sched: retune wake granularity
[wrt350n-kernel.git] / arch / powerpc / mm / init_64.c
blobc0f5cff77035e8d1abae6fe746e96af2cbcd6dd2
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
9 * Derived from "arch/i386/mm/init.c"
10 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
12 * Dave Engebretsen <engebret@us.ibm.com>
13 * Rework for PPC64 port.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
22 #include <linux/signal.h>
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
28 #include <linux/mman.h>
29 #include <linux/mm.h>
30 #include <linux/swap.h>
31 #include <linux/stddef.h>
32 #include <linux/vmalloc.h>
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/bootmem.h>
36 #include <linux/highmem.h>
37 #include <linux/idr.h>
38 #include <linux/nodemask.h>
39 #include <linux/module.h>
40 #include <linux/poison.h>
42 #include <asm/pgalloc.h>
43 #include <asm/page.h>
44 #include <asm/prom.h>
45 #include <asm/lmb.h>
46 #include <asm/rtas.h>
47 #include <asm/io.h>
48 #include <asm/mmu_context.h>
49 #include <asm/pgtable.h>
50 #include <asm/mmu.h>
51 #include <asm/uaccess.h>
52 #include <asm/smp.h>
53 #include <asm/machdep.h>
54 #include <asm/tlb.h>
55 #include <asm/eeh.h>
56 #include <asm/processor.h>
57 #include <asm/mmzone.h>
58 #include <asm/cputable.h>
59 #include <asm/sections.h>
60 #include <asm/system.h>
61 #include <asm/iommu.h>
62 #include <asm/abs_addr.h>
63 #include <asm/vdso.h>
65 #include "mmu_decl.h"
67 #if PGTABLE_RANGE > USER_VSID_RANGE
68 #warning Limited user VSID range means pagetable space is wasted
69 #endif
71 #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
72 #warning TASK_SIZE is smaller than it needs to be.
73 #endif
75 /* max amount of RAM to use */
76 unsigned long __max_memory;
78 void free_initmem(void)
80 unsigned long addr;
82 addr = (unsigned long)__init_begin;
83 for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) {
84 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
85 ClearPageReserved(virt_to_page(addr));
86 init_page_count(virt_to_page(addr));
87 free_page(addr);
88 totalram_pages++;
90 printk ("Freeing unused kernel memory: %luk freed\n",
91 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10);
94 #ifdef CONFIG_BLK_DEV_INITRD
95 void free_initrd_mem(unsigned long start, unsigned long end)
97 if (start < end)
98 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
99 for (; start < end; start += PAGE_SIZE) {
100 ClearPageReserved(virt_to_page(start));
101 init_page_count(virt_to_page(start));
102 free_page(start);
103 totalram_pages++;
106 #endif
108 #ifdef CONFIG_PROC_KCORE
109 static struct kcore_list kcore_vmem;
111 static int __init setup_kcore(void)
113 int i;
115 for (i=0; i < lmb.memory.cnt; i++) {
116 unsigned long base, size;
117 struct kcore_list *kcore_mem;
119 base = lmb.memory.region[i].base;
120 size = lmb.memory.region[i].size;
122 /* GFP_ATOMIC to avoid might_sleep warnings during boot */
123 kcore_mem = kmalloc(sizeof(struct kcore_list), GFP_ATOMIC);
124 if (!kcore_mem)
125 panic("%s: kmalloc failed\n", __FUNCTION__);
127 kclist_add(kcore_mem, __va(base), size);
130 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
132 return 0;
134 module_init(setup_kcore);
135 #endif
137 static void zero_ctor(struct kmem_cache *cache, void *addr)
139 memset(addr, 0, kmem_cache_size(cache));
142 static const unsigned int pgtable_cache_size[2] = {
143 PGD_TABLE_SIZE, PMD_TABLE_SIZE
145 static const char *pgtable_cache_name[ARRAY_SIZE(pgtable_cache_size)] = {
146 #ifdef CONFIG_PPC_64K_PAGES
147 "pgd_cache", "pmd_cache",
148 #else
149 "pgd_cache", "pud_pmd_cache",
150 #endif /* CONFIG_PPC_64K_PAGES */
153 #ifdef CONFIG_HUGETLB_PAGE
154 /* Hugepages need one extra cache, initialized in hugetlbpage.c. We
155 * can't put into the tables above, because HPAGE_SHIFT is not compile
156 * time constant. */
157 struct kmem_cache *pgtable_cache[ARRAY_SIZE(pgtable_cache_size)+1];
158 #else
159 struct kmem_cache *pgtable_cache[ARRAY_SIZE(pgtable_cache_size)];
160 #endif
162 void pgtable_cache_init(void)
164 int i;
166 for (i = 0; i < ARRAY_SIZE(pgtable_cache_size); i++) {
167 int size = pgtable_cache_size[i];
168 const char *name = pgtable_cache_name[i];
170 pr_debug("Allocating page table cache %s (#%d) "
171 "for size: %08x...\n", name, i, size);
172 pgtable_cache[i] = kmem_cache_create(name,
173 size, size,
174 SLAB_PANIC,
175 zero_ctor);
179 #ifdef CONFIG_SPARSEMEM_VMEMMAP
181 * Given an address within the vmemmap, determine the pfn of the page that
182 * represents the start of the section it is within. Note that we have to
183 * do this by hand as the proffered address may not be correctly aligned.
184 * Subtraction of non-aligned pointers produces undefined results.
186 unsigned long __meminit vmemmap_section_start(unsigned long page)
188 unsigned long offset = page - ((unsigned long)(vmemmap));
190 /* Return the pfn of the start of the section. */
191 return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
195 * Check if this vmemmap page is already initialised. If any section
196 * which overlaps this vmemmap page is initialised then this page is
197 * initialised already.
199 int __meminit vmemmap_populated(unsigned long start, int page_size)
201 unsigned long end = start + page_size;
203 for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
204 if (pfn_valid(vmemmap_section_start(start)))
205 return 1;
207 return 0;
210 int __meminit vmemmap_populate(struct page *start_page,
211 unsigned long nr_pages, int node)
213 unsigned long mode_rw;
214 unsigned long start = (unsigned long)start_page;
215 unsigned long end = (unsigned long)(start_page + nr_pages);
216 unsigned long page_size = 1 << mmu_psize_defs[mmu_linear_psize].shift;
218 mode_rw = _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_COHERENT | PP_RWXX;
220 /* Align to the page size of the linear mapping. */
221 start = _ALIGN_DOWN(start, page_size);
223 for (; start < end; start += page_size) {
224 int mapped;
225 void *p;
227 if (vmemmap_populated(start, page_size))
228 continue;
230 p = vmemmap_alloc_block(page_size, node);
231 if (!p)
232 return -ENOMEM;
234 pr_debug("vmemmap %08lx allocated at %p, physical %08lx.\n",
235 start, p, __pa(p));
237 mapped = htab_bolt_mapping(start, start + page_size,
238 __pa(p), mode_rw, mmu_linear_psize,
239 mmu_kernel_ssize);
240 BUG_ON(mapped < 0);
243 return 0;
245 #endif