sched: retune wake granularity
[wrt350n-kernel.git] / include / asm-x86 / pgtable.h
blob174b87738714fe634d135c8738df8a6f5ba8a0c5
1 #ifndef _ASM_X86_PGTABLE_H
2 #define _ASM_X86_PGTABLE_H
4 #define USER_PTRS_PER_PGD ((TASK_SIZE-1)/PGDIR_SIZE+1)
5 #define FIRST_USER_ADDRESS 0
7 #define _PAGE_BIT_PRESENT 0
8 #define _PAGE_BIT_RW 1
9 #define _PAGE_BIT_USER 2
10 #define _PAGE_BIT_PWT 3
11 #define _PAGE_BIT_PCD 4
12 #define _PAGE_BIT_ACCESSED 5
13 #define _PAGE_BIT_DIRTY 6
14 #define _PAGE_BIT_FILE 6
15 #define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page */
16 #define _PAGE_BIT_PAT 7 /* on 4KB pages */
17 #define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */
18 #define _PAGE_BIT_UNUSED1 9 /* available for programmer */
19 #define _PAGE_BIT_UNUSED2 10
20 #define _PAGE_BIT_UNUSED3 11
21 #define _PAGE_BIT_PAT_LARGE 12 /* On 2MB or 1GB pages */
22 #define _PAGE_BIT_NX 63 /* No execute: only valid after cpuid check */
25 * Note: we use _AC(1, L) instead of _AC(1, UL) so that we get a
26 * sign-extended value on 32-bit with all 1's in the upper word,
27 * which preserves the upper pte values on 64-bit ptes:
29 #define _PAGE_PRESENT (_AC(1, L)<<_PAGE_BIT_PRESENT)
30 #define _PAGE_RW (_AC(1, L)<<_PAGE_BIT_RW)
31 #define _PAGE_USER (_AC(1, L)<<_PAGE_BIT_USER)
32 #define _PAGE_PWT (_AC(1, L)<<_PAGE_BIT_PWT)
33 #define _PAGE_PCD (_AC(1, L)<<_PAGE_BIT_PCD)
34 #define _PAGE_ACCESSED (_AC(1, L)<<_PAGE_BIT_ACCESSED)
35 #define _PAGE_DIRTY (_AC(1, L)<<_PAGE_BIT_DIRTY)
36 #define _PAGE_PSE (_AC(1, L)<<_PAGE_BIT_PSE) /* 2MB page */
37 #define _PAGE_GLOBAL (_AC(1, L)<<_PAGE_BIT_GLOBAL) /* Global TLB entry */
38 #define _PAGE_UNUSED1 (_AC(1, L)<<_PAGE_BIT_UNUSED1)
39 #define _PAGE_UNUSED2 (_AC(1, L)<<_PAGE_BIT_UNUSED2)
40 #define _PAGE_UNUSED3 (_AC(1, L)<<_PAGE_BIT_UNUSED3)
41 #define _PAGE_PAT (_AC(1, L)<<_PAGE_BIT_PAT)
42 #define _PAGE_PAT_LARGE (_AC(1, L)<<_PAGE_BIT_PAT_LARGE)
44 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
45 #define _PAGE_NX (_AC(1, ULL) << _PAGE_BIT_NX)
46 #else
47 #define _PAGE_NX 0
48 #endif
50 /* If _PAGE_PRESENT is clear, we use these: */
51 #define _PAGE_FILE _PAGE_DIRTY /* nonlinear file mapping, saved PTE; unset:swap */
52 #define _PAGE_PROTNONE _PAGE_PSE /* if the user mapped it with PROT_NONE;
53 pte_present gives true */
55 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
56 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
58 #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
60 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
61 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
63 #define PAGE_SHARED_EXEC __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
64 #define PAGE_COPY_NOEXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
65 #define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
66 #define PAGE_COPY PAGE_COPY_NOEXEC
67 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
