1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
31 #define MLOG_MASK_PREFIX ML_FILE_IO
32 #include <cluster/masklog.h>
39 #include "extent_map.h"
47 #include "buffer_head_io.h"
49 static int ocfs2_symlink_get_block(struct inode
*inode
, sector_t iblock
,
50 struct buffer_head
*bh_result
, int create
)
54 struct ocfs2_dinode
*fe
= NULL
;
55 struct buffer_head
*bh
= NULL
;
56 struct buffer_head
*buffer_cache_bh
= NULL
;
57 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
60 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode
,
61 (unsigned long long)iblock
, bh_result
, create
);
63 BUG_ON(ocfs2_inode_is_fast_symlink(inode
));
65 if ((iblock
<< inode
->i_sb
->s_blocksize_bits
) > PATH_MAX
+ 1) {
66 mlog(ML_ERROR
, "block offset > PATH_MAX: %llu",
67 (unsigned long long)iblock
);
71 status
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
),
72 OCFS2_I(inode
)->ip_blkno
,
73 &bh
, OCFS2_BH_CACHED
, inode
);
78 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
80 if (!OCFS2_IS_VALID_DINODE(fe
)) {
81 mlog(ML_ERROR
, "Invalid dinode #%llu: signature = %.*s\n",
82 (unsigned long long)le64_to_cpu(fe
->i_blkno
), 7,
87 if ((u64
)iblock
>= ocfs2_clusters_to_blocks(inode
->i_sb
,
88 le32_to_cpu(fe
->i_clusters
))) {
89 mlog(ML_ERROR
, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock
);
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result
) && ocfs2_inode_is_new(inode
)) {
97 u64 blkno
= le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) +
99 buffer_cache_bh
= sb_getblk(osb
->sb
, blkno
);
100 if (!buffer_cache_bh
) {
101 mlog(ML_ERROR
, "couldn't getblock for symlink!\n");
105 /* we haven't locked out transactions, so a commit
106 * could've happened. Since we've got a reference on
107 * the bh, even if it commits while we're doing the
108 * copy, the data is still good. */
109 if (buffer_jbd(buffer_cache_bh
)
110 && ocfs2_inode_is_new(inode
)) {
111 kaddr
= kmap_atomic(bh_result
->b_page
, KM_USER0
);
113 mlog(ML_ERROR
, "couldn't kmap!\n");
116 memcpy(kaddr
+ (bh_result
->b_size
* iblock
),
117 buffer_cache_bh
->b_data
,
119 kunmap_atomic(kaddr
, KM_USER0
);
120 set_buffer_uptodate(bh_result
);
122 brelse(buffer_cache_bh
);
125 map_bh(bh_result
, inode
->i_sb
,
126 le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) + iblock
);
138 static int ocfs2_get_block(struct inode
*inode
, sector_t iblock
,
139 struct buffer_head
*bh_result
, int create
)
142 unsigned int ext_flags
;
143 u64 max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
144 u64 p_blkno
, count
, past_eof
;
145 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
147 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode
,
148 (unsigned long long)iblock
, bh_result
, create
);
150 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
)
151 mlog(ML_NOTICE
, "get_block on system inode 0x%p (%lu)\n",
152 inode
, inode
->i_ino
);
154 if (S_ISLNK(inode
->i_mode
)) {
155 /* this always does I/O for some reason. */
156 err
= ocfs2_symlink_get_block(inode
, iblock
, bh_result
, create
);
160 err
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
, &count
,
163 mlog(ML_ERROR
, "Error %d from get_blocks(0x%p, %llu, 1, "
164 "%llu, NULL)\n", err
, inode
, (unsigned long long)iblock
,
165 (unsigned long long)p_blkno
);
169 if (max_blocks
< count
)
173 * ocfs2 never allocates in this function - the only time we
174 * need to use BH_New is when we're extending i_size on a file
175 * system which doesn't support holes, in which case BH_New
176 * allows block_prepare_write() to zero.
178 mlog_bug_on_msg(create
&& p_blkno
== 0 && ocfs2_sparse_alloc(osb
),
179 "ino %lu, iblock %llu\n", inode
->i_ino
,
180 (unsigned long long)iblock
);
182 /* Treat the unwritten extent as a hole for zeroing purposes. */
183 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
184 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
186 bh_result
->b_size
= count
<< inode
->i_blkbits
;
188 if (!ocfs2_sparse_alloc(osb
)) {
192 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
193 (unsigned long long)iblock
,
194 (unsigned long long)p_blkno
,
195 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
196 mlog(ML_ERROR
, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode
), OCFS2_I(inode
)->ip_clusters
);
200 past_eof
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
201 mlog(0, "Inode %lu, past_eof = %llu\n", inode
->i_ino
,
202 (unsigned long long)past_eof
);
204 if (create
&& (iblock
>= past_eof
))
205 set_buffer_new(bh_result
);
216 int ocfs2_read_inline_data(struct inode
*inode
, struct page
*page
,
217 struct buffer_head
*di_bh
)
221 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
223 if (!(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
)) {
224 ocfs2_error(inode
->i_sb
, "Inode %llu lost inline data flag",
225 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
229 size
= i_size_read(inode
);
231 if (size
> PAGE_CACHE_SIZE
||
232 size
> ocfs2_max_inline_data(inode
->i_sb
)) {
233 ocfs2_error(inode
->i_sb
,
234 "Inode %llu has with inline data has bad size: %Lu",
235 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
236 (unsigned long long)size
);
240 kaddr
= kmap_atomic(page
, KM_USER0
);
242 memcpy(kaddr
, di
->id2
.i_data
.id_data
, size
);
243 /* Clear the remaining part of the page */
244 memset(kaddr
+ size
, 0, PAGE_CACHE_SIZE
- size
);
245 flush_dcache_page(page
);
246 kunmap_atomic(kaddr
, KM_USER0
);
248 SetPageUptodate(page
);
253 static int ocfs2_readpage_inline(struct inode
*inode
, struct page
*page
)
256 struct buffer_head
*di_bh
= NULL
;
257 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
259 BUG_ON(!PageLocked(page
));
260 BUG_ON(!OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
);
262 ret
= ocfs2_read_block(osb
, OCFS2_I(inode
)->ip_blkno
, &di_bh
,
263 OCFS2_BH_CACHED
, inode
);
269 ret
= ocfs2_read_inline_data(inode
, page
, di_bh
);
277 static int ocfs2_readpage(struct file
*file
, struct page
*page
)
279 struct inode
*inode
= page
->mapping
->host
;
280 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
281 loff_t start
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
284 mlog_entry("(0x%p, %lu)\n", file
, (page
? page
->index
: 0));
286 ret
= ocfs2_inode_lock_with_page(inode
, NULL
, 0, page
);
288 if (ret
== AOP_TRUNCATED_PAGE
)
294 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
295 ret
= AOP_TRUNCATED_PAGE
;
296 goto out_inode_unlock
;
300 * i_size might have just been updated as we grabed the meta lock. We
301 * might now be discovering a truncate that hit on another node.
