3 #include <linux/wait.h>
4 #include <linux/ptrace.h>
7 #include <asm/spu_priv1.h>
9 #include <asm/unistd.h>
13 /* interrupt-level stop callback function. */
14 void spufs_stop_callback(struct spu
*spu
)
16 struct spu_context
*ctx
= spu
->ctx
;
19 * It should be impossible to preempt a context while an exception
20 * is being processed, since the context switch code is specially
21 * coded to deal with interrupts ... But, just in case, sanity check
22 * the context pointer. It is OK to return doing nothing since
23 * the exception will be regenerated when the context is resumed.
26 /* Copy exception arguments into module specific structure */
27 ctx
->csa
.class_0_pending
= spu
->class_0_pending
;
28 ctx
->csa
.dsisr
= spu
->dsisr
;
29 ctx
->csa
.dar
= spu
->dar
;
31 /* ensure that the exception status has hit memory before a
32 * thread waiting on the context's stop queue is woken */
35 wake_up_all(&ctx
->stop_wq
);
38 /* Clear callback arguments from spu structure */
39 spu
->class_0_pending
= 0;
44 int spu_stopped(struct spu_context
*ctx
, u32
*stat
)
49 *stat
= ctx
->ops
->status_read(ctx
);
51 if (test_bit(SPU_SCHED_NOTIFY_ACTIVE
, &ctx
->sched_flags
))
54 stopped
= SPU_STATUS_INVALID_INSTR
| SPU_STATUS_SINGLE_STEP
|
55 SPU_STATUS_STOPPED_BY_HALT
| SPU_STATUS_STOPPED_BY_STOP
;
56 if (!(*stat
& SPU_STATUS_RUNNING
) && (*stat
& stopped
))
59 dsisr
= ctx
->csa
.dsisr
;
60 if (dsisr
& (MFC_DSISR_PTE_NOT_FOUND
| MFC_DSISR_ACCESS_DENIED
))
63 if (ctx
->csa
.class_0_pending
)
69 static int spu_setup_isolated(struct spu_context
*ctx
)
72 u64 __iomem
*mfc_cntl
;
75 unsigned long timeout
;
76 const u32 status_loading
= SPU_STATUS_RUNNING
77 | SPU_STATUS_ISOLATED_STATE
| SPU_STATUS_ISOLATED_LOAD_STATUS
;
84 * We need to exclude userspace access to the context.
86 * To protect against memory access we invalidate all ptes
87 * and make sure the pagefault handlers block on the mutex.
89 spu_unmap_mappings(ctx
);
91 mfc_cntl
= &ctx
->spu
->priv2
->mfc_control_RW
;
93 /* purge the MFC DMA queue to ensure no spurious accesses before we
94 * enter kernel mode */
95 timeout
= jiffies
+ HZ
;
96 out_be64(mfc_cntl
, MFC_CNTL_PURGE_DMA_REQUEST
);
97 while ((in_be64(mfc_cntl
) & MFC_CNTL_PURGE_DMA_STATUS_MASK
)
98 != MFC_CNTL_PURGE_DMA_COMPLETE
) {
99 if (time_after(jiffies
, timeout
)) {
100 printk(KERN_ERR
"%s: timeout flushing MFC DMA queue\n",
108 /* put the SPE in kernel mode to allow access to the loader */
109 sr1
= spu_mfc_sr1_get(ctx
->spu
);
110 sr1
&= ~MFC_STATE1_PROBLEM_STATE_MASK
;
111 spu_mfc_sr1_set(ctx
->spu
, sr1
);
113 /* start the loader */
114 ctx
->ops
->signal1_write(ctx
, (unsigned long)isolated_loader
>> 32);
115 ctx
->ops
->signal2_write(ctx
,
116 (unsigned long)isolated_loader
& 0xffffffff);
118 ctx
->ops
->runcntl_write(ctx
,
119 SPU_RUNCNTL_RUNNABLE
| SPU_RUNCNTL_ISOLATE
);
122 timeout
= jiffies
+ HZ
;
123 while (((status
= ctx
->ops
->status_read(ctx
)) & status_loading
) ==
125 if (time_after(jiffies
, timeout
)) {
126 printk(KERN_ERR
"%s: timeout waiting for loader\n",
134 if (!(status
& SPU_STATUS_RUNNING
)) {
135 /* If isolated LOAD has failed: run SPU, we will get a stop-and
137 pr_debug("%s: isolated LOAD failed\n", __FUNCTION__
);
138 ctx
->ops
->runcntl_write(ctx
, SPU_RUNCNTL_RUNNABLE
);
143 if (!(status
& SPU_STATUS_ISOLATED_STATE
)) {
144 /* This isn't allowed by the CBEA, but check anyway */
145 pr_debug("%s: SPU fell out of isolated mode?\n", __FUNCTION__
);
146 ctx
->ops
->runcntl_write(ctx
, SPU_RUNCNTL_STOP
);
152 /* Finished accessing the loader. Drop kernel mode */
153 sr1
|= MFC_STATE1_PROBLEM_STATE_MASK
;
154 spu_mfc_sr1_set(ctx
->spu
, sr1
);
160 static int spu_run_init(struct spu_context
*ctx
, u32
*npc
)
162 unsigned long runcntl
= SPU_RUNCNTL_RUNNABLE
;
165 spuctx_switch_state(ctx
, SPU_UTIL_SYSTEM
);
168 * NOSCHED is synchronous scheduling with respect to the caller.
