1 /* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2 * arch/sparc64/mm/init.c
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
29 #include <asm/system.h>
31 #include <asm/pgalloc.h>
32 #include <asm/pgtable.h>
33 #include <asm/oplib.h>
34 #include <asm/iommu.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
40 #include <asm/starfire.h>
42 #include <asm/spitfire.h>
43 #include <asm/sections.h>
45 #include <asm/hypervisor.h>
47 #include <asm/sstate.h>
48 #include <asm/mdesc.h>
50 #define MAX_PHYS_ADDRESS (1UL << 42UL)
51 #define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
52 #define KPTE_BITMAP_BYTES \
53 ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
55 unsigned long kern_linear_pte_xor
[2] __read_mostly
;
57 /* A bitmap, one bit for every 256MB of physical memory. If the bit
58 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
61 unsigned long kpte_linear_bitmap
[KPTE_BITMAP_BYTES
/ sizeof(unsigned long)];
63 #ifndef CONFIG_DEBUG_PAGEALLOC
64 /* A special kernel TSB for 4MB and 256MB linear mappings.
65 * Space is allocated for this right after the trap table
66 * in arch/sparc64/kernel/head.S
68 extern struct tsb swapper_4m_tsb
[KERNEL_TSB4M_NENTRIES
];
73 static struct linux_prom64_registers pavail
[MAX_BANKS
] __initdata
;
74 static struct linux_prom64_registers pavail_rescan
[MAX_BANKS
] __initdata
;
75 static int pavail_ents __initdata
;
76 static int pavail_rescan_ents __initdata
;
78 static int cmp_p64(const void *a
, const void *b
)
80 const struct linux_prom64_registers
*x
= a
, *y
= b
;
82 if (x
->phys_addr
> y
->phys_addr
)
84 if (x
->phys_addr
< y
->phys_addr
)
89 static void __init
read_obp_memory(const char *property
,
90 struct linux_prom64_registers
*regs
,
93 int node
= prom_finddevice("/memory");
94 int prop_size
= prom_getproplen(node
, property
);
97 ents
= prop_size
/ sizeof(struct linux_prom64_registers
);
98 if (ents
> MAX_BANKS
) {
99 prom_printf("The machine has more %s property entries than "
100 "this kernel can support (%d).\n",
101 property
, MAX_BANKS
);
105 ret
= prom_getproperty(node
, property
, (char *) regs
, prop_size
);
107 prom_printf("Couldn't get %s property from /memory.\n");
111 /* Sanitize what we got from the firmware, by page aligning
114 for (i
= 0; i
< ents
; i
++) {
115 unsigned long base
, size
;
117 base
= regs
[i
].phys_addr
;
118 size
= regs
[i
].reg_size
;
121 if (base
& ~PAGE_MASK
) {
122 unsigned long new_base
= PAGE_ALIGN(base
);
124 size
-= new_base
- base
;
125 if ((long) size
< 0L)
130 /* If it is empty, simply get rid of it.
131 * This simplifies the logic of the other
132 * functions that process these arrays.
134 memmove(®s
[i
], ®s
[i
+ 1],
135 (ents
- i
- 1) * sizeof(regs
[0]));
140 regs
[i
].phys_addr
= base
;
141 regs
[i
].reg_size
= size
;
146 sort(regs
, ents
, sizeof(struct linux_prom64_registers
),
150 unsigned long *sparc64_valid_addr_bitmap __read_mostly
;
152 /* Kernel physical address base and size in bytes. */
153 unsigned long kern_base __read_mostly
;
154 unsigned long kern_size __read_mostly
;
156 /* Initial ramdisk setup */
157 extern unsigned long sparc_ramdisk_image64
;
158 extern unsigned int sparc_ramdisk_image
;
159 extern unsigned int sparc_ramdisk_size
;
161 struct page
*mem_map_zero __read_mostly
;
163 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly
;
165 unsigned long sparc64_kern_pri_context __read_mostly
;
166 unsigned long sparc64_kern_pri_nuc_bits __read_mostly
;
167 unsigned long sparc64_kern_sec_context __read_mostly
;
171 #ifdef CONFIG_DEBUG_DCFLUSH
172 atomic_t dcpage_flushes
= ATOMIC_INIT(0);
174 atomic_t dcpage_flushes_xcall
= ATOMIC_INIT(0);
178 inline void flush_dcache_page_impl(struct page
*page
)
180 BUG_ON(tlb_type
== hypervisor
);
181 #ifdef CONFIG_DEBUG_DCFLUSH
182 atomic_inc(&dcpage_flushes
);
185 #ifdef DCACHE_ALIASING_POSSIBLE
186 __flush_dcache_page(page_address(page
),
187 ((tlb_type
== spitfire
) &&
188 page_mapping(page
) != NULL
));
190 if (page_mapping(page
) != NULL
&&
191 tlb_type
== spitfire
)
192 __flush_icache_page(__pa(page_address(page
)));
196 #define PG_dcache_dirty PG_arch_1
197 #define PG_dcache_cpu_shift 32UL
198 #define PG_dcache_cpu_mask \
199 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
201 #define dcache_dirty_cpu(page) \
202 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
204 static inline void set_dcache_dirty(struct page
*page
, int this_cpu
)
206 unsigned long mask
= this_cpu
;
207 unsigned long non_cpu_bits
;
209 non_cpu_bits
= ~(PG_dcache_cpu_mask
<< PG_dcache_cpu_shift
);
210 mask
= (mask
<< PG_dcache_cpu_shift
) | (1UL << PG_dcache_dirty
);
212 __asm__
__volatile__("1:\n\t"
214 "and %%g7, %1, %%g1\n\t"
215 "or %%g1, %0, %%g1\n\t"
216 "casx [%2], %%g7, %%g1\n\t"
218 "membar #StoreLoad | #StoreStore\n\t"
219 "bne,pn %%xcc, 1b\n\t"
222 : "r" (mask
), "r" (non_cpu_bits
), "r" (&page
->flags
)
226 static inline void clear_dcache_dirty_cpu(struct page
*page
, unsigned long cpu
)
228 unsigned long mask
= (1UL << PG_dcache_dirty
);
230 __asm__
__volatile__("! test_and_clear_dcache_dirty\n"
233 "srlx %%g7, %4, %%g1\n\t"
234 "and %%g1, %3, %%g1\n\t"
236 "bne,pn %%icc, 2f\n\t"
237 " andn %%g7, %1, %%g1\n\t"
238 "casx [%2], %%g7, %%g1\n\t"
240 "membar #StoreLoad | #StoreStore\n\t"
241 "bne,pn %%xcc, 1b\n\t"
245 : "r" (cpu
), "r" (mask
), "r" (&page
->flags
),
246 "i" (PG_dcache_cpu_mask
),
247 "i" (PG_dcache_cpu_shift
)
251 static inline void tsb_insert(struct tsb
*ent
, unsigned long tag
, unsigned long pte
)
253 unsigned long tsb_addr
= (unsigned long) ent
;
255 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
256 tsb_addr
= __pa(tsb_addr
);
258 __tsb_insert(tsb_addr
, tag
, pte
);
261 unsigned long _PAGE_ALL_SZ_BITS __read_mostly
;
262 unsigned long _PAGE_SZBITS __read_mostly
;
264 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long address
, pte_t pte
)
266 struct mm_struct
*mm
;
268 unsigned long tag
, flags
;
269 unsigned long tsb_index
, tsb_hash_shift
;
271 if (tlb_type
!= hypervisor
) {
272 unsigned long pfn
= pte_pfn(pte
);
273 unsigned long pg_flags
;
276 if (pfn_valid(pfn
) &&
277 (page
= pfn_to_page(pfn
), page_mapping(page
)) &&
278 ((pg_flags
= page
->flags
) & (1UL << PG_dcache_dirty
))) {
279 int cpu
= ((pg_flags
>> PG_dcache_cpu_shift
) &
281 int this_cpu
= get_cpu();
283 /* This is just to optimize away some function calls
287 flush_dcache_page_impl(page
);
289 smp_flush_dcache_page_impl(page
, cpu
);
291 clear_dcache_dirty_cpu(page
, cpu
);
299 tsb_index
= MM_TSB_BASE
;
300 tsb_hash_shift
= PAGE_SHIFT
;
302 spin_lock_irqsave(&mm
->context
.lock
, flags
);
304 #ifdef CONFIG_HUGETLB_PAGE
305 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
!= NULL
) {
306 if ((tlb_type
== hypervisor
&&
307 (pte_val(pte
) & _PAGE_SZALL_4V
) == _PAGE_SZHUGE_4V
) ||
308 (tlb_type
!= hypervisor
&&
309 (pte_val(pte
) & _PAGE_SZALL_4U
) == _PAGE_SZHUGE_4U
)) {
310 tsb_index
= MM_TSB_HUGE
;
311 tsb_hash_shift
= HPAGE_SHIFT
;
316 tsb
= mm
->context
.tsb_block
[tsb_index
].tsb
;
317 tsb
+= ((address
>> tsb_hash_shift
) &
318 (mm
->context
.tsb_block
[tsb_index
].tsb_nentries
- 1UL));
319 tag
= (address
>> 22UL);
320 tsb_insert(tsb
, tag
, pte_val(pte
));
322 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
325 void flush_dcache_page(struct page
*page
)
327 struct address_space
*mapping
;
330 if (tlb_type
== hypervisor
)
333 /* Do not bother with the expensive D-cache flush if it
334 * is merely the zero page. The 'bigcore' testcase in GDB
335 * causes this case to run millions of times.