302 * block_read_full_page->get_block freaks out if it is asked to read
303 * beyond the end of a file, so we check here. Callers
304 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
305 * and notice that the page they just read isn't needed.
307 * XXX sys_readahead() seems to get that wrong?
309 if (start
>= i_size_read(inode
)) {
310 zero_user_page(page
, 0, PAGE_SIZE
, KM_USER0
);
311 SetPageUptodate(page
);
316 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
317 ret
= ocfs2_readpage_inline(inode
, page
);
319 ret
= block_read_full_page(page
, ocfs2_get_block
);
323 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
325 ocfs2_inode_unlock(inode
, 0);
334 * This is used only for read-ahead. Failures or difficult to handle
335 * situations are safe to ignore.
337 * Right now, we don't bother with BH_Boundary - in-inode extent lists
338 * are quite large (243 extents on 4k blocks), so most inodes don't
339 * grow out to a tree. If need be, detecting boundary extents could
340 * trivially be added in a future version of ocfs2_get_block().
342 static int ocfs2_readpages(struct file
*filp
, struct address_space
*mapping
,
343 struct list_head
*pages
, unsigned nr_pages
)
346 struct inode
*inode
= mapping
->host
;
347 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
352 * Use the nonblocking flag for the dlm code to avoid page
353 * lock inversion, but don't bother with retrying.
355 ret
= ocfs2_inode_lock_full(inode
, NULL
, 0, OCFS2_LOCK_NONBLOCK
);
359 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
360 ocfs2_inode_unlock(inode
, 0);
365 * Don't bother with inline-data. There isn't anything
366 * to read-ahead in that case anyway...
368 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
372 * Check whether a remote node truncated this file - we just
373 * drop out in that case as it's not worth handling here.
375 last
= list_entry(pages
->prev
, struct page
, lru
);
376 start
= (loff_t
)last
->index
<< PAGE_CACHE_SHIFT
;
377 if (start
>= i_size_read(inode
))
380 err
= mpage_readpages(mapping
, pages
, nr_pages
, ocfs2_get_block
);
383 up_read(&oi
->ip_alloc_sem
);
384 ocfs2_inode_unlock(inode
, 0);
389 /* Note: Because we don't support holes, our allocation has
390 * already happened (allocation writes zeros to the file data)
391 * so we don't have to worry about ordered writes in
394 * ->writepage is called during the process of invalidating the page cache
395 * during blocked lock processing. It can't block on any cluster locks
396 * to during block mapping. It's relying on the fact that the block
397 * mapping can't have disappeared under the dirty pages that it is
398 * being asked to write back.
400 static int ocfs2_writepage(struct page
*page
, struct writeback_control
*wbc
)
404 mlog_entry("(0x%p)\n", page
);
406 ret
= block_write_full_page(page
, ocfs2_get_block
, wbc
);
414 * This is called from ocfs2_write_zero_page() which has handled it's
415 * own cluster locking and has ensured allocation exists for those
416 * blocks to be written.
418 int ocfs2_prepare_write_nolock(struct inode
*inode
, struct page
*page
,
419 unsigned from
, unsigned to
)
423 ret
= block_prepare_write(page
, from
, to
, ocfs2_get_block
);
428 /* Taken from ext3. We don't necessarily need the full blown
429 * functionality yet, but IMHO it's better to cut and paste the whole
430 * thing so we can avoid introducing our own bugs (and easily pick up
431 * their fixes when they happen) --Mark */
432 int walk_page_buffers( handle_t
*handle
,
433 struct buffer_head
*head
,
437 int (*fn
)( handle_t
*handle
,
438 struct buffer_head
*bh
))
440 struct buffer_head
*bh
;
441 unsigned block_start
, block_end
;
442 unsigned blocksize
= head
->b_size
;
444 struct buffer_head
*next
;
446 for ( bh
= head
, block_start
= 0;
447 ret
== 0 && (bh
!= head
|| !block_start
);
448 block_start
= block_end
, bh
= next
)
450 next
= bh
->b_this_page
;
451 block_end
= block_start
+ blocksize
;
452 if (block_end
<= from
|| block_start
>= to
) {
453 if (partial
&& !buffer_uptodate(bh
))
457 err
= (*fn
)(handle
, bh
);
464 handle_t
*ocfs2_start_walk_page_trans(struct inode
*inode
,
469 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
470 handle_t
*handle
= NULL
;
473 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
480 if (ocfs2_should_order_data(inode
)) {
481 ret
= walk_page_buffers(handle
,
484 ocfs2_journal_dirty_data
);
491 ocfs2_commit_trans(osb
, handle
);
492 handle
= ERR_PTR(ret
);
497 static sector_t
ocfs2_bmap(struct address_space
*mapping
, sector_t block
)
502 struct inode
*inode
= mapping
->host
;
504 mlog_entry("(block = %llu)\n", (unsigned long long)block
);
506 /* We don't need to lock journal system files, since they aren't
507 * accessed concurrently from multiple nodes.