68 #define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
70 #ifdef CONFIG_X86_32
71 #define _PAGE_KERNEL_EXEC \
72 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
73 #define _PAGE_KERNEL (_PAGE_KERNEL_EXEC | _PAGE_NX)
75 #ifndef __ASSEMBLY__
76 extern pteval_t __PAGE_KERNEL, __PAGE_KERNEL_EXEC;
77 #endif /* __ASSEMBLY__ */
78 #else
79 #define __PAGE_KERNEL_EXEC \
80 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
81 #define __PAGE_KERNEL (__PAGE_KERNEL_EXEC | _PAGE_NX)
82 #endif
84 #define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW)
85 #define __PAGE_KERNEL_RX (__PAGE_KERNEL_EXEC & ~_PAGE_RW)
86 #define __PAGE_KERNEL_EXEC_NOCACHE (__PAGE_KERNEL_EXEC | _PAGE_PCD | _PAGE_PWT)
87 #define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD | _PAGE_PWT)
88 #define __PAGE_KERNEL_VSYSCALL (__PAGE_KERNEL_RX | _PAGE_USER)
89 #define __PAGE_KERNEL_VSYSCALL_NOCACHE (__PAGE_KERNEL_VSYSCALL | _PAGE_PCD | _PAGE_PWT)
90 #define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE)
91 #define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE)
93 #ifdef CONFIG_X86_32
94 # define MAKE_GLOBAL(x) __pgprot((x))
95 #else
96 # define MAKE_GLOBAL(x) __pgprot((x) | _PAGE_GLOBAL)
97 #endif
99 #define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL)
100 #define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO)
101 #define PAGE_KERNEL_EXEC MAKE_GLOBAL(__PAGE_KERNEL_EXEC)
102 #define PAGE_KERNEL_RX MAKE_GLOBAL(__PAGE_KERNEL_RX)
103 #define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE)
104 #define PAGE_KERNEL_EXEC_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_EXEC_NOCACHE)
105 #define PAGE_KERNEL_LARGE MAKE_GLOBAL(__PAGE_KERNEL_LARGE)
106 #define PAGE_KERNEL_LARGE_EXEC MAKE_GLOBAL(__PAGE_KERNEL_LARGE_EXEC)
107 #define PAGE_KERNEL_VSYSCALL MAKE_GLOBAL(__PAGE_KERNEL_VSYSCALL)
108 #define PAGE_KERNEL_VSYSCALL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_VSYSCALL_NOCACHE)
110 /* xwr */
111 #define __P000 PAGE_NONE
112 #define __P001 PAGE_READONLY
113 #define __P010 PAGE_COPY
114 #define __P011 PAGE_COPY
115 #define __P100 PAGE_READONLY_EXEC
116 #define __P101 PAGE_READONLY_EXEC
117 #define __P110 PAGE_COPY_EXEC
118 #define __P111 PAGE_COPY_EXEC
120 #define __S000 PAGE_NONE
121 #define __S001 PAGE_READONLY
122 #define __S010 PAGE_SHARED
123 #define __S011 PAGE_SHARED
124 #define __S100 PAGE_READONLY_EXEC
125 #define __S101 PAGE_READONLY_EXEC
126 #define __S110 PAGE_SHARED_EXEC
127 #define __S111 PAGE_SHARED_EXEC
129 #ifndef __ASSEMBLY__
132 * ZERO_PAGE is a global shared page that is always zero: used
133 * for zero-mapped memory areas etc..
135 extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
136 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
138 extern spinlock_t pgd_lock;
139 extern struct list_head pgd_list;
142 * The following only work if pte_present() is true.
143 * Undefined behaviour if not..