337 if (page
== ZERO_PAGE(0))
340 this_cpu
= get_cpu();
342 mapping
= page_mapping(page
);
343 if (mapping
&& !mapping_mapped(mapping
)) {
344 int dirty
= test_bit(PG_dcache_dirty
, &page
->flags
);
346 int dirty_cpu
= dcache_dirty_cpu(page
);
348 if (dirty_cpu
== this_cpu
)
350 smp_flush_dcache_page_impl(page
, dirty_cpu
);
352 set_dcache_dirty(page
, this_cpu
);
354 /* We could delay the flush for the !page_mapping
355 * case too. But that case is for exec env/arg
356 * pages and those are %99 certainly going to get
357 * faulted into the tlb (and thus flushed) anyways.
359 flush_dcache_page_impl(page
);
366 void __kprobes
flush_icache_range(unsigned long start
, unsigned long end
)
368 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
369 if (tlb_type
== spitfire
) {
372 /* This code only runs on Spitfire cpus so this is
373 * why we can assume _PAGE_PADDR_4U.
375 for (kaddr
= start
; kaddr
< end
; kaddr
+= PAGE_SIZE
) {
376 unsigned long paddr
, mask
= _PAGE_PADDR_4U
;
378 if (kaddr
>= PAGE_OFFSET
)
379 paddr
= kaddr
& mask
;
381 pgd_t
*pgdp
= pgd_offset_k(kaddr
);
382 pud_t
*pudp
= pud_offset(pgdp
, kaddr
);
383 pmd_t
*pmdp
= pmd_offset(pudp
, kaddr
);
384 pte_t
*ptep
= pte_offset_kernel(pmdp
, kaddr
);
386 paddr
= pte_val(*ptep
) & mask
;
388 __flush_icache_page(paddr
);
395 unsigned long total
= 0, reserved
= 0;
396 unsigned long shared
= 0, cached
= 0;
399 printk(KERN_INFO
"Mem-info:\n");
401 printk(KERN_INFO
"Free swap: %6ldkB\n",
402 nr_swap_pages
<< (PAGE_SHIFT
-10));
403 for_each_online_pgdat(pgdat
) {
404 unsigned long i
, flags
;
406 pgdat_resize_lock(pgdat
, &flags
);
407 for (i
= 0; i
< pgdat
->node_spanned_pages
; i
++) {
408 struct page
*page
= pgdat_page_nr(pgdat
, i
);
410 if (PageReserved(page
))
412 else if (PageSwapCache(page
))
414 else if (page_count(page
))
415 shared
+= page_count(page
) - 1;
417 pgdat_resize_unlock(pgdat
, &flags
);
420 printk(KERN_INFO
"%lu pages of RAM\n", total
);
421 printk(KERN_INFO
"%lu reserved pages\n", reserved
);
422 printk(KERN_INFO
"%lu pages shared\n", shared
);
423 printk(KERN_INFO
"%lu pages swap cached\n", cached
);
425 printk(KERN_INFO
"%lu pages dirty\n",
426 global_page_state(NR_FILE_DIRTY
));
427 printk(KERN_INFO
"%lu pages writeback\n",
428 global_page_state(NR_WRITEBACK
));
429 printk(KERN_INFO
"%lu pages mapped\n",
430 global_page_state(NR_FILE_MAPPED
));
431 printk(KERN_INFO
"%lu pages slab\n",
432 global_page_state(NR_SLAB_RECLAIMABLE
) +
433 global_page_state(NR_SLAB_UNRECLAIMABLE
));
434 printk(KERN_INFO
"%lu pages pagetables\n",
435 global_page_state(NR_PAGETABLE
));
438 void mmu_info(struct seq_file
*m
)
440 if (tlb_type
== cheetah
)
441 seq_printf(m
, "MMU Type\t: Cheetah\n");
442 else if (tlb_type
== cheetah_plus
)
443 seq_printf(m
, "MMU Type\t: Cheetah+\n");
444 else if (tlb_type
== spitfire
)
445 seq_printf(m
, "MMU Type\t: Spitfire\n");
446 else if (tlb_type
== hypervisor
)
447 seq_printf(m
, "MMU Type\t: Hypervisor (sun4v)\n");
449 seq_printf(m
, "MMU Type\t: ???\n");
451 #ifdef CONFIG_DEBUG_DCFLUSH
452 seq_printf(m
, "DCPageFlushes\t: %d\n",
453 atomic_read(&dcpage_flushes
));
455 seq_printf(m
, "DCPageFlushesXC\t: %d\n",
456 atomic_read(&dcpage_flushes_xcall
));
457 #endif /* CONFIG_SMP */
458 #endif /* CONFIG_DEBUG_DCFLUSH */
461 struct linux_prom_translation
{
467 /* Exported for kernel TLB miss handling in ktlb.S */
468 struct linux_prom_translation prom_trans
[512] __read_mostly
;
469 unsigned int prom_trans_ents __read_mostly
;
471 /* Exported for SMP bootup purposes. */
472 unsigned long kern_locked_tte_data
;
474 /* The obp translations are saved based on 8k pagesize, since obp can
475 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
476 * HI_OBP_ADDRESS range are handled in ktlb.S.