509 if (!INODE_JOURNAL(inode
)) {
510 err
= ocfs2_inode_lock(inode
, NULL
, 0);
516 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
519 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
520 err
= ocfs2_extent_map_get_blocks(inode
, block
, &p_blkno
, NULL
,
523 if (!INODE_JOURNAL(inode
)) {
524 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
525 ocfs2_inode_unlock(inode
, 0);
529 mlog(ML_ERROR
, "get_blocks() failed, block = %llu\n",
530 (unsigned long long)block
);
536 status
= err
? 0 : p_blkno
;
538 mlog_exit((int)status
);
544 * TODO: Make this into a generic get_blocks function.
546 * From do_direct_io in direct-io.c:
547 * "So what we do is to permit the ->get_blocks function to populate
548 * bh.b_size with the size of IO which is permitted at this offset and
551 * This function is called directly from get_more_blocks in direct-io.c.
553 * called like this: dio->get_blocks(dio->inode, fs_startblk,
554 * fs_count, map_bh, dio->rw == WRITE);
556 static int ocfs2_direct_IO_get_blocks(struct inode
*inode
, sector_t iblock
,
557 struct buffer_head
*bh_result
, int create
)
560 u64 p_blkno
, inode_blocks
, contig_blocks
;
561 unsigned int ext_flags
;
562 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
563 unsigned long max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
565 /* This function won't even be called if the request isn't all
566 * nicely aligned and of the right size, so there's no need
567 * for us to check any of that. */
569 inode_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
572 * Any write past EOF is not allowed because we'd be extending.
574 if (create
&& (iblock
+ max_blocks
) > inode_blocks
) {
579 /* This figures out the size of the next contiguous block, and
580 * our logical offset */
581 ret
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
,
582 &contig_blocks
, &ext_flags
);
584 mlog(ML_ERROR
, "get_blocks() failed iblock=%llu\n",
585 (unsigned long long)iblock
);
590 if (!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)) && !p_blkno
) {
591 ocfs2_error(inode
->i_sb
,
592 "Inode %llu has a hole at block %llu\n",
593 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
594 (unsigned long long)iblock
);
600 * get_more_blocks() expects us to describe a hole by clearing
601 * the mapped bit on bh_result().
603 * Consider an unwritten extent as a hole.
605 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
606 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
609 * ocfs2_prepare_inode_for_write() should have caught
610 * the case where we'd be filling a hole and triggered
611 * a buffered write instead.
619 clear_buffer_mapped(bh_result
);
622 /* make sure we don't map more than max_blocks blocks here as
623 that's all the kernel will handle at this point. */
624 if (max_blocks
< contig_blocks
)
625 contig_blocks
= max_blocks
;
626 bh_result
->b_size
= contig_blocks
<< blocksize_bits
;
632 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
633 * particularly interested in the aio/dio case. Like the core uses
634 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
635 * truncation on another.
637 static void ocfs2_dio_end_io(struct kiocb
*iocb
,
642 struct inode
*inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
645 /* this io's submitter should not have unlocked this before we could */
646 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb
));
648 ocfs2_iocb_clear_rw_locked(iocb
);
650 level
= ocfs2_iocb_rw_locked_level(iocb
);
652 up_read(&inode
->i_alloc_sem
);
653 ocfs2_rw_unlock(inode
, level
);
657 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
658 * from ext3. PageChecked() bits have been removed as OCFS2 does not
659 * do journalled data.
661 static void ocfs2_invalidatepage(struct page
*page
, unsigned long offset
)
663 journal_t
*journal
= OCFS2_SB(page
->mapping
->host
->i_sb
)->journal
->j_journal
;
665 journal_invalidatepage(journal
, page
, offset
);
668 static int ocfs2_releasepage(struct page
*page
, gfp_t wait
)
670 journal_t
*journal
= OCFS2_SB(page
->mapping
->host
->i_sb
)->journal
->j_journal
;
672 if (!page_has_buffers(page
))
674 return journal_try_to_free_buffers(journal
, page
, wait
);
677 static ssize_t
ocfs2_direct_IO(int rw
,
679 const struct iovec
*iov
,
681 unsigned long nr_segs
)
683 struct file
*file
= iocb
->ki_filp
;
684 struct inode
*inode
= file
->f_path
.dentry
->d_inode
->i_mapping
->host
;
690 * Fallback to buffered I/O if we see an inode without
693 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
696 ret
= blockdev_direct_IO_no_locking(rw
, iocb
, inode
,
697 inode
->i_sb
->s_bdev
, iov
, offset
,
699 ocfs2_direct_IO_get_blocks
,
706 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super
*osb
,
711 unsigned int cluster_start
= 0, cluster_end
= PAGE_CACHE_SIZE
;
713 if (unlikely(PAGE_CACHE_SHIFT
> osb
->s_clustersize_bits
)) {
716 cpp
= 1 << (PAGE_CACHE_SHIFT
- osb
->s_clustersize_bits
);
718 cluster_start
= cpos
% cpp
;
719 cluster_start
= cluster_start
<< osb
->s_clustersize_bits
;
721 cluster_end
= cluster_start
+ osb
->s_clustersize
;
724 BUG_ON(cluster_start
> PAGE_SIZE
);
725 BUG_ON(cluster_end
> PAGE_SIZE
);
728 *start
= cluster_start
;
734 * 'from' and 'to' are the region in the page to avoid zeroing.
736 * If pagesize > clustersize, this function will avoid zeroing outside
737 * of the cluster boundary.
739 * from == to == 0 is code for "zero the entire cluster region"
741 static void ocfs2_clear_page_regions(struct page
*page
,
742 struct ocfs2_super
*osb
, u32 cpos
,
743 unsigned from
, unsigned to
)
746 unsigned int cluster_start
, cluster_end
;
748 ocfs2_figure_cluster_boundaries(osb
, cpos
, &cluster_start
, &cluster_end
);
750 kaddr
= kmap_atomic(page
, KM_USER0
);
753 if (from
> cluster_start
)
754 memset(kaddr
+ cluster_start
, 0, from
- cluster_start
);
755 if (to
< cluster_end
)
756 memset(kaddr
+ to
, 0, cluster_end
- to
);
758 memset(kaddr
+ cluster_start
, 0, cluster_end
- cluster_start
);
761 kunmap_atomic(kaddr
, KM_USER0
);
765 * Nonsparse file systems fully allocate before we get to the write
766 * code. This prevents ocfs2_write() from tagging the write as an
767 * allocating one, which means ocfs2_map_page_blocks() might try to
768 * read-in the blocks at the tail of our file. Avoid reading them by
769 * testing i_size against each block offset.