145 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
146 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
147 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
148 static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
149 static inline int pte_huge(pte_t pte) { return pte_val(pte) & _PAGE_PSE; }
150 static inline int pte_global(pte_t pte) { return pte_val(pte) & _PAGE_GLOBAL; }
151 static inline int pte_exec(pte_t pte) { return !(pte_val(pte) & _PAGE_NX); }
153 static inline int pmd_large(pmd_t pte) {
154 return (pmd_val(pte) & (_PAGE_PSE|_PAGE_PRESENT)) ==
155 (_PAGE_PSE|_PAGE_PRESENT);
158 static inline pte_t pte_mkclean(pte_t pte) { return __pte(pte_val(pte) & ~(pteval_t)_PAGE_DIRTY); }
159 static inline pte_t pte_mkold(pte_t pte) { return __pte(pte_val(pte) & ~(pteval_t)_PAGE_ACCESSED); }
160 static inline pte_t pte_wrprotect(pte_t pte) { return __pte(pte_val(pte) & ~(pteval_t)_PAGE_RW); }
161 static inline pte_t pte_mkexec(pte_t pte) { return __pte(pte_val(pte) & ~(pteval_t)_PAGE_NX); }
162 static inline pte_t pte_mkdirty(pte_t pte) { return __pte(pte_val(pte) | _PAGE_DIRTY); }
163 static inline pte_t pte_mkyoung(pte_t pte) { return __pte(pte_val(pte) | _PAGE_ACCESSED); }
164 static inline pte_t pte_mkwrite(pte_t pte) { return __pte(pte_val(pte) | _PAGE_RW); }
165 static inline pte_t pte_mkhuge(pte_t pte) { return __pte(pte_val(pte) | _PAGE_PSE); }
166 static inline pte_t pte_clrhuge(pte_t pte) { return __pte(pte_val(pte) & ~(pteval_t)_PAGE_PSE); }
167 static inline pte_t pte_mkglobal(pte_t pte) { return __pte(pte_val(pte) | _PAGE_GLOBAL); }
168 static inline pte_t pte_clrglobal(pte_t pte) { return __pte(pte_val(pte) & ~(pteval_t)_PAGE_GLOBAL); }
170 extern pteval_t __supported_pte_mask;
172 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
174 return __pte((((phys_addr_t)page_nr << PAGE_SHIFT) |
175 pgprot_val(pgprot)) & __supported_pte_mask);
178 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
180 return __pmd((((phys_addr_t)page_nr << PAGE_SHIFT) |
181 pgprot_val(pgprot)) & __supported_pte_mask);
184 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
186 pteval_t val = pte_val(pte);
189 * Chop off the NX bit (if present), and add the NX portion of
190 * the newprot (if present):
192 val &= _PAGE_CHG_MASK & ~_PAGE_NX;
193 val |= pgprot_val(newprot) & __supported_pte_mask;
195 return __pte(val);
198 #define pte_pgprot(x) __pgprot(pte_val(x) & (0xfff | _PAGE_NX))
200 #define canon_pgprot(p) __pgprot(pgprot_val(p) & __supported_pte_mask)
202 #ifdef CONFIG_PARAVIRT
203 #include <asm/paravirt.h>
204 #else /* !CONFIG_PARAVIRT */
205 #define set_pte(ptep, pte) native_set_pte(ptep, pte)
206 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte)
208 #define set_pte_present(mm, addr, ptep, pte) \
209 native_set_pte_present(mm, addr, ptep, pte)
210 #define set_pte_atomic(ptep, pte) \
211 native_set_pte_atomic(ptep, pte)
213 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd)
215 #ifndef __PAGETABLE_PUD_FOLDED
216 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd)
217 #define pgd_clear(pgd) native_pgd_clear(pgd)
218 #endif
220 #ifndef set_pud
221 # define set_pud(pudp, pud) native_set_pud(pudp, pud)
222 #endif
224 #ifndef __PAGETABLE_PMD_FOLDED
225 #define pud_clear(pud) native_pud_clear(pud)
226 #endif
228 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep)
229 #define pmd_clear(pmd) native_pmd_clear(pmd)
231 #define pte_update(mm, addr, ptep) do { } while (0)
232 #define pte_update_defer(mm, addr, ptep) do { } while (0)
233 #endif /* CONFIG_PARAVIRT */
235 #endif /* __ASSEMBLY__ */
237 #ifdef CONFIG_X86_32
238 # include "pgtable_32.h"
239 #else
240 # include "pgtable_64.h"
241 #endif
243 #ifndef __ASSEMBLY__
245 enum {
246 PG_LEVEL_NONE,
247 PG_LEVEL_4K,
248 PG_LEVEL_2M,
249 PG_LEVEL_1G,
253 * Helper function that returns the kernel pagetable entry controlling
254 * the virtual address 'address'. NULL means no pagetable entry present.