478 static inline int in_obp_range(unsigned long vaddr
)
480 return (vaddr
>= LOW_OBP_ADDRESS
&&
481 vaddr
< HI_OBP_ADDRESS
);
484 static int cmp_ptrans(const void *a
, const void *b
)
486 const struct linux_prom_translation
*x
= a
, *y
= b
;
488 if (x
->virt
> y
->virt
)
490 if (x
->virt
< y
->virt
)
495 /* Read OBP translations property into 'prom_trans[]'. */
496 static void __init
read_obp_translations(void)
498 int n
, node
, ents
, first
, last
, i
;
500 node
= prom_finddevice("/virtual-memory");
501 n
= prom_getproplen(node
, "translations");
502 if (unlikely(n
== 0 || n
== -1)) {
503 prom_printf("prom_mappings: Couldn't get size.\n");
506 if (unlikely(n
> sizeof(prom_trans
))) {
507 prom_printf("prom_mappings: Size %Zd is too big.\n", n
);
511 if ((n
= prom_getproperty(node
, "translations",
512 (char *)&prom_trans
[0],
513 sizeof(prom_trans
))) == -1) {
514 prom_printf("prom_mappings: Couldn't get property.\n");
518 n
= n
/ sizeof(struct linux_prom_translation
);
522 sort(prom_trans
, ents
, sizeof(struct linux_prom_translation
),
525 /* Now kick out all the non-OBP entries. */
526 for (i
= 0; i
< ents
; i
++) {
527 if (in_obp_range(prom_trans
[i
].virt
))
531 for (; i
< ents
; i
++) {
532 if (!in_obp_range(prom_trans
[i
].virt
))
537 for (i
= 0; i
< (last
- first
); i
++) {
538 struct linux_prom_translation
*src
= &prom_trans
[i
+ first
];
539 struct linux_prom_translation
*dest
= &prom_trans
[i
];
543 for (; i
< ents
; i
++) {
544 struct linux_prom_translation
*dest
= &prom_trans
[i
];
545 dest
->virt
= dest
->size
= dest
->data
= 0x0UL
;
548 prom_trans_ents
= last
- first
;
550 if (tlb_type
== spitfire
) {
551 /* Clear diag TTE bits. */
552 for (i
= 0; i
< prom_trans_ents
; i
++)
553 prom_trans
[i
].data
&= ~0x0003fe0000000000UL
;
557 static void __init
hypervisor_tlb_lock(unsigned long vaddr
,
561 unsigned long ret
= sun4v_mmu_map_perm_addr(vaddr
, 0, pte
, mmu
);
564 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
565 "errors with %lx\n", vaddr
, 0, pte
, mmu
, ret
);
570 static unsigned long kern_large_tte(unsigned long paddr
);
572 static void __init
remap_kernel(void)
574 unsigned long phys_page
, tte_vaddr
, tte_data
;
575 int tlb_ent
= sparc64_highest_locked_tlbent();
577 tte_vaddr
= (unsigned long) KERNBASE
;
578 phys_page
= (prom_boot_mapping_phys_low
>> 22UL) << 22UL;
579 tte_data
= kern_large_tte(phys_page
);
581 kern_locked_tte_data
= tte_data
;
583 /* Now lock us into the TLBs via Hypervisor or OBP. */
584 if (tlb_type
== hypervisor
) {
585 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_DMMU
);
586 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_IMMU
);
588 tte_vaddr
+= 0x400000;
589 tte_data
+= 0x400000;
590 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_DMMU
);
591 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_IMMU
);
594 prom_dtlb_load(tlb_ent
, tte_data
, tte_vaddr
);
595 prom_itlb_load(tlb_ent
, tte_data
, tte_vaddr
);
598 prom_dtlb_load(tlb_ent
,
600 tte_vaddr
+ 0x400000);
601 prom_itlb_load(tlb_ent
,
603 tte_vaddr
+ 0x400000);
605 sparc64_highest_unlocked_tlb_ent
= tlb_ent
- 1;
607 if (tlb_type
== cheetah_plus
) {
608 sparc64_kern_pri_context
= (CTX_CHEETAH_PLUS_CTX0
|
609 CTX_CHEETAH_PLUS_NUC
);
610 sparc64_kern_pri_nuc_bits
= CTX_CHEETAH_PLUS_NUC
;
611 sparc64_kern_sec_context
= CTX_CHEETAH_PLUS_CTX0
;
616 static void __init
inherit_prom_mappings(void)
618 read_obp_translations();
620 /* Now fixup OBP's idea about where we really are mapped. */
621 printk("Remapping the kernel... ");
626 void prom_world(int enter
)
629 set_fs((mm_segment_t
) { get_thread_current_ds() });
631 __asm__
__volatile__("flushw");
634 void __flush_dcache_range(unsigned long start
, unsigned long end
)
638 if (tlb_type
== spitfire
) {
641 for (va
= start
; va
< end
; va
+= 32) {
642 spitfire_put_dcache_tag(va
& 0x3fe0, 0x0);
646 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
649 for (va
= start
; va
< end
; va
+= 32)
650 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
654 "i" (ASI_DCACHE_INVALIDATE
));
658 /* get_new_mmu_context() uses "cache + 1". */
659 DEFINE_SPINLOCK(ctx_alloc_lock
);
660 unsigned long tlb_context_cache
= CTX_FIRST_VERSION
- 1;
661 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
662 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
663 DECLARE_BITMAP(mmu_context_bmap
, MAX_CTX_NR
);
665 /* Caller does TLB context flushing on local CPU if necessary.
666 * The caller also ensures that CTX_VALID(mm->context) is false.
668 * We must be careful about boundary cases so that we never
669 * let the user have CTX 0 (nucleus) or we ever use a CTX
670 * version of zero (and thus NO_CONTEXT would not be caught
671 * by version mis-match tests in mmu_context.h).
673 * Always invoked with interrupts disabled.
675 void get_new_mmu_context(struct mm_struct
*mm
)
677 unsigned long ctx
, new_ctx
;
678 unsigned long orig_pgsz_bits
;
682 spin_lock_irqsave(&ctx_alloc_lock
, flags
);
683 orig_pgsz_bits
= (mm
->context
.sparc64_ctx_val
& CTX_PGSZ_MASK
);
684 ctx
= (tlb_context_cache
+ 1) & CTX_NR_MASK
;
685 new_ctx
= find_next_zero_bit(mmu_context_bmap
, 1 << CTX_NR_BITS
, ctx
);
687 if (new_ctx
>= (1 << CTX_NR_BITS
)) {
688 new_ctx
= find_next_zero_bit(mmu_context_bmap
, ctx
, 1);
689 if (new_ctx
>= ctx
) {
691 new_ctx
= (tlb_context_cache
& CTX_VERSION_MASK
) +
694 new_ctx
= CTX_FIRST_VERSION
;
696 /* Don't call memset, for 16 entries that's just
699 mmu_context_bmap
[0] = 3;
700 mmu_context_bmap
[1] = 0;
701 mmu_context_bmap
[2] = 0;
702 mmu_context_bmap
[3] = 0;
703 for (i
= 4; i
< CTX_BMAP_SLOTS
; i
+= 4) {
704 mmu_context_bmap
[i
+ 0] = 0;
705 mmu_context_bmap
[i
+ 1] = 0;
706 mmu_context_bmap
[i
+ 2] = 0;
707 mmu_context_bmap
[i
+ 3] = 0;
713 mmu_context_bmap
[new_ctx
>>6] |= (1UL << (new_ctx
& 63));
714 new_ctx
|= (tlb_context_cache
& CTX_VERSION_MASK
);
716 tlb_context_cache
= new_ctx
;
717 mm
->context
.sparc64_ctx_val
= new_ctx
| orig_pgsz_bits
;
718 spin_unlock_irqrestore(&ctx_alloc_lock
, flags
);
720 if (unlikely(new_version
))
721 smp_new_mmu_context_version();
724 /* Find a free area for the bootmem map, avoiding the kernel image
725 * and the initial ramdisk.