771 static int ocfs2_should_read_blk(struct inode
*inode
, struct page
*page
,
772 unsigned int block_start
)
774 u64 offset
= page_offset(page
) + block_start
;
776 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
779 if (i_size_read(inode
) > offset
)
786 * Some of this taken from block_prepare_write(). We already have our
787 * mapping by now though, and the entire write will be allocating or
788 * it won't, so not much need to use BH_New.
790 * This will also skip zeroing, which is handled externally.
792 int ocfs2_map_page_blocks(struct page
*page
, u64
*p_blkno
,
793 struct inode
*inode
, unsigned int from
,
794 unsigned int to
, int new)
797 struct buffer_head
*head
, *bh
, *wait
[2], **wait_bh
= wait
;
798 unsigned int block_end
, block_start
;
799 unsigned int bsize
= 1 << inode
->i_blkbits
;
801 if (!page_has_buffers(page
))
802 create_empty_buffers(page
, bsize
, 0);
804 head
= page_buffers(page
);
805 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
806 bh
= bh
->b_this_page
, block_start
+= bsize
) {
807 block_end
= block_start
+ bsize
;
809 clear_buffer_new(bh
);
812 * Ignore blocks outside of our i/o range -
813 * they may belong to unallocated clusters.
815 if (block_start
>= to
|| block_end
<= from
) {
816 if (PageUptodate(page
))
817 set_buffer_uptodate(bh
);
822 * For an allocating write with cluster size >= page
823 * size, we always write the entire page.
828 if (!buffer_mapped(bh
)) {
829 map_bh(bh
, inode
->i_sb
, *p_blkno
);
830 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
833 if (PageUptodate(page
)) {
834 if (!buffer_uptodate(bh
))
835 set_buffer_uptodate(bh
);
836 } else if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
838 ocfs2_should_read_blk(inode
, page
, block_start
) &&
839 (block_start
< from
|| block_end
> to
)) {
840 ll_rw_block(READ
, 1, &bh
);
844 *p_blkno
= *p_blkno
+ 1;
848 * If we issued read requests - let them complete.
850 while(wait_bh
> wait
) {
851 wait_on_buffer(*--wait_bh
);
852 if (!buffer_uptodate(*wait_bh
))
856 if (ret
== 0 || !new)
860 * If we get -EIO above, zero out any newly allocated blocks
861 * to avoid exposing stale data.
866 block_end
= block_start
+ bsize
;
867 if (block_end
<= from
)
869 if (block_start
>= to
)
872 zero_user_page(page
, block_start
, bh
->b_size
, KM_USER0
);
873 set_buffer_uptodate(bh
);
874 mark_buffer_dirty(bh
);
877 block_start
= block_end
;
878 bh
= bh
->b_this_page
;
879 } while (bh
!= head
);
884 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
885 #define OCFS2_MAX_CTXT_PAGES 1
887 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
890 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
893 * Describe the state of a single cluster to be written to.
895 struct ocfs2_write_cluster_desc
{
899 * Give this a unique field because c_phys eventually gets
903 unsigned c_unwritten
;
906 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc
*d
)
908 return d
->c_new
|| d
->c_unwritten
;
911 struct ocfs2_write_ctxt
{
912 /* Logical cluster position / len of write */
916 struct ocfs2_write_cluster_desc w_desc
[OCFS2_MAX_CLUSTERS_PER_PAGE
];
919 * This is true if page_size > cluster_size.
921 * It triggers a set of special cases during write which might
922 * have to deal with allocating writes to partial pages.
924 unsigned int w_large_pages
;
927 * Pages involved in this write.
929 * w_target_page is the page being written to by the user.
931 * w_pages is an array of pages which always contains
932 * w_target_page, and in the case of an allocating write with
933 * page_size < cluster size, it will contain zero'd and mapped
934 * pages adjacent to w_target_page which need to be written
935 * out in so that future reads from that region will get
938 struct page
*w_pages
[OCFS2_MAX_CTXT_PAGES
];
939 unsigned int w_num_pages
;
940 struct page
*w_target_page
;
943 * ocfs2_write_end() uses this to know what the real range to
944 * write in the target should be.
946 unsigned int w_target_from
;
947 unsigned int w_target_to
;
950 * We could use journal_current_handle() but this is cleaner,
955 struct buffer_head
*w_di_bh
;
957 struct ocfs2_cached_dealloc_ctxt w_dealloc
;
960 void ocfs2_unlock_and_free_pages(struct page
**pages
, int num_pages
)
964 for(i
= 0; i
< num_pages
; i
++) {
966 unlock_page(pages
[i
]);
967 mark_page_accessed(pages
[i
]);
968 page_cache_release(pages
[i
]);
973 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt
*wc
)
975 ocfs2_unlock_and_free_pages(wc
->w_pages
, wc
->w_num_pages
);
981 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt
**wcp
,
982 struct ocfs2_super
*osb
, loff_t pos
,
983 unsigned len
, struct buffer_head
*di_bh
)
986 struct ocfs2_write_ctxt
*wc
;
988 wc
= kzalloc(sizeof(struct ocfs2_write_ctxt
), GFP_NOFS
);
992 wc
->w_cpos
= pos
>> osb
->s_clustersize_bits
;
993 cend
= (pos
+ len
- 1) >> osb
->s_clustersize_bits
;
994 wc
->w_clen
= cend
- wc
->w_cpos
+ 1;
998 if (unlikely(PAGE_CACHE_SHIFT
> osb
->s_clustersize_bits
))
999 wc
->w_large_pages
= 1;
1001 wc
->w_large_pages
= 0;
1003 ocfs2_init_dealloc_ctxt(&wc
->w_dealloc
);
1011 * If a page has any new buffers, zero them out here, and mark them uptodate
1012 * and dirty so they'll be written out (in order to prevent uninitialised
1013 * block data from leaking). And clear the new bit.
