refer to a group of L1 entries making
418 * up one logical pointer to an L2 table.
420 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
421 pmd_t *p = pmd;
423 if (addr & SECTION_SIZE)
424 pmd++;
426 do {
427 *pmd = __pmd(phys | type->prot_sect);
428 phys += SECTION_SIZE;
429 } while (pmd++, addr += SECTION_SIZE, addr != end);
431 flush_pmd_entry(p);
432 } else {
434 * No need to loop; pte's aren't interested in the
435 * individual L1 entries.
437 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
441 static void __init create_36bit_mapping(struct map_desc *md,
442 const struct mem_type *type)
444 unsigned long phys, addr, length, end;
445 pgd_t *pgd;
447 addr = md->virtual;
448 phys = (unsigned long)__pfn_to_phys(md->pfn);
449 length = PAGE_ALIGN(md->length);
451 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
452 printk(KERN_ERR "MM: CPU does not support supersection "
453 "mapping for 0x%08llx at 0x%08lx\n",
454 __pfn_to_phys((u64)md->pfn), addr);
455 return;
458 /* N.B. ARMv6 supersections are only defined to work with domain 0.
459 * Since domain assignments can in fact be arbitrary, the
460 * 'domain == 0' check below is required to insure that ARMv6
461 * supersections are only allocated for domain 0 regardless
462 * of the actual domain assignments in use.
464 if (type->domain) {
465 printk(KERN_ERR "MM: invalid domain in supersection "
466 "mapping for 0x%08llx at 0x%08lx\n",
467 __pfn_to_phys((u64)md->pfn), addr);
468 return;
471 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
472 printk(KERN_ERR "MM: cannot create mapping for "
473 "0x%08llx at 0x%08lx invalid alignment\n",
474 __pfn_to_phys((u64)md->pfn), addr);
475 return;
479 * Shift bits [35:32] of address into bits [23:20] of PMD
480 * (See ARMv6 spec).
482 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
484 pgd = pgd_offset_k(addr);
485 end = addr + length;
486 do {
487 pmd_t *pmd = pmd_offset(pgd, addr);
488 int i;
490 for (i = 0; i < 16; i++)
491 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
493 addr += SUPERSECTION_SIZE;
494 phys += SUPERSECTION_SIZE;
495 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
496 } while (addr != end);
500 * Create the page directory entries and any necessary
501 * page tables for the mapping specified by `md'. We
502 * are able to cope here with varying sizes and address
503 * offsets, and we take full advantage of sections and
504 * supersections.
506 void __init create_mapping(struct map_desc *md)
508 unsigned long phys, addr, length, end;
509 const struct mem_type *type;
510 pgd_t *pgd;
512 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
513 printk(KERN_WARNING "BUG: not creating mapping for "
514 "0x%08llx at 0x%08lx in user region\n",
515 __pfn_to_phys((u64)md->pfn), md->virtual);
516 return;
519 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
520 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
521 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
522 "overlaps vmalloc space\n",
523 __pfn_to_phys((u64)md->pfn), md->virtual);
526 type = &mem_types[md->type];
529 * Catch 36-bit addresses
531 if (md->pfn >= 0x100000) {
532 create_36bit_mapping(md, type);
533 return;
536 addr = md->virtual & PAGE_MASK;
537 phys = (unsigned long)__pfn_to_phys(md->pfn);
538 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
540 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
541 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
542 "be mapped using pages, ignoring.\n",
543 __pfn_to_phys(md->pfn), addr);
544 return;
547 pgd = pgd_offset_k(addr);
548 end = addr + length;
549 do {
550 unsigned long next = pgd_addr_end(addr, end);
552 alloc_init_section(pgd, addr, next, phys, type);
554 phys += next - addr;
555 addr = next;
556 } while (pgd++, addr != end);
560 * Create the architecture specific mappings
562 void __init iotable_init(struct map_desc *io_desc, int nr)
564 int i;
566 for (i = 0; i < nr; i++)
567 create_mapping(io_desc + i);
570 static inline void prepare_page_table(struct meminfo *mi)
572 unsigned long addr;
575 * Clear out all the mappings below the kernel image.
577 for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
578 pmd_clear(pmd_off_k(addr));
580 #ifdef CONFIG_XIP_KERNEL
581 /* The XIP kernel is mapped in the module area -- skip over it */
582 addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
583 #endif
584 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
585 pmd_clear(pmd_off_k(addr));
588 * Clear out all the kernel space mappings, except for the first
589 * memory bank, up to the end of the vmalloc region.
591 for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
592 addr < VMALLOC_END; addr += PGDIR_SIZE)
593 pmd_clear(pmd_off_k(addr));
597 * Reserve the various regions of node 0
599 void __init reserve_node_zero(pg_data_t *pgdat)
601 unsigned long res_size = 0;
604 * Register the kernel text and data with bootmem.
605 * Note that this can only be in node 0.