727 static unsigned long __init
choose_bootmap_pfn(unsigned long start_pfn
,
728 unsigned long end_pfn
)
730 unsigned long avoid_start
, avoid_end
, bootmap_size
;
733 bootmap_size
= bootmem_bootmap_pages(end_pfn
- start_pfn
);
734 bootmap_size
<<= PAGE_SHIFT
;
736 avoid_start
= avoid_end
= 0;
737 #ifdef CONFIG_BLK_DEV_INITRD
738 avoid_start
= initrd_start
;
739 avoid_end
= PAGE_ALIGN(initrd_end
);
742 for (i
= 0; i
< pavail_ents
; i
++) {
743 unsigned long start
, end
;
745 start
= pavail
[i
].phys_addr
;
746 end
= start
+ pavail
[i
].reg_size
;
748 while (start
< end
) {
749 if (start
>= kern_base
&&
750 start
< PAGE_ALIGN(kern_base
+ kern_size
)) {
751 start
= PAGE_ALIGN(kern_base
+ kern_size
);
754 if (start
>= avoid_start
&& start
< avoid_end
) {
759 if ((end
- start
) < bootmap_size
)
762 if (start
< kern_base
&&
763 (start
+ bootmap_size
) > kern_base
) {
764 start
= PAGE_ALIGN(kern_base
+ kern_size
);
768 if (start
< avoid_start
&&
769 (start
+ bootmap_size
) > avoid_start
) {
774 /* OK, it doesn't overlap anything, use it. */
775 return start
>> PAGE_SHIFT
;
779 prom_printf("Cannot find free area for bootmap, aborting.\n");
783 static void __init
trim_pavail(unsigned long *cur_size_p
,
784 unsigned long *end_of_phys_p
)
786 unsigned long to_trim
= *cur_size_p
- cmdline_memory_size
;
787 unsigned long avoid_start
, avoid_end
;
790 to_trim
= PAGE_ALIGN(to_trim
);
792 avoid_start
= avoid_end
= 0;
793 #ifdef CONFIG_BLK_DEV_INITRD
794 avoid_start
= initrd_start
;
795 avoid_end
= PAGE_ALIGN(initrd_end
);
798 /* Trim some pavail[] entries in order to satisfy the
799 * requested "mem=xxx" kernel command line specification.
801 * We must not trim off the kernel image area nor the
802 * initial ramdisk range (if any). Also, we must not trim
803 * any pavail[] entry down to zero in order to preserve
804 * the invariant that all pavail[] entries have a non-zero
805 * size which is assumed by all of the code in here.
807 for (i
= 0; i
< pavail_ents
; i
++) {
808 unsigned long start
, end
, kern_end
;
809 unsigned long trim_low
, trim_high
, n
;
811 kern_end
= PAGE_ALIGN(kern_base
+ kern_size
);
813 trim_low
= start
= pavail
[i
].phys_addr
;
814 trim_high
= end
= start
+ pavail
[i
].reg_size
;
816 if (kern_base
>= start
&&
818 trim_low
= kern_base
;
822 if (kern_end
>= start
&&
824 trim_high
= kern_end
;
827 avoid_start
>= start
&&
829 if (trim_low
> avoid_start
)
830 trim_low
= avoid_start
;
831 if (avoid_end
>= end
)
835 avoid_end
>= start
&&
837 if (trim_high
< avoid_end
)
838 trim_high
= avoid_end
;
841 if (trim_high
<= trim_low
)
844 if (trim_low
== start
&& trim_high
== end
) {
845 /* Whole chunk is available for trimming.
846 * Trim all except one page, in order to keep
849 n
= (end
- start
) - PAGE_SIZE
;
854 pavail
[i
].phys_addr
+= n
;
855 pavail
[i
].reg_size
-= n
;
859 n
= (trim_low
- start
);
864 pavail
[i
].phys_addr
+= n
;
865 pavail
[i
].reg_size
-= n
;
873 pavail
[i
].reg_size
-= n
;
885 for (i
= 0; i
< pavail_ents
; i
++) {
886 *end_of_phys_p
= pavail
[i
].phys_addr
+
888 *cur_size_p
+= pavail
[i
].reg_size
;
892 /* About pages_avail, this is the value we will use to calculate
893 * the zholes_size[] argument given to free_area_init_node(). The
894 * page allocator uses this to calculate nr_kernel_pages,
895 * nr_all_pages and zone->present_pages. On NUMA it is used
896 * to calculate zone->min_unmapped_pages and zone->min_slab_pages.
898 * So this number should really be set to what the page allocator
899 * actually ends up with. This means:
900 * 1) It should include bootmem map pages, we'll release those.
901 * 2) It should not include the kernel image, except for the
902 * __init sections which we will also release.
903 * 3) It should include the initrd image, since we'll release
906 static unsigned long __init
bootmem_init(unsigned long *pages_avail
,
907 unsigned long phys_base
)
909 unsigned long bootmap_size
, end_pfn
;
910 unsigned long end_of_phys_memory
= 0UL;
911 unsigned long bootmap_pfn
, bytes_avail
, size
;
915 for (i
= 0; i
< pavail_ents
; i
++) {
916 end_of_phys_memory
= pavail
[i
].phys_addr
+
918 bytes_avail
+= pavail
[i
].reg_size
;
921 /* Determine the location of the initial ramdisk before trying
922 * to honor the "mem=xxx" command line argument. We must know
923 * where the kernel image and the ramdisk image are so that we
924 * do not trim those two areas from the physical memory map.
927 #ifdef CONFIG_BLK_DEV_INITRD
928 /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
929 if (sparc_ramdisk_image
|| sparc_ramdisk_image64
) {
930 unsigned long ramdisk_image
= sparc_ramdisk_image
?
931 sparc_ramdisk_image
: sparc_ramdisk_image64
;
932 ramdisk_image
-= KERNBASE
;
933 initrd_start
= ramdisk_image
+ phys_base
;
934 initrd_end
= initrd_start
+ sparc_ramdisk_size
;
935 if (initrd_end
> end_of_phys_memory
) {
936 printk(KERN_CRIT
"initrd extends beyond end of memory "
937 "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
938 initrd_end
, end_of_phys_memory
);
945 if (cmdline_memory_size
&&
946 bytes_avail
> cmdline_memory_size
)
947 trim_pavail(&bytes_avail
,
948 &end_of_phys_memory
);
950 *pages_avail
= bytes_avail
>> PAGE_SHIFT
;
952 end_pfn
= end_of_phys_memory
>> PAGE_SHIFT
;
954 /* Initialize the boot-time allocator. */
955 max_pfn
= max_low_pfn
= end_pfn
;
956 min_low_pfn
= (phys_base
>> PAGE_SHIFT
);
958 bootmap_pfn
= choose_bootmap_pfn(min_low_pfn
, end_pfn
);
960 bootmap_size
= init_bootmem_node(NODE_DATA(0), bootmap_pfn
,
961 min_low_pfn
, end_pfn
);
963 /* Now register the available physical memory with the
966 for (i
= 0; i
< pavail_ents
; i
++)
967 free_bootmem(pavail
[i
].phys_addr
, pavail
[i
].reg_size
);
969 #ifdef CONFIG_BLK_DEV_INITRD
971 size
= initrd_end
- initrd_start
;
973 /* Reserve the initrd image area. */
974 reserve_bootmem(initrd_start
, size
, BOOTMEM_DEFAULT
);
976 initrd_start
+= PAGE_OFFSET
;
977 initrd_end
+= PAGE_OFFSET
;
980 /* Reserve the kernel text/data/bss. */
981 reserve_bootmem(kern_base
, kern_size
, BOOTMEM_DEFAULT
);
982 *pages_avail
-= PAGE_ALIGN(kern_size
) >> PAGE_SHIFT
;
984 /* Add back in the initmem pages. */
985 size
= ((unsigned long)(__init_end
) & PAGE_MASK
) -
986 PAGE_ALIGN((unsigned long)__init_begin
);
987 *pages_avail
+= size
>> PAGE_SHIFT
;
989 /* Reserve the bootmem map. We do not account for it
990 * in pages_avail because we will release that memory
991 * in free_all_bootmem.