1015 static void ocfs2_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1017 unsigned int block_start
, block_end
;
1018 struct buffer_head
*head
, *bh
;
1020 BUG_ON(!PageLocked(page
));
1021 if (!page_has_buffers(page
))
1024 bh
= head
= page_buffers(page
);
1027 block_end
= block_start
+ bh
->b_size
;
1029 if (buffer_new(bh
)) {
1030 if (block_end
> from
&& block_start
< to
) {
1031 if (!PageUptodate(page
)) {
1032 unsigned start
, end
;
1034 start
= max(from
, block_start
);
1035 end
= min(to
, block_end
);
1037 zero_user_page(page
, start
, end
- start
, KM_USER0
);
1038 set_buffer_uptodate(bh
);
1041 clear_buffer_new(bh
);
1042 mark_buffer_dirty(bh
);
1046 block_start
= block_end
;
1047 bh
= bh
->b_this_page
;
1048 } while (bh
!= head
);
1052 * Only called when we have a failure during allocating write to write
1053 * zero's to the newly allocated region.
1055 static void ocfs2_write_failure(struct inode
*inode
,
1056 struct ocfs2_write_ctxt
*wc
,
1057 loff_t user_pos
, unsigned user_len
)
1060 unsigned from
= user_pos
& (PAGE_CACHE_SIZE
- 1),
1061 to
= user_pos
+ user_len
;
1062 struct page
*tmppage
;
1064 ocfs2_zero_new_buffers(wc
->w_target_page
, from
, to
);
1066 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1067 tmppage
= wc
->w_pages
[i
];
1069 if (ocfs2_should_order_data(inode
))
1070 walk_page_buffers(wc
->w_handle
, page_buffers(tmppage
),
1072 ocfs2_journal_dirty_data
);
1074 block_commit_write(tmppage
, from
, to
);
1078 static int ocfs2_prepare_page_for_write(struct inode
*inode
, u64
*p_blkno
,
1079 struct ocfs2_write_ctxt
*wc
,
1080 struct page
*page
, u32 cpos
,
1081 loff_t user_pos
, unsigned user_len
,
1085 unsigned int map_from
= 0, map_to
= 0;
1086 unsigned int cluster_start
, cluster_end
;
1087 unsigned int user_data_from
= 0, user_data_to
= 0;
1089 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode
->i_sb
), cpos
,
1090 &cluster_start
, &cluster_end
);
1092 if (page
== wc
->w_target_page
) {
1093 map_from
= user_pos
& (PAGE_CACHE_SIZE
- 1);
1094 map_to
= map_from
+ user_len
;
1097 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1098 cluster_start
, cluster_end
,
1101 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1102 map_from
, map_to
, new);
1108 user_data_from
= map_from
;
1109 user_data_to
= map_to
;
1111 map_from
= cluster_start
;
1112 map_to
= cluster_end
;
1116 * If we haven't allocated the new page yet, we
1117 * shouldn't be writing it out without copying user
1118 * data. This is likely a math error from the caller.
1122 map_from
= cluster_start
;
1123 map_to
= cluster_end
;
1125 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1126 cluster_start
, cluster_end
, new);
1134 * Parts of newly allocated pages need to be zero'd.
1136 * Above, we have also rewritten 'to' and 'from' - as far as
1137 * the rest of the function is concerned, the entire cluster
1138 * range inside of a page needs to be written.
1140 * We can skip this if the page is up to date - it's already
1141 * been zero'd from being read in as a hole.
1143 if (new && !PageUptodate(page
))
1144 ocfs2_clear_page_regions(page
, OCFS2_SB(inode
->i_sb
),
1145 cpos
, user_data_from
, user_data_to
);
1147 flush_dcache_page(page
);
1154 * This function will only grab one clusters worth of pages.
1156 static int ocfs2_grab_pages_for_write(struct address_space
*mapping
,
1157 struct ocfs2_write_ctxt
*wc
,
1158 u32 cpos
, loff_t user_pos
, int new,
1159 struct page
*mmap_page
)
1162 unsigned long start
, target_index
, index
;
1163 struct inode
*inode
= mapping
->host
;
1165 target_index
= user_pos
>> PAGE_CACHE_SHIFT
;
1168 * Figure out how many pages we'll be manipulating here. For
1169 * non allocating write, we just change the one
1170 * page. Otherwise, we'll need a whole clusters worth.
1173 wc
->w_num_pages
= ocfs2_pages_per_cluster(inode
->i_sb
);
1174 start
= ocfs2_align_clusters_to_page_index(inode
->i_sb
, cpos
);
1176 wc
->w_num_pages
= 1;
1177 start
= target_index
;
1180 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1183 if (index
== target_index
&& mmap_page
) {
1185 * ocfs2_pagemkwrite() is a little different
1186 * and wants us to directly use the page
1189 lock_page(mmap_page
);
1191 if (mmap_page
->mapping
!= mapping
) {
1192 unlock_page(mmap_page
);
1194 * Sanity check - the locking in
1195 * ocfs2_pagemkwrite() should ensure
1196 * that this code doesn't trigger.
1203 page_cache_get(mmap_page
);
1204 wc
->w_pages
[i
] = mmap_page
;
1206 wc
->w_pages
[i
] = find_or_create_page(mapping
, index
,
1208 if (!wc
->w_pages
[i
]) {
1215 if (index
== target_index
)
1216 wc
->w_target_page
= wc
->w_pages
[i
];
1223 * Prepare a single cluster for write one cluster into the file.
1225 static int ocfs2_write_cluster(struct address_space
*mapping
,
1226 u32 phys
, unsigned int unwritten
,
1227 struct ocfs2_alloc_context
*data_ac
,
1228 struct ocfs2_alloc_context
*meta_ac
,
1229 struct ocfs2_write_ctxt
*wc
, u32 cpos
,
1230 loff_t user_pos
, unsigned user_len
)
1232 int ret
, i
, new, should_zero
= 0;
1233 u64 v_blkno
, p_blkno
;
1234 struct inode
*inode
= mapping
->host
;
1236 new = phys
== 0 ? 1 : 0;
1237 if (new || unwritten
)
1244 * This is safe to call with the page locks - it won't take
1245 * any additional semaphores or cluster locks.