169 * The caller waits for the context to be loaded.
171 if (ctx
->flags
& SPU_CREATE_NOSCHED
) {
172 if (ctx
->state
== SPU_STATE_SAVED
) {
173 ret
= spu_activate(ctx
, 0);
180 * Apply special setup as required.
182 if (ctx
->flags
& SPU_CREATE_ISOLATE
) {
183 if (!(ctx
->ops
->status_read(ctx
) & SPU_STATUS_ISOLATED_STATE
)) {
184 ret
= spu_setup_isolated(ctx
);
190 * If userspace has set the runcntrl register (eg, to
191 * issue an isolated exit), we need to re-set it here
193 runcntl
= ctx
->ops
->runcntl_read(ctx
) &
194 (SPU_RUNCNTL_RUNNABLE
| SPU_RUNCNTL_ISOLATE
);
196 runcntl
= SPU_RUNCNTL_RUNNABLE
;
199 if (ctx
->flags
& SPU_CREATE_NOSCHED
) {
200 spuctx_switch_state(ctx
, SPU_UTIL_USER
);
201 ctx
->ops
->runcntl_write(ctx
, runcntl
);
203 unsigned long privcntl
;
205 if (test_thread_flag(TIF_SINGLESTEP
))
206 privcntl
= SPU_PRIVCNTL_MODE_SINGLE_STEP
;
208 privcntl
= SPU_PRIVCNTL_MODE_NORMAL
;
210 ctx
->ops
->npc_write(ctx
, *npc
);
211 ctx
->ops
->privcntl_write(ctx
, privcntl
);
212 ctx
->ops
->runcntl_write(ctx
, runcntl
);
214 if (ctx
->state
== SPU_STATE_SAVED
) {
215 ret
= spu_activate(ctx
, 0);
219 spuctx_switch_state(ctx
, SPU_UTIL_USER
);
223 set_bit(SPU_SCHED_SPU_RUN
, &ctx
->sched_flags
);
227 static int spu_run_fini(struct spu_context
*ctx
, u32
*npc
,
232 spu_del_from_rq(ctx
);
234 *status
= ctx
->ops
->status_read(ctx
);
235 *npc
= ctx
->ops
->npc_read(ctx
);
237 spuctx_switch_state(ctx
, SPU_UTIL_IDLE_LOADED
);
238 clear_bit(SPU_SCHED_SPU_RUN
, &ctx
->sched_flags
);
241 if (signal_pending(current
))
248 * SPU syscall restarting is tricky because we violate the basic
249 * assumption that the signal handler is running on the interrupted
250 * thread. Here instead, the handler runs on PowerPC user space code,
251 * while the syscall was called from the SPU.
252 * This means we can only do a very rough approximation of POSIX
255 static int spu_handle_restartsys(struct spu_context
*ctx
, long *spu_ret
,
262 case -ERESTARTNOINTR
:
264 * Enter the regular syscall restarting for
265 * sys_spu_run, then restart the SPU syscall
271 case -ERESTARTNOHAND
:
272 case -ERESTART_RESTARTBLOCK
:
274 * Restart block is too hard for now, just return -EINTR
276 * ERESTARTNOHAND comes from sys_pause, we also return
278 * Assume that we need to be restarted ourselves though.