994 reserve_bootmem((bootmap_pfn
<< PAGE_SHIFT
), size
, BOOTMEM_DEFAULT
);
996 for (i
= 0; i
< pavail_ents
; i
++) {
997 unsigned long start_pfn
, end_pfn
;
999 start_pfn
= pavail
[i
].phys_addr
>> PAGE_SHIFT
;
1000 end_pfn
= (start_pfn
+ (pavail
[i
].reg_size
>> PAGE_SHIFT
));
1001 memory_present(0, start_pfn
, end_pfn
);
1009 static struct linux_prom64_registers pall
[MAX_BANKS
] __initdata
;
1010 static int pall_ents __initdata
;
1012 #ifdef CONFIG_DEBUG_PAGEALLOC
1013 static unsigned long __ref
kernel_map_range(unsigned long pstart
,
1014 unsigned long pend
, pgprot_t prot
)
1016 unsigned long vstart
= PAGE_OFFSET
+ pstart
;
1017 unsigned long vend
= PAGE_OFFSET
+ pend
;
1018 unsigned long alloc_bytes
= 0UL;
1020 if ((vstart
& ~PAGE_MASK
) || (vend
& ~PAGE_MASK
)) {
1021 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1026 while (vstart
< vend
) {
1027 unsigned long this_end
, paddr
= __pa(vstart
);
1028 pgd_t
*pgd
= pgd_offset_k(vstart
);
1033 pud
= pud_offset(pgd
, vstart
);
1034 if (pud_none(*pud
)) {
1037 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1038 alloc_bytes
+= PAGE_SIZE
;
1039 pud_populate(&init_mm
, pud
, new);
1042 pmd
= pmd_offset(pud
, vstart
);
1043 if (!pmd_present(*pmd
)) {
1046 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1047 alloc_bytes
+= PAGE_SIZE
;
1048 pmd_populate_kernel(&init_mm
, pmd
, new);
1051 pte
= pte_offset_kernel(pmd
, vstart
);
1052 this_end
= (vstart
+ PMD_SIZE
) & PMD_MASK
;
1053 if (this_end
> vend
)
1056 while (vstart
< this_end
) {
1057 pte_val(*pte
) = (paddr
| pgprot_val(prot
));
1059 vstart
+= PAGE_SIZE
;
1068 extern unsigned int kvmap_linear_patch
[1];
1069 #endif /* CONFIG_DEBUG_PAGEALLOC */
1071 static void __init
mark_kpte_bitmap(unsigned long start
, unsigned long end
)
1073 const unsigned long shift_256MB
= 28;
1074 const unsigned long mask_256MB
= ((1UL << shift_256MB
) - 1UL);
1075 const unsigned long size_256MB
= (1UL << shift_256MB
);
1077 while (start
< end
) {
1080 remains
= end
- start
;
1081 if (remains
< size_256MB
)
1084 if (start
& mask_256MB
) {
1085 start
= (start
+ size_256MB
) & ~mask_256MB
;
1089 while (remains
>= size_256MB
) {
1090 unsigned long index
= start
>> shift_256MB
;
1092 __set_bit(index
, kpte_linear_bitmap
);
1094 start
+= size_256MB
;
1095 remains
-= size_256MB
;
1100 static void __init
init_kpte_bitmap(void)
1104 for (i
= 0; i
< pall_ents
; i
++) {
1105 unsigned long phys_start
, phys_end
;
1107 phys_start
= pall
[i
].phys_addr
;
1108 phys_end
= phys_start
+ pall
[i
].reg_size
;
1110 mark_kpte_bitmap(phys_start
, phys_end
);
1114 static void __init
kernel_physical_mapping_init(void)
1116 #ifdef CONFIG_DEBUG_PAGEALLOC
1117 unsigned long i
, mem_alloced
= 0UL;
1119 for (i
= 0; i
< pall_ents
; i
++) {
1120 unsigned long phys_start
, phys_end
;
1122 phys_start
= pall
[i
].phys_addr
;
1123 phys_end
= phys_start
+ pall
[i
].reg_size
;
1125 mem_alloced
+= kernel_map_range(phys_start
, phys_end
,
1129 printk("Allocated %ld bytes for kernel page tables.\n",
1132 kvmap_linear_patch
[0] = 0x01000000; /* nop */
1133 flushi(&kvmap_linear_patch
[0]);
1139 #ifdef CONFIG_DEBUG_PAGEALLOC
1140 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1142 unsigned long phys_start
= page_to_pfn(page
) << PAGE_SHIFT
;
1143 unsigned long phys_end
= phys_start
+ (numpages
* PAGE_SIZE
);
1145 kernel_map_range(phys_start
, phys_end
,
1146 (enable
? PAGE_KERNEL
: __pgprot(0)));
1148 flush_tsb_kernel_range(PAGE_OFFSET
+ phys_start
,
1149 PAGE_OFFSET
+ phys_end
);
1151 /* we should perform an IPI and flush all tlbs,
1152 * but that can deadlock->flush only current cpu.
1154 __flush_tlb_kernel_range(PAGE_OFFSET
+ phys_start
,
1155 PAGE_OFFSET
+ phys_end
);
1159 unsigned long __init
find_ecache_flush_span(unsigned long size
)
1163 for (i
= 0; i
< pavail_ents
; i
++) {
1164 if (pavail
[i
].reg_size
>= size
)
1165 return pavail
[i
].phys_addr
;
1171 static void __init
tsb_phys_patch(void)
1173 struct tsb_ldquad_phys_patch_entry
*pquad
;
1174 struct tsb_phys_patch_entry
*p
;
1176 pquad
= &__tsb_ldquad_phys_patch
;
1177 while (pquad
< &__tsb_ldquad_phys_patch_end
) {
1178 unsigned long addr
= pquad
->addr
;
1180 if (tlb_type
== hypervisor
)
1181 *(unsigned int *) addr
= pquad
->sun4v_insn
;
1183 *(unsigned int *) addr
= pquad
->sun4u_insn
;
1185 __asm__
__volatile__("flush %0"
1192 p
= &__tsb_phys_patch
;
1193 while (p
< &__tsb_phys_patch_end
) {
1194 unsigned long addr
= p
->addr
;
1196 *(unsigned int *) addr
= p
->insn
;
1198 __asm__
__volatile__("flush %0"
1206 /* Don't mark as init, we give this to the Hypervisor. */
1207 #ifndef CONFIG_DEBUG_PAGEALLOC
1208 #define NUM_KTSB_DESCR 2
1210 #define NUM_KTSB_DESCR 1
1212 static struct hv_tsb_descr ktsb_descr
[NUM_KTSB_DESCR
];
1213 extern struct tsb swapper_tsb
[KERNEL_TSB_NENTRIES
];
1215 static void __init
sun4v_ktsb_init(void)
1217 unsigned long ktsb_pa
;
1219 /* First KTSB for PAGE_SIZE mappings. */
1220 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
1222 switch (PAGE_SIZE
) {
1225 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_8K
;
1226 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_8K
;
1230 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_64K
;
1231 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_64K
;
1235 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_512K
;
1236 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_512K
;
1239 case 4 * 1024 * 1024:
1240 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_4MB
;
1241 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_4MB
;
1245 ktsb_descr
[0].assoc
= 1;
1246 ktsb_descr
[0].num_ttes
= KERNEL_TSB_NENTRIES
;
1247 ktsb_descr
[0].ctx_idx
= 0;
1248 ktsb_descr
[0].tsb_base
= ktsb_pa
;
1249 ktsb_descr
[0].resv
= 0;
1251 #ifndef CONFIG_DEBUG_PAGEALLOC
1252 /* Second KTSB for 4MB/256MB mappings. */
1253 ktsb_pa
= (kern_base
+
1254 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
1256 ktsb_descr
[1].pgsz_idx
= HV_PGSZ_IDX_4MB
;
1257 ktsb_descr
[1].pgsz_mask
= (HV_PGSZ_MASK_4MB
|
1258 HV_PGSZ_MASK_256MB
);
1259 ktsb_descr
[1].assoc
= 1;
1260 ktsb_descr
[1].num_ttes
= KERNEL_TSB4M_NENTRIES
;
1261 ktsb_descr
[1].ctx_idx
= 0;
1262 ktsb_descr
[1].tsb_base
= ktsb_pa
;
1263 ktsb_descr
[1].resv
= 0;
1267 void __cpuinit
sun4v_ktsb_register(void)
1269 unsigned long pa
, ret
;
1271 pa
= kern_base
+ ((unsigned long)&ktsb_descr
[0] - KERNBASE
);
1273 ret
= sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR
, pa
);
1275 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1276 "errors with %lx\n", pa
, ret
);
1281 /* paging_init() sets up the page tables */
1283 extern void cheetah_ecache_flush_init(void);
1284 extern void sun4v_patch_tlb_handlers(void);
1286 extern void cpu_probe(void);
1287 extern void central_probe(void);
1289 static unsigned long last_valid_pfn
;
1290 pgd_t swapper_pg_dir
[2048];
1292 static void sun4u_pgprot_init(void);
1293 static void sun4v_pgprot_init(void);
1295 /* Dummy function */
1296 void __init
setup_per_cpu_areas(void)
1300 void __init
paging_init(void)
1302 unsigned long end_pfn
, pages_avail
, shift
, phys_base
;
1303 unsigned long real_end
, i
;
1305 /* These build time checkes make sure that the dcache_dirty_cpu()
1306 * page->flags usage will work.