607 #ifdef CONFIG_XIP_KERNEL
608 reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start,
609 BOOTMEM_DEFAULT);
610 #else
611 reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext,
612 BOOTMEM_DEFAULT);
613 #endif
616 * Reserve the page tables. These are already in use,
617 * and can only be in node 0.
619 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
620 PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
623 * Hmm... This should go elsewhere, but we really really need to
624 * stop things allocating the low memory; ideally we need a better
625 * implementation of GFP_DMA which does not assume that DMA-able
626 * memory starts at zero.
628 if (machine_is_integrator() || machine_is_cintegrator())
629 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
632 * These should likewise go elsewhere. They pre-reserve the
633 * screen memory region at the start of main system memory.
635 if (machine_is_edb7211())
636 res_size = 0x00020000;
637 if (machine_is_p720t())
638 res_size = 0x00014000;
640 /* H1940 and RX3715 need to reserve this for suspend */
642 if (machine_is_h1940() || machine_is_rx3715()) {
643 reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
644 BOOTMEM_DEFAULT);
645 reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
646 BOOTMEM_DEFAULT);
649 #ifdef CONFIG_SA1111
651 * Because of the SA1111 DMA bug, we want to preserve our
652 * precious DMA-able memory...
654 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
655 #endif
656 if (res_size)
657 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
658 BOOTMEM_DEFAULT);
662 * Set up device the mappings. Since we clear out the page tables for all
663 * mappings above VMALLOC_END, we will remove any debug device mappings.
664 * This means you have to be careful how you debug this function, or any
665 * called function. This means you can't use any function or debugging
666 * method which may touch any device, otherwise the kernel _will_ crash.
668 static void __init devicemaps_init(struct machine_desc *mdesc)
670 struct map_desc map;
671 unsigned long addr;
672 void *vectors;
675 * Allocate the vector page early.
677 vectors = alloc_bootmem_low_pages(PAGE_SIZE);
678 BUG_ON(!vectors);
680 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
681 pmd_clear(pmd_off_k(addr));
684 * Map the kernel if it is XIP.
685 * It is always first in the modulearea.
687 #ifdef CONFIG_XIP_KERNEL
688 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
689 map.virtual = MODULE_START;
690 map.length = ((unsigned long)&_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
691 map.type = MT_ROM;
692 create_mapping(&map);
693 #endif
696 * Map the cache flushing regions.
698 #ifdef FLUSH_BASE
699 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
700 map.virtual = FLUSH_BASE;
701 map.length = SZ_1M;
702 map.type = MT_CACHECLEAN;
703 create_mapping(&map);
704 #endif
705 #ifdef FLUSH_BASE_MINICACHE
706 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
707 map.virtual = FLUSH_BASE_MINICACHE;
708 map.length = SZ_1M;
709 map.type = MT_MINICLEAN;
710 create_mapping(&map);
711 #endif
714 * Create a mapping for the machine vectors at the high-vectors
715 * location (0xffff0000). If we aren't using high-vectors, also
716 * create a mapping at the low-vectors virtual address.
718 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
719 map.virtual = 0xffff0000;
720 map.length = PAGE_SIZE;
721 map.type = MT_HIGH_VECTORS;
722 create_mapping(&map);
724 if (!vectors_high()) {
725 map.virtual = 0;
726 map.type = MT_LOW_VECTORS;
727 create_mapping(&map);
731 * Ask the machine support to map in the statically mapped devices.
733 if (mdesc->map_io)
734 mdesc->map_io();
737 * Finally flush the caches and tlb to ensure that we're in a
738 * consistent state wrt the writebuffer. This also ensures that
739 * any write-allocated cache lines in the vector page are written
740 * back. After this point, we can start to touch devices again.
742 local_flush_tlb_all();
743 flush_cache_all();
747 * paging_init() sets up the page tables, initialises the zone memory
748 * maps, and sets up the zero page, bad page and bad page tables.
750 void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
752 void *zero_page;
754 build_mem_type_table();
755 prepare_page_table(mi);
756 bootmem_init(mi);
757 devicemaps_init(mdesc);
759 top_pmd = pmd_off_k(0xffff0000);
762 * allocate the zero page. Note that we count on this going ok.
764 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
765 memzero(zero_page, PAGE_SIZE);
766 empty_zero_page = virt_to_page(zero_page);
767 flush_dcache_page(empty_zero_page);
771 * In order to soft-boot, we need to insert a 1:1 mapping in place of
772 * the user-mode pages. This will then ensure that we have predictable
773 * results when turning the mmu off
775 void setup_mm_for_reboot(char mode)
777 unsigned long base_pmdval;
778 pgd_t *pgd;
779 int i;
781 if (current->mm && current->mm->pgd)
782 pgd = current->mm->pgd;
783 else
784 pgd = init_mm.pgd;
786 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
787 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
788 base_pmdval |= PMD_BIT4;
790 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
791 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
792 pmd_t *pmd;
794 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
795 pmd[0] = __pmd(pmdval);
796 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
797 flush_pmd_entry(pmd);