1248 ret
= ocfs2_do_extend_allocation(OCFS2_SB(inode
->i_sb
), inode
,
1249 &tmp_pos
, 1, 0, wc
->w_di_bh
,
1250 wc
->w_handle
, data_ac
,
1253 * This shouldn't happen because we must have already
1254 * calculated the correct meta data allocation required. The
1255 * internal tree allocation code should know how to increase
1256 * transaction credits itself.
1258 * If need be, we could handle -EAGAIN for a
1259 * RESTART_TRANS here.
1261 mlog_bug_on_msg(ret
== -EAGAIN
,
1262 "Inode %llu: EAGAIN return during allocation.\n",
1263 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
1268 } else if (unwritten
) {
1269 ret
= ocfs2_mark_extent_written(inode
, wc
->w_di_bh
,
1270 wc
->w_handle
, cpos
, 1, phys
,
1271 meta_ac
, &wc
->w_dealloc
);
1279 v_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, cpos
);
1281 v_blkno
= user_pos
>> inode
->i_sb
->s_blocksize_bits
;
1284 * The only reason this should fail is due to an inability to
1285 * find the extent added.
1287 ret
= ocfs2_extent_map_get_blocks(inode
, v_blkno
, &p_blkno
, NULL
,
1290 ocfs2_error(inode
->i_sb
, "Corrupting extend for inode %llu, "
1291 "at logical block %llu",
1292 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1293 (unsigned long long)v_blkno
);
1297 BUG_ON(p_blkno
== 0);
1299 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1302 tmpret
= ocfs2_prepare_page_for_write(inode
, &p_blkno
, wc
,
1303 wc
->w_pages
[i
], cpos
,
1314 * We only have cleanup to do in case of allocating write.
1317 ocfs2_write_failure(inode
, wc
, user_pos
, user_len
);
1324 static int ocfs2_write_cluster_by_desc(struct address_space
*mapping
,
1325 struct ocfs2_alloc_context
*data_ac
,
1326 struct ocfs2_alloc_context
*meta_ac
,
1327 struct ocfs2_write_ctxt
*wc
,
1328 loff_t pos
, unsigned len
)
1332 unsigned int local_len
= len
;
1333 struct ocfs2_write_cluster_desc
*desc
;
1334 struct ocfs2_super
*osb
= OCFS2_SB(mapping
->host
->i_sb
);
1336 for (i
= 0; i
< wc
->w_clen
; i
++) {
1337 desc
= &wc
->w_desc
[i
];
1340 * We have to make sure that the total write passed in
1341 * doesn't extend past a single cluster.
1344 cluster_off
= pos
& (osb
->s_clustersize
- 1);
1345 if ((cluster_off
+ local_len
) > osb
->s_clustersize
)
1346 local_len
= osb
->s_clustersize
- cluster_off
;
1348 ret
= ocfs2_write_cluster(mapping
, desc
->c_phys
,
1349 desc
->c_unwritten
, data_ac
, meta_ac
,
1350 wc
, desc
->c_cpos
, pos
, local_len
);
1366 * ocfs2_write_end() wants to know which parts of the target page it
1367 * should complete the write on. It's easiest to compute them ahead of
1368 * time when a more complete view of the write is available.
1370 static void ocfs2_set_target_boundaries(struct ocfs2_super
*osb
,
1371 struct ocfs2_write_ctxt
*wc
,
1372 loff_t pos
, unsigned len
, int alloc
)
1374 struct ocfs2_write_cluster_desc
*desc
;
1376 wc
->w_target_from
= pos
& (PAGE_CACHE_SIZE
- 1);
1377 wc
->w_target_to
= wc
->w_target_from
+ len
;
1383 * Allocating write - we may have different boundaries based
1384 * on page size and cluster size.
1386 * NOTE: We can no longer compute one value from the other as
1387 * the actual write length and user provided length may be
1391 if (wc
->w_large_pages
) {
1393 * We only care about the 1st and last cluster within
1394 * our range and whether they should be zero'd or not. Either
1395 * value may be extended out to the start/end of a
1396 * newly allocated cluster.
1398 desc
= &wc
->w_desc
[0];
1399 if (ocfs2_should_zero_cluster(desc
))
1400 ocfs2_figure_cluster_boundaries(osb
,
1405 desc
= &wc
->w_desc
[wc
->w_clen
- 1];
1406 if (ocfs2_should_zero_cluster(desc
))
1407 ocfs2_figure_cluster_boundaries(osb
,
1412 wc
->w_target_from
= 0;
1413 wc
->w_target_to
= PAGE_CACHE_SIZE
;
1418 * Populate each single-cluster write descriptor in the write context
1419 * with information about the i/o to be done.
1421 * Returns the number of clusters that will have to be allocated, as
1422 * well as a worst case estimate of the number of extent records that
1423 * would have to be created during a write to an unwritten region.
1425 static int ocfs2_populate_write_desc(struct inode
*inode
,
1426 struct ocfs2_write_ctxt
*wc
,
1427 unsigned int *clusters_to_alloc
,
1428 unsigned int *extents_to_split
)
1431 struct ocfs2_write_cluster_desc
*desc
;
1432 unsigned int num_clusters
= 0;
1433 unsigned int ext_flags
= 0;
1437 *clusters_to_alloc
= 0;
1438 *extents_to_split
= 0;
1440 for (i
= 0; i
< wc
->w_clen
; i
++) {
1441 desc
= &wc
->w_desc
[i
];
1442 desc
->c_cpos
= wc
->w_cpos
+ i
;
1444 if (num_clusters
== 0) {
1446 * Need to look up the next extent record.
1448 ret
= ocfs2_get_clusters(inode
, desc
->c_cpos
, &phys
,
1449 &num_clusters
, &ext_flags
);
1456 * Assume worst case - that we're writing in
1457 * the middle of the extent.