1308 * When a page gets marked as dcache-dirty, we store the
1309 * cpu number starting at bit 32 in the page->flags. Also,
1310 * functions like clear_dcache_dirty_cpu use the cpu mask
1311 * in 13-bit signed-immediate instruction fields.
1313 BUILD_BUG_ON(FLAGS_RESERVED
!= 32);
1314 BUILD_BUG_ON(SECTIONS_WIDTH
+ NODES_WIDTH
+ ZONES_WIDTH
+
1315 ilog2(roundup_pow_of_two(NR_CPUS
)) > FLAGS_RESERVED
);
1316 BUILD_BUG_ON(NR_CPUS
> 4096);
1318 kern_base
= (prom_boot_mapping_phys_low
>> 22UL) << 22UL;
1319 kern_size
= (unsigned long)&_end
- (unsigned long)KERNBASE
;
1323 /* Invalidate both kernel TSBs. */
1324 memset(swapper_tsb
, 0x40, sizeof(swapper_tsb
));
1325 #ifndef CONFIG_DEBUG_PAGEALLOC
1326 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
1329 if (tlb_type
== hypervisor
)
1330 sun4v_pgprot_init();
1332 sun4u_pgprot_init();
1334 if (tlb_type
== cheetah_plus
||
1335 tlb_type
== hypervisor
)
1338 if (tlb_type
== hypervisor
) {
1339 sun4v_patch_tlb_handlers();
1343 /* Find available physical memory... */
1344 read_obp_memory("available", &pavail
[0], &pavail_ents
);
1346 phys_base
= 0xffffffffffffffffUL
;
1347 for (i
= 0; i
< pavail_ents
; i
++)
1348 phys_base
= min(phys_base
, pavail
[i
].phys_addr
);
1350 set_bit(0, mmu_context_bmap
);
1352 shift
= kern_base
+ PAGE_OFFSET
- ((unsigned long)KERNBASE
);
1354 real_end
= (unsigned long)_end
;
1355 if ((real_end
> ((unsigned long)KERNBASE
+ 0x400000)))
1357 if ((real_end
> ((unsigned long)KERNBASE
+ 0x800000))) {
1358 prom_printf("paging_init: Kernel > 8MB, too large.\n");
1362 /* Set kernel pgd to upper alias so physical page computations
1365 init_mm
.pgd
+= ((shift
) / (sizeof(pgd_t
)));
1367 memset(swapper_low_pmd_dir
, 0, sizeof(swapper_low_pmd_dir
));
1369 /* Now can init the kernel/bad page tables. */
1370 pud_set(pud_offset(&swapper_pg_dir
[0], 0),
1371 swapper_low_pmd_dir
+ (shift
/ sizeof(pgd_t
)));
1373 inherit_prom_mappings();
1375 read_obp_memory("reg", &pall
[0], &pall_ents
);
1379 /* Ok, we can use our TLB miss and window trap handlers safely. */
1384 if (tlb_type
== hypervisor
)
1385 sun4v_ktsb_register();
1387 /* Setup bootmem... */
1389 last_valid_pfn
= end_pfn
= bootmem_init(&pages_avail
, phys_base
);
1391 max_mapnr
= last_valid_pfn
;
1393 kernel_physical_mapping_init();
1395 real_setup_per_cpu_areas();
1397 prom_build_devicetree();
1399 if (tlb_type
== hypervisor
)
1403 unsigned long zones_size
[MAX_NR_ZONES
];
1404 unsigned long zholes_size
[MAX_NR_ZONES
];
1407 for (znum
= 0; znum
< MAX_NR_ZONES
; znum
++)
1408 zones_size
[znum
] = zholes_size
[znum
] = 0;
1410 zones_size
[ZONE_NORMAL
] = end_pfn
;
1411 zholes_size
[ZONE_NORMAL
] = end_pfn
- pages_avail
;
1413 free_area_init_node(0, &contig_page_data
, zones_size
,
1414 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
,
1418 printk("Booting Linux...\n");
1424 static void __init
taint_real_pages(void)
1428 read_obp_memory("available", &pavail_rescan
[0], &pavail_rescan_ents
);
1430 /* Find changes discovered in the physmem available rescan and
1431 * reserve the lost portions in the bootmem maps.
1433 for (i
= 0; i
< pavail_ents
; i
++) {
1434 unsigned long old_start
, old_end
;
1436 old_start
= pavail
[i
].phys_addr
;
1437 old_end
= old_start
+
1439 while (old_start
< old_end
) {
1442 for (n
= 0; n
< pavail_rescan_ents
; n
++) {
1443 unsigned long new_start
, new_end
;
1445 new_start
= pavail_rescan
[n
].phys_addr
;
1446 new_end
= new_start
+
1447 pavail_rescan
[n
].reg_size
;
1449 if (new_start
<= old_start
&&
1450 new_end
>= (old_start
+ PAGE_SIZE
)) {
1451 set_bit(old_start
>> 22,
1452 sparc64_valid_addr_bitmap
);
1456 reserve_bootmem(old_start
, PAGE_SIZE
, BOOTMEM_DEFAULT
);
1459 old_start
+= PAGE_SIZE
;
1464 int __init
page_in_phys_avail(unsigned long paddr
)
1470 for (i
= 0; i
< pavail_rescan_ents
; i
++) {
1471 unsigned long start
, end
;
1473 start
= pavail_rescan
[i
].phys_addr
;
1474 end
= start
+ pavail_rescan
[i
].reg_size
;
1476 if (paddr
>= start
&& paddr
< end
)
1479 if (paddr
>= kern_base
&& paddr
< (kern_base
+ kern_size
))
1481 #ifdef CONFIG_BLK_DEV_INITRD
1482 if (paddr
>= __pa(initrd_start
) &&
1483 paddr
< __pa(PAGE_ALIGN(initrd_end
)))
1490 void __init
mem_init(void)
1492 unsigned long codepages
, datapages
, initpages
;
1493 unsigned long addr
, last
;
1496 i
= last_valid_pfn
>> ((22 - PAGE_SHIFT
) + 6);
1498 sparc64_valid_addr_bitmap
= (unsigned long *) alloc_bootmem(i
<< 3);
1499 if (sparc64_valid_addr_bitmap
== NULL
) {
1500 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1503 memset(sparc64_valid_addr_bitmap
, 0, i
<< 3);
1505 addr
= PAGE_OFFSET
+ kern_base
;
1506 last
= PAGE_ALIGN(kern_size
) + addr
;
1507 while (addr
< last
) {
1508 set_bit(__pa(addr
) >> 22, sparc64_valid_addr_bitmap
);
1514 high_memory
= __va(last_valid_pfn
<< PAGE_SHIFT
);
1516 /* We subtract one to account for the mem_map_zero page
1519 totalram_pages
= num_physpages
= free_all_bootmem() - 1;
1522 * Set up the zero page, mark it reserved, so that page count
1523 * is not manipulated when freeing the page from user ptes.