284 printk(KERN_WARNING
"%s: unexpected return code %ld\n",
285 __FUNCTION__
, *spu_ret
);
291 static int spu_process_callback(struct spu_context
*ctx
)
293 struct spu_syscall_block s
;
299 /* get syscall block from local store */
300 npc
= ctx
->ops
->npc_read(ctx
) & ~3;
301 ls
= (void __iomem
*)ctx
->ops
->get_ls(ctx
);
302 ls_pointer
= in_be32(ls
+ npc
);
303 if (ls_pointer
> (LS_SIZE
- sizeof(s
)))
305 memcpy_fromio(&s
, ls
+ ls_pointer
, sizeof(s
));
307 /* do actual syscall without pinning the spu */
312 if (s
.nr_ret
< __NR_syscalls
) {
314 /* do actual system call from here */
315 spu_ret
= spu_sys_callback(&s
);
316 if (spu_ret
<= -ERESTARTSYS
) {
317 ret
= spu_handle_restartsys(ctx
, &spu_ret
, &npc
);
319 ret2
= spu_acquire(ctx
);
320 if (ret
== -ERESTARTSYS
)
326 /* write result, jump over indirect pointer */
327 memcpy_toio(ls
+ ls_pointer
, &spu_ret
, sizeof(spu_ret
));
328 ctx
->ops
->npc_write(ctx
, npc
);
329 ctx
->ops
->runcntl_write(ctx
, SPU_RUNCNTL_RUNNABLE
);
333 long spufs_run_spu(struct spu_context
*ctx
, u32
*npc
, u32
*event
)
339 if (mutex_lock_interruptible(&ctx
->run_mutex
))
343 ctx
->event_return
= 0;
345 ret
= spu_acquire(ctx
);
349 spu_update_sched_info(ctx
);
351 ret
= spu_run_init(ctx
, npc
);
358 ret
= spufs_wait(ctx
->stop_wq
, spu_stopped(ctx
, &status
));
361 * This is nasty: we need the state_mutex for all the
362 * bookkeeping even if the syscall was interrupted by
365 mutex_lock(&ctx
->state_mutex
);
369 if (unlikely(test_and_clear_bit(SPU_SCHED_NOTIFY_ACTIVE
,
370 &ctx
->sched_flags
))) {
371 if (!(status
& SPU_STATUS_STOPPED_BY_STOP
)) {
372 spu_switch_notify(spu
, ctx
);
377 spuctx_switch_state(ctx
, SPU_UTIL_SYSTEM
);
379 if ((status
& SPU_STATUS_STOPPED_BY_STOP
) &&
380 (status
>> SPU_STOP_STATUS_SHIFT
== 0x2104)) {
381 ret
= spu_process_callback(ctx
);
384 status
&= ~SPU_STATUS_STOPPED_BY_STOP
;
386 ret
= spufs_handle_class1(ctx
);
390 ret
= spufs_handle_class0(ctx
);
394 if (signal_pending(current
))
396 } while (!ret
&& !(status
& (SPU_STATUS_STOPPED_BY_STOP
|
397 SPU_STATUS_STOPPED_BY_HALT
|
398 SPU_STATUS_SINGLE_STEP
)));
400 spu_disable_spu(ctx
);
401 ret
= spu_run_fini(ctx
, npc
, &status
);
404 if ((status
& SPU_STATUS_STOPPED_BY_STOP
) &&
405 (((status
>> SPU_STOP_STATUS_SHIFT
) & 0x3f00) == 0x2100))
406 ctx
->stats
.libassist
++;
409 ((ret
== -ERESTARTSYS
) &&
410 ((status
& SPU_STATUS_STOPPED_BY_HALT
) ||
411 (status
& SPU_STATUS_SINGLE_STEP
) ||
412 ((status
& SPU_STATUS_STOPPED_BY_STOP
) &&
413 (status
>> SPU_STOP_STATUS_SHIFT
!= 0x2104)))))
416 /* Note: we don't need to force_sig SIGTRAP on single-step
417 * since we have TIF_SINGLESTEP set, thus the kernel will do
418 * it upon return from the syscall anyawy
420 if (unlikely(status
& SPU_STATUS_SINGLE_STEP
))
423 else if (unlikely((status
& SPU_STATUS_STOPPED_BY_STOP
)
424 && (status
>> SPU_STOP_STATUS_SHIFT
) == 0x3fff)) {
425 force_sig(SIGTRAP
, current
);
430 *event
= ctx
->event_return
;
432 mutex_unlock(&ctx
->run_mutex
);