1459 * We can assume that the write proceeds from
1460 * left to right, in which case the extent
1461 * insert code is smart enough to coalesce the
1462 * next splits into the previous records created.
1464 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
1465 *extents_to_split
= *extents_to_split
+ 2;
1468 * Only increment phys if it doesn't describe
1474 desc
->c_phys
= phys
;
1477 *clusters_to_alloc
= *clusters_to_alloc
+ 1;
1479 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
1480 desc
->c_unwritten
= 1;
1490 static int ocfs2_write_begin_inline(struct address_space
*mapping
,
1491 struct inode
*inode
,
1492 struct ocfs2_write_ctxt
*wc
)
1495 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1498 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1500 page
= find_or_create_page(mapping
, 0, GFP_NOFS
);
1507 * If we don't set w_num_pages then this page won't get unlocked
1508 * and freed on cleanup of the write context.
1510 wc
->w_pages
[0] = wc
->w_target_page
= page
;
1511 wc
->w_num_pages
= 1;
1513 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1514 if (IS_ERR(handle
)) {
1515 ret
= PTR_ERR(handle
);
1520 ret
= ocfs2_journal_access(handle
, inode
, wc
->w_di_bh
,
1521 OCFS2_JOURNAL_ACCESS_WRITE
);
1523 ocfs2_commit_trans(osb
, handle
);
1529 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
1530 ocfs2_set_inode_data_inline(inode
, di
);
1532 if (!PageUptodate(page
)) {
1533 ret
= ocfs2_read_inline_data(inode
, page
, wc
->w_di_bh
);
1535 ocfs2_commit_trans(osb
, handle
);
1541 wc
->w_handle
= handle
;
1546 int ocfs2_size_fits_inline_data(struct buffer_head
*di_bh
, u64 new_size
)
1548 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1550 if (new_size
<= le16_to_cpu(di
->id2
.i_data
.id_count
))
1555 static int ocfs2_try_to_write_inline_data(struct address_space
*mapping
,
1556 struct inode
*inode
, loff_t pos
,
1557 unsigned len
, struct page
*mmap_page
,
1558 struct ocfs2_write_ctxt
*wc
)
1560 int ret
, written
= 0;
1561 loff_t end
= pos
+ len
;
1562 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1564 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1565 (unsigned long long)oi
->ip_blkno
, len
, (unsigned long long)pos
,
1566 oi
->ip_dyn_features
);
1569 * Handle inodes which already have inline data 1st.
1571 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1572 if (mmap_page
== NULL
&&
1573 ocfs2_size_fits_inline_data(wc
->w_di_bh
, end
))
1574 goto do_inline_write
;
1577 * The write won't fit - we have to give this inode an
1578 * inline extent list now.
1580 ret
= ocfs2_convert_inline_data_to_extents(inode
, wc
->w_di_bh
);
1587 * Check whether the inode can accept inline data.
1589 if (oi
->ip_clusters
!= 0 || i_size_read(inode
) != 0)
1593 * Check whether the write can fit.
1595 if (mmap_page
|| end
> ocfs2_max_inline_data(inode
->i_sb
))
1599 ret
= ocfs2_write_begin_inline(mapping
, inode
, wc
);
1606 * This signals to the caller that the data can be written
1611 return written
? written
: ret
;
1615 * This function only does anything for file systems which can't
1616 * handle sparse files.
1618 * What we want to do here is fill in any hole between the current end
1619 * of allocation and the end of our write. That way the rest of the
1620 * write path can treat it as an non-allocating write, which has no
1621 * special case code for sparse/nonsparse files.
1623 static int ocfs2_expand_nonsparse_inode(struct inode
*inode
, loff_t pos
,
1625 struct ocfs2_write_ctxt
*wc
)
1628 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1629 loff_t newsize
= pos
+ len
;
1631 if (ocfs2_sparse_alloc(osb
))
1634 if (newsize
<= i_size_read(inode
))
1637 ret
= ocfs2_extend_no_holes(inode
, newsize
, newsize
- len
);
1644 int ocfs2_write_begin_nolock(struct address_space
*mapping
,
1645 loff_t pos
, unsigned len
, unsigned flags
,
1646 struct page
**pagep
, void **fsdata
,
1647 struct buffer_head
*di_bh
, struct page
*mmap_page
)
1649 int ret
, credits
= OCFS2_INODE_UPDATE_CREDITS
;
1650 unsigned int clusters_to_alloc
, extents_to_split
;
1651 struct ocfs2_write_ctxt
*wc
;
1652 struct inode
*inode
= mapping
->host
;
1653 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1654 struct ocfs2_dinode
*di
;
1655 struct ocfs2_alloc_context
*data_ac
= NULL
;
1656 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1659 ret
= ocfs2_alloc_write_ctxt(&wc
, osb
, pos
, len
, di_bh
);
1665 if (ocfs2_supports_inline_data(osb
)) {
1666 ret
= ocfs2_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1678 ret
= ocfs2_expand_nonsparse_inode(inode
, pos
, len
, wc
);
1684 ret
= ocfs2_populate_write_desc(inode
, wc
, &clusters_to_alloc
,
1691 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1694 * We set w_target_from, w_target_to here so that
1695 * ocfs2_write_end() knows which range in the target page to
1696 * write out. An allocation requires that we write the entire
1699 if (clusters_to_alloc
|| extents_to_split
) {
1701 * XXX: We are stretching the limits of
1702 * ocfs2_lock_allocators(). It greatly over-estimates
1703 * the work to be done.