1525 mem_map_zero
= alloc_pages(GFP_KERNEL
|__GFP_ZERO
, 0);
1526 if (mem_map_zero
== NULL
) {
1527 prom_printf("paging_init: Cannot alloc zero page.\n");
1530 SetPageReserved(mem_map_zero
);
1532 codepages
= (((unsigned long) _etext
) - ((unsigned long) _start
));
1533 codepages
= PAGE_ALIGN(codepages
) >> PAGE_SHIFT
;
1534 datapages
= (((unsigned long) _edata
) - ((unsigned long) _etext
));
1535 datapages
= PAGE_ALIGN(datapages
) >> PAGE_SHIFT
;
1536 initpages
= (((unsigned long) __init_end
) - ((unsigned long) __init_begin
));
1537 initpages
= PAGE_ALIGN(initpages
) >> PAGE_SHIFT
;
1539 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1540 nr_free_pages() << (PAGE_SHIFT
-10),
1541 codepages
<< (PAGE_SHIFT
-10),
1542 datapages
<< (PAGE_SHIFT
-10),
1543 initpages
<< (PAGE_SHIFT
-10),
1544 PAGE_OFFSET
, (last_valid_pfn
<< PAGE_SHIFT
));
1546 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
)
1547 cheetah_ecache_flush_init();
1550 void free_initmem(void)
1552 unsigned long addr
, initend
;
1555 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1557 addr
= PAGE_ALIGN((unsigned long)(__init_begin
));
1558 initend
= (unsigned long)(__init_end
) & PAGE_MASK
;
1559 for (; addr
< initend
; addr
+= PAGE_SIZE
) {
1564 ((unsigned long) __va(kern_base
)) -
1565 ((unsigned long) KERNBASE
));
1566 memset((void *)addr
, POISON_FREE_INITMEM
, PAGE_SIZE
);
1567 p
= virt_to_page(page
);
1569 ClearPageReserved(p
);
1577 #ifdef CONFIG_BLK_DEV_INITRD
1578 void free_initrd_mem(unsigned long start
, unsigned long end
)
1581 printk ("Freeing initrd memory: %ldk freed\n", (end
- start
) >> 10);
1582 for (; start
< end
; start
+= PAGE_SIZE
) {
1583 struct page
*p
= virt_to_page(start
);
1585 ClearPageReserved(p
);
1594 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
1595 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
1596 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1597 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1598 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1599 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1601 pgprot_t PAGE_KERNEL __read_mostly
;
1602 EXPORT_SYMBOL(PAGE_KERNEL
);
1604 pgprot_t PAGE_KERNEL_LOCKED __read_mostly
;
1605 pgprot_t PAGE_COPY __read_mostly
;
1607 pgprot_t PAGE_SHARED __read_mostly
;
1608 EXPORT_SYMBOL(PAGE_SHARED
);
1610 pgprot_t PAGE_EXEC __read_mostly
;
1611 unsigned long pg_iobits __read_mostly
;
1613 unsigned long _PAGE_IE __read_mostly
;
1614 EXPORT_SYMBOL(_PAGE_IE
);
1616 unsigned long _PAGE_E __read_mostly
;
1617 EXPORT_SYMBOL(_PAGE_E
);
1619 unsigned long _PAGE_CACHE __read_mostly
;
1620 EXPORT_SYMBOL(_PAGE_CACHE
);
1622 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1624 #define VMEMMAP_CHUNK_SHIFT 22
1625 #define VMEMMAP_CHUNK (1UL << VMEMMAP_CHUNK_SHIFT)
1626 #define VMEMMAP_CHUNK_MASK ~(VMEMMAP_CHUNK - 1UL)
1627 #define VMEMMAP_ALIGN(x) (((x)+VMEMMAP_CHUNK-1UL)&VMEMMAP_CHUNK_MASK)
1629 #define VMEMMAP_SIZE ((((1UL << MAX_PHYSADDR_BITS) >> PAGE_SHIFT) * \
1630 sizeof(struct page *)) >> VMEMMAP_CHUNK_SHIFT)
1631 unsigned long vmemmap_table
[VMEMMAP_SIZE
];
1633 int __meminit
vmemmap_populate(struct page
*start
, unsigned long nr
, int node
)
1635 unsigned long vstart
= (unsigned long) start
;
1636 unsigned long vend
= (unsigned long) (start
+ nr
);
1637 unsigned long phys_start
= (vstart
- VMEMMAP_BASE
);
1638 unsigned long phys_end
= (vend
- VMEMMAP_BASE
);
1639 unsigned long addr
= phys_start
& VMEMMAP_CHUNK_MASK
;
1640 unsigned long end
= VMEMMAP_ALIGN(phys_end
);
1641 unsigned long pte_base
;
1643 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
1644 _PAGE_CP_4U
| _PAGE_CV_4U
|
1645 _PAGE_P_4U
| _PAGE_W_4U
);
1646 if (tlb_type
== hypervisor
)
1647 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
1648 _PAGE_CP_4V
| _PAGE_CV_4V
|
1649 _PAGE_P_4V
| _PAGE_W_4V
);
1651 for (; addr
< end
; addr
+= VMEMMAP_CHUNK
) {
1652 unsigned long *vmem_pp
=
1653 vmemmap_table
+ (addr
>> VMEMMAP_CHUNK_SHIFT
);
1656 if (!(*vmem_pp
& _PAGE_VALID
)) {
1657 block
= vmemmap_alloc_block(1UL << 22, node
);
1661 *vmem_pp
= pte_base
| __pa(block
);
1663 printk(KERN_INFO
"[%p-%p] page_structs=%lu "
1664 "node=%d entry=%lu/%lu\n", start
, block
, nr
,
1666 addr
>> VMEMMAP_CHUNK_SHIFT
,
1667 VMEMMAP_SIZE
>> VMEMMAP_CHUNK_SHIFT
);
1672 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
1674 static void prot_init_common(unsigned long page_none
,
1675 unsigned long page_shared
,
1676 unsigned long page_copy
,
1677 unsigned long page_readonly
,
1678 unsigned long page_exec_bit
)
1680 PAGE_COPY
= __pgprot(page_copy
);
1681 PAGE_SHARED
= __pgprot(page_shared
);
1683 protection_map
[0x0] = __pgprot(page_none
);
1684 protection_map
[0x1] = __pgprot(page_readonly
& ~page_exec_bit
);
1685 protection_map
[0x2] = __pgprot(page_copy
& ~page_exec_bit
);
1686 protection_map
[0x3] = __pgprot(page_copy
& ~page_exec_bit
);
1687 protection_map
[0x4] = __pgprot(page_readonly
);
1688 protection_map
[0x5] = __pgprot(page_readonly
);
1689 protection_map
[0x6] = __pgprot(page_copy
);
1690 protection_map
[0x7] = __pgprot(page_copy
);
1691 protection_map
[0x8] = __pgprot(page_none
);
1692 protection_map
[0x9] = __pgprot(page_readonly
& ~page_exec_bit
);
1693 protection_map
[0xa] = __pgprot(page_shared
& ~page_exec_bit
);
1694 protection_map
[0xb] = __pgprot(page_shared
& ~page_exec_bit
);
1695 protection_map
[0xc] = __pgprot(page_readonly
);
1696 protection_map
[0xd] = __pgprot(page_readonly
);
1697 protection_map
[0xe] = __pgprot(page_shared
);
1698 protection_map
[0xf] = __pgprot(page_shared
);
1701 static void __init
sun4u_pgprot_init(void)
1703 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
1704 unsigned long page_exec_bit
;
1706 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
1707 _PAGE_CACHE_4U
| _PAGE_P_4U
|
1708 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
1710 PAGE_KERNEL_LOCKED
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
1711 _PAGE_CACHE_4U
| _PAGE_P_4U
|