255 * NOTE: the return type is pte_t but if the pmd is PSE then we return it
256 * as a pte too.
258 extern pte_t *lookup_address(unsigned long address, unsigned int *level);
260 /* local pte updates need not use xchg for locking */
261 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
263 pte_t res = *ptep;
265 /* Pure native function needs no input for mm, addr */
266 native_pte_clear(NULL, 0, ptep);
267 return res;
270 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr,
271 pte_t *ptep , pte_t pte)
273 native_set_pte(ptep, pte);
276 #ifndef CONFIG_PARAVIRT
278 * Rules for using pte_update - it must be called after any PTE update which
279 * has not been done using the set_pte / clear_pte interfaces. It is used by
280 * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE
281 * updates should either be sets, clears, or set_pte_atomic for P->P
282 * transitions, which means this hook should only be called for user PTEs.
283 * This hook implies a P->P protection or access change has taken place, which
284 * requires a subsequent TLB flush. The notification can optionally be delayed
285 * until the TLB flush event by using the pte_update_defer form of the
286 * interface, but care must be taken to assure that the flush happens while
287 * still holding the same page table lock so that the shadow and primary pages
288 * do not become out of sync on SMP.
290 #define pte_update(mm, addr, ptep) do { } while (0)
291 #define pte_update_defer(mm, addr, ptep) do { } while (0)
292 #endif
295 * We only update the dirty/accessed state if we set
296 * the dirty bit by hand in the kernel, since the hardware
297 * will do the accessed bit for us, and we don't want to
298 * race with other CPU's that might be updating the dirty
299 * bit at the same time.
301 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
302 #define ptep_set_access_flags(vma, address, ptep, entry, dirty) \
303 ({ \
304 int __changed = !pte_same(*(ptep), entry); \
305 if (__changed && dirty) { \
306 *ptep = entry; \
307 pte_update_defer((vma)->vm_mm, (address), (ptep)); \
308 flush_tlb_page(vma, address); \
310 __changed; \
313 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
314 #define ptep_test_and_clear_young(vma, addr, ptep) ({ \
315 int __ret = 0; \
316 if (pte_young(*(ptep))) \
317 __ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, \
318 &(ptep)->pte); \
319 if (__ret) \
320 pte_update((vma)->vm_mm, addr, ptep); \
321 __ret; \
324 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
325 #define ptep_clear_flush_young(vma, address, ptep) \
326 ({ \
327 int __young; \
328 __young = ptep_test_and_clear_young((vma), (address), (ptep)); \
329 if (__young) \
330 flush_tlb_page(vma, address); \
331 __young; \
334 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
335 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
337 pte_t pte = native_ptep_get_and_clear(ptep);
338 pte_update(mm, addr, ptep);
339 return pte;
342 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
343 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full)
345 pte_t pte;
346 if (full) {
348 * Full address destruction in progress; paravirt does not
349 * care about updates and native needs no locking
351 pte = native_local_ptep_get_and_clear(ptep);
352 } else {
353 pte = ptep_get_and_clear(mm, addr, ptep);
355 return pte;
358 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
359 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
361 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte);
362 pte_update(mm, addr, ptep);
365 #include <asm-generic/pgtable.h>
366 #endif /* __ASSEMBLY__ */
368 #endif /* _ASM_X86_PGTABLE_H */