1705 ret
= ocfs2_lock_allocators(inode
, di
, clusters_to_alloc
,
1706 extents_to_split
, &data_ac
, &meta_ac
);
1712 credits
= ocfs2_calc_extend_credits(inode
->i_sb
, di
,
1717 ocfs2_set_target_boundaries(osb
, wc
, pos
, len
,
1718 clusters_to_alloc
+ extents_to_split
);
1720 handle
= ocfs2_start_trans(osb
, credits
);
1721 if (IS_ERR(handle
)) {
1722 ret
= PTR_ERR(handle
);
1727 wc
->w_handle
= handle
;
1730 * We don't want this to fail in ocfs2_write_end(), so do it
1733 ret
= ocfs2_journal_access(handle
, inode
, wc
->w_di_bh
,
1734 OCFS2_JOURNAL_ACCESS_WRITE
);
1741 * Fill our page array first. That way we've grabbed enough so
1742 * that we can zero and flush if we error after adding the
1745 ret
= ocfs2_grab_pages_for_write(mapping
, wc
, wc
->w_cpos
, pos
,
1746 clusters_to_alloc
+ extents_to_split
,
1753 ret
= ocfs2_write_cluster_by_desc(mapping
, data_ac
, meta_ac
, wc
, pos
,
1761 ocfs2_free_alloc_context(data_ac
);
1763 ocfs2_free_alloc_context(meta_ac
);
1766 *pagep
= wc
->w_target_page
;
1770 ocfs2_commit_trans(osb
, handle
);
1773 ocfs2_free_write_ctxt(wc
);
1776 ocfs2_free_alloc_context(data_ac
);
1778 ocfs2_free_alloc_context(meta_ac
);
1782 static int ocfs2_write_begin(struct file
*file
, struct address_space
*mapping
,
1783 loff_t pos
, unsigned len
, unsigned flags
,
1784 struct page
**pagep
, void **fsdata
)
1787 struct buffer_head
*di_bh
= NULL
;
1788 struct inode
*inode
= mapping
->host
;
1790 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1797 * Take alloc sem here to prevent concurrent lookups. That way
1798 * the mapping, zeroing and tree manipulation within
1799 * ocfs2_write() will be safe against ->readpage(). This
1800 * should also serve to lock out allocation from a shared
1803 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1805 ret
= ocfs2_write_begin_nolock(mapping
, pos
, len
, flags
, pagep
,
1806 fsdata
, di_bh
, NULL
);
1817 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1820 ocfs2_inode_unlock(inode
, 1);
1825 static void ocfs2_write_end_inline(struct inode
*inode
, loff_t pos
,
1826 unsigned len
, unsigned *copied
,
1827 struct ocfs2_dinode
*di
,
1828 struct ocfs2_write_ctxt
*wc
)
1832 if (unlikely(*copied
< len
)) {
1833 if (!PageUptodate(wc
->w_target_page
)) {
1839 kaddr
= kmap_atomic(wc
->w_target_page
, KM_USER0
);
1840 memcpy(di
->id2
.i_data
.id_data
+ pos
, kaddr
+ pos
, *copied
);
1841 kunmap_atomic(kaddr
, KM_USER0
);
1843 mlog(0, "Data written to inode at offset %llu. "
1844 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1845 (unsigned long long)pos
, *copied
,
1846 le16_to_cpu(di
->id2
.i_data
.id_count
),
1847 le16_to_cpu(di
->i_dyn_features
));
1850 int ocfs2_write_end_nolock(struct address_space
*mapping
,
1851 loff_t pos
, unsigned len
, unsigned copied
,
1852 struct page
*page
, void *fsdata
)
1855 unsigned from
, to
, start
= pos
& (PAGE_CACHE_SIZE
- 1);
1856 struct inode
*inode
= mapping
->host
;
1857 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1858 struct ocfs2_write_ctxt
*wc
= fsdata
;
1859 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1860 handle_t
*handle
= wc
->w_handle
;
1861 struct page
*tmppage
;
1863 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1864 ocfs2_write_end_inline(inode
, pos
, len
, &copied
, di
, wc
);
1865 goto out_write_size
;
1868 if (unlikely(copied
< len
)) {
1869 if (!PageUptodate(wc
->w_target_page
))
1872 ocfs2_zero_new_buffers(wc
->w_target_page
, start
+copied
,
1875 flush_dcache_page(wc
->w_target_page
);
1877 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1878 tmppage
= wc
->w_pages
[i
];
1880 if (tmppage
== wc
->w_target_page
) {
1881 from
= wc
->w_target_from
;
1882 to
= wc
->w_target_to
;
1884 BUG_ON(from
> PAGE_CACHE_SIZE
||
1885 to
> PAGE_CACHE_SIZE
||
1889 * Pages adjacent to the target (if any) imply
1890 * a hole-filling write in which case we want
1891 * to flush their entire range.
1894 to
= PAGE_CACHE_SIZE
;
1897 if (ocfs2_should_order_data(inode
))
1898 walk_page_buffers(wc
->w_handle
, page_buffers(tmppage
),
1900 ocfs2_journal_dirty_data
);
1902 block_commit_write(tmppage
, from
, to
);
1907 if (pos
> inode
->i_size
) {
1908 i_size_write(inode
, pos
);
1909 mark_inode_dirty(inode
);
1911 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
1912 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
1913 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1914 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
1915 di
->i_mtime_nsec
= di
->i_ctime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
1916 ocfs2_journal_dirty(handle
, wc
->w_di_bh
);
1918 ocfs2_commit_trans(osb
, handle
);
1920 ocfs2_run_deallocs(osb
, &wc
->w_dealloc
);
1922 ocfs2_free_write_ctxt(wc
);
1927 static int ocfs2_write_end(struct file
*file
, struct address_space
*mapping
,
1928 loff_t pos
, unsigned len
, unsigned copied
,
1929 struct page
*page
, void *fsdata
)
1932 struct inode
*inode
= mapping
->host
;
1934 ret
= ocfs2_write_end_nolock(mapping
, pos
, len
, copied
, page
, fsdata
);
1936 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1937 ocfs2_inode_unlock(inode
, 1);
1942 const struct address_space_operations ocfs2_aops
= {
1943 .readpage
= ocfs2_readpage
,
1944 .readpages
= ocfs2_readpages
,
1945 .writepage
= ocfs2_writepage
,
1946 .write_begin
= ocfs2_write_begin
,
1947 .write_end
= ocfs2_write_end
,
1949 .sync_page
= block_sync_page
,
1950 .direct_IO
= ocfs2_direct_IO
,
1951 .invalidatepage
= ocfs2_invalidatepage
,
1952 .releasepage
= ocfs2_releasepage
,
1953 .migratepage
= buffer_migrate_page
,