1712 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
1713 _PAGE_EXEC_4U
| _PAGE_L_4U
);
1714 PAGE_EXEC
= __pgprot(_PAGE_EXEC_4U
);
1716 _PAGE_IE
= _PAGE_IE_4U
;
1717 _PAGE_E
= _PAGE_E_4U
;
1718 _PAGE_CACHE
= _PAGE_CACHE_4U
;
1720 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| __DIRTY_BITS_4U
|
1721 __ACCESS_BITS_4U
| _PAGE_E_4U
);
1723 #ifdef CONFIG_DEBUG_PAGEALLOC
1724 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZBITS_4U
) ^
1727 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4U
) ^
1730 kern_linear_pte_xor
[0] |= (_PAGE_CP_4U
| _PAGE_CV_4U
|
1731 _PAGE_P_4U
| _PAGE_W_4U
);
1733 /* XXX Should use 256MB on Panther. XXX */
1734 kern_linear_pte_xor
[1] = kern_linear_pte_xor
[0];
1736 _PAGE_SZBITS
= _PAGE_SZBITS_4U
;
1737 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ4MB_4U
| _PAGE_SZ512K_4U
|
1738 _PAGE_SZ64K_4U
| _PAGE_SZ8K_4U
|
1739 _PAGE_SZ32MB_4U
| _PAGE_SZ256MB_4U
);
1742 page_none
= _PAGE_PRESENT_4U
| _PAGE_ACCESSED_4U
| _PAGE_CACHE_4U
;
1743 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
1744 __ACCESS_BITS_4U
| _PAGE_WRITE_4U
| _PAGE_EXEC_4U
);
1745 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
1746 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
1747 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
1748 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
1750 page_exec_bit
= _PAGE_EXEC_4U
;
1752 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
1756 static void __init
sun4v_pgprot_init(void)
1758 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
1759 unsigned long page_exec_bit
;
1761 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4V
| _PAGE_VALID
|
1762 _PAGE_CACHE_4V
| _PAGE_P_4V
|
1763 __ACCESS_BITS_4V
| __DIRTY_BITS_4V
|
1765 PAGE_KERNEL_LOCKED
= PAGE_KERNEL
;
1766 PAGE_EXEC
= __pgprot(_PAGE_EXEC_4V
);
1768 _PAGE_IE
= _PAGE_IE_4V
;
1769 _PAGE_E
= _PAGE_E_4V
;
1770 _PAGE_CACHE
= _PAGE_CACHE_4V
;
1772 #ifdef CONFIG_DEBUG_PAGEALLOC
1773 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZBITS_4V
) ^
1776 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4V
) ^
1779 kern_linear_pte_xor
[0] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
1780 _PAGE_P_4V
| _PAGE_W_4V
);
1782 #ifdef CONFIG_DEBUG_PAGEALLOC
1783 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZBITS_4V
) ^
1786 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZ256MB_4V
) ^
1789 kern_linear_pte_xor
[1] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
1790 _PAGE_P_4V
| _PAGE_W_4V
);
1792 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| __DIRTY_BITS_4V
|
1793 __ACCESS_BITS_4V
| _PAGE_E_4V
);
1795 _PAGE_SZBITS
= _PAGE_SZBITS_4V
;
1796 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ16GB_4V
| _PAGE_SZ2GB_4V
|
1797 _PAGE_SZ256MB_4V
| _PAGE_SZ32MB_4V
|
1798 _PAGE_SZ4MB_4V
| _PAGE_SZ512K_4V
|
1799 _PAGE_SZ64K_4V
| _PAGE_SZ8K_4V
);
1801 page_none
= _PAGE_PRESENT_4V
| _PAGE_ACCESSED_4V
| _PAGE_CACHE_4V
;
1802 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
1803 __ACCESS_BITS_4V
| _PAGE_WRITE_4V
| _PAGE_EXEC_4V
);
1804 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
1805 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
1806 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
1807 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
1809 page_exec_bit
= _PAGE_EXEC_4V
;
1811 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
1815 unsigned long pte_sz_bits(unsigned long sz
)
1817 if (tlb_type
== hypervisor
) {
1821 return _PAGE_SZ8K_4V
;
1823 return _PAGE_SZ64K_4V
;
1825 return _PAGE_SZ512K_4V
;
1826 case 4 * 1024 * 1024:
1827 return _PAGE_SZ4MB_4V
;
1833 return _PAGE_SZ8K_4U
;
1835 return _PAGE_SZ64K_4U
;
1837 return _PAGE_SZ512K_4U
;
1838 case 4 * 1024 * 1024:
1839 return _PAGE_SZ4MB_4U
;
1844 pte_t
mk_pte_io(unsigned long page
, pgprot_t prot
, int space
, unsigned long page_size
)
1848 pte_val(pte
) = page
| pgprot_val(pgprot_noncached(prot
));
1849 pte_val(pte
) |= (((unsigned long)space
) << 32);
1850 pte_val(pte
) |= pte_sz_bits(page_size
);
1855 static unsigned long kern_large_tte(unsigned long paddr
)
1859 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
1860 _PAGE_CP_4U
| _PAGE_CV_4U
| _PAGE_P_4U
|
1861 _PAGE_EXEC_4U
| _PAGE_L_4U
| _PAGE_W_4U
);
1862 if (tlb_type
== hypervisor
)
1863 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
1864 _PAGE_CP_4V
| _PAGE_CV_4V
| _PAGE_P_4V
|
1865 _PAGE_EXEC_4V
| _PAGE_W_4V
);
1870 /* If not locked, zap it. */
1871 void __flush_tlb_all(void)
1873 unsigned long pstate
;
1876 __asm__
__volatile__("flushw\n\t"
1877 "rdpr %%pstate, %0\n\t"
1878 "wrpr %0, %1, %%pstate"
1881 if (tlb_type
== hypervisor
) {
1882 sun4v_mmu_demap_all();
1883 } else if (tlb_type
== spitfire
) {
1884 for (i
= 0; i
< 64; i
++) {
1885 /* Spitfire Errata #32 workaround */
1886 /* NOTE: Always runs on spitfire, so no
1887 * cheetah+ page size encodings.
1889 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
1893 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
1895 if (!(spitfire_get_dtlb_data(i
) & _PAGE_L_4U
)) {
1896 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
1899 : "r" (TLB_TAG_ACCESS
), "i" (ASI_DMMU
));
1900 spitfire_put_dtlb_data(i
, 0x0UL
);
1903 /* Spitfire Errata #32 workaround */
1904 /* NOTE: Always runs on spitfire, so no
1905 * cheetah+ page size encodings.
1907 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
1911 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
1913 if (!(spitfire_get_itlb_data(i
) & _PAGE_L_4U
)) {
1914 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
1917 : "r" (TLB_TAG_ACCESS
), "i" (ASI_IMMU
));
1918 spitfire_put_itlb_data(i
, 0x0UL
);
1921 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1922 cheetah_flush_dtlb_all();
1923 cheetah_flush_itlb_all();
1925 __asm__
__volatile__("wrpr %0, 0, %%pstate"
1929 #ifdef CONFIG_MEMORY_HOTPLUG
1931 void online_page(struct page
*page
)
1933 ClearPageReserved(page
);
1934 init_page_count(page
);
1940 #endif /* CONFIG_MEMORY_HOTPLUG */