2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
67 #define HASH_MASK (NR_HASH - 1)
69 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
72 * order without overlap. There may be several bio's per stripe+device, and
73 * a bio could span several devices.
74 * When walking this list for a particular stripe+device, we must never proceed
75 * beyond a bio that extends past this device, as the next bio might no longer
77 * This macro is used to determine the 'next' bio in the list, given the sector
78 * of the current stripe+device
80 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 * The following can be used to debug the driver
84 #define RAID5_PARANOIA 1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 # define CHECK_DEVLOCK()
96 #if !RAID6_USE_EMPTY_ZERO_PAGE
97 /* In .bss so it's zeroed */
98 const char raid6_empty_zero_page
[PAGE_SIZE
] __attribute__((aligned(256)));
101 static inline int raid6_next_disk(int disk
, int raid_disks
)
104 return (disk
< raid_disks
) ? disk
: 0;
107 static void return_io(struct bio
*return_bi
)
109 struct bio
*bi
= return_bi
;
111 int bytes
= bi
->bi_size
;
113 return_bi
= bi
->bi_next
;
116 bi
->bi_end_io(bi
, bytes
,
117 test_bit(BIO_UPTODATE
, &bi
->bi_flags
)
123 static void print_raid5_conf (raid5_conf_t
*conf
);
125 static void __release_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
)
127 if (atomic_dec_and_test(&sh
->count
)) {
128 BUG_ON(!list_empty(&sh
->lru
));
129 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
130 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
131 if (test_bit(STRIPE_DELAYED
, &sh
->state
)) {
132 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
133 blk_plug_device(conf
->mddev
->queue
);
134 } else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
135 sh
->bm_seq
- conf
->seq_write
> 0) {
136 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
137 blk_plug_device(conf
->mddev
->queue
);
139 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
140 list_add_tail(&sh
->lru
, &conf
->handle_list
);
142 md_wakeup_thread(conf
->mddev
->thread
);
144 BUG_ON(sh
->ops
.pending
);
145 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
146 atomic_dec(&conf
->preread_active_stripes
);
147 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
148 md_wakeup_thread(conf
->mddev
->thread
);
150 atomic_dec(&conf
->active_stripes
);
151 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
152 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
153 wake_up(&conf
->wait_for_stripe
);
154 if (conf
->retry_read_aligned
)
155 md_wakeup_thread(conf
->mddev
->thread
);
160 static void release_stripe(struct stripe_head
*sh
)
162 raid5_conf_t
*conf
= sh
->raid_conf
;
165 spin_lock_irqsave(&conf
->device_lock
, flags
);
166 __release_stripe(conf
, sh
);
167 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
170 static inline void remove_hash(struct stripe_head
*sh
)
172 pr_debug("remove_hash(), stripe %llu\n",
173 (unsigned long long)sh
->sector
);
175 hlist_del_init(&sh
->hash
);
178 static inline void insert_hash(raid5_conf_t
*conf
, struct stripe_head
*sh
)
180 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
182 pr_debug("insert_hash(), stripe %llu\n",
183 (unsigned long long)sh
->sector
);
186 hlist_add_head(&sh
->hash
, hp
);
190 /* find an idle stripe, make sure it is unhashed, and return it. */
191 static struct stripe_head
*get_free_stripe(raid5_conf_t
*conf
)
193 struct stripe_head
*sh
= NULL
;
194 struct list_head
*first
;
197 if (list_empty(&conf
->inactive_list
))
199 first
= conf
->inactive_list
.next
;
200 sh
= list_entry(first
, struct stripe_head
, lru
);
201 list_del_init(first
);
203 atomic_inc(&conf
->active_stripes
);
208 static void shrink_buffers(struct stripe_head
*sh
, int num
)
213 for (i
=0; i
<num
; i
++) {
217 sh
->dev
[i
].page
= NULL
;
222 static int grow_buffers(struct stripe_head
*sh
, int num
)
226 for (i
=0; i
<num
; i
++) {
229 if (!(page
= alloc_page(GFP_KERNEL
))) {
232 sh
->dev
[i
].page
= page
;
237 static void raid5_build_block (struct stripe_head
*sh
, int i
);
239 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int pd_idx
, int disks
)
241 raid5_conf_t
*conf
= sh
->raid_conf
;
244 BUG_ON(atomic_read(&sh
->count
) != 0);
245 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
246 BUG_ON(sh
->ops
.pending
|| sh
->ops
.ack
|| sh
->ops
.complete
);
249 pr_debug("init_stripe called, stripe %llu\n",
250 (unsigned long long)sh
->sector
);
260 for (i
= sh
->disks
; i
--; ) {
261 struct r5dev
*dev
= &sh
->dev
[i
];
263 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
264 test_bit(R5_LOCKED
, &dev
->flags
)) {
265 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
266 (unsigned long long)sh
->sector
, i
, dev
->toread
,
267 dev
->read
, dev
->towrite
, dev
->written
,
268 test_bit(R5_LOCKED
, &dev
->flags
));
272 raid5_build_block(sh
, i
);
274 insert_hash(conf
, sh
);
277 static struct stripe_head
*__find_stripe(raid5_conf_t
*conf
, sector_t sector
, int disks
)
279 struct stripe_head
*sh
;
280 struct hlist_node
*hn
;
283 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
284 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
285 if (sh
->sector
== sector
&& sh
->disks
== disks
)
287 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
291 static void unplug_slaves(mddev_t
*mddev
);
292 static void raid5_unplug_device(request_queue_t
*q
);
294 static struct stripe_head
*get_active_stripe(raid5_conf_t
*conf
, sector_t sector
, int disks
,
295 int pd_idx
, int noblock
)
297 struct stripe_head
*sh
;
299 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
301 spin_lock_irq(&conf
->device_lock
);
304 wait_event_lock_irq(conf
->wait_for_stripe
,
306 conf
->device_lock
, /* nothing */);
307 sh
= __find_stripe(conf
, sector
, disks
);
309 if (!conf
->inactive_blocked
)
310 sh
= get_free_stripe(conf
);
311 if (noblock
&& sh
== NULL
)
314 conf
->inactive_blocked
= 1;
315 wait_event_lock_irq(conf
->wait_for_stripe
,
316 !list_empty(&conf
->inactive_list
) &&
317 (atomic_read(&conf
->active_stripes
)
318 < (conf
->max_nr_stripes
*3/4)
319 || !conf
->inactive_blocked
),
321 raid5_unplug_device(conf
->mddev
->queue
)
323 conf
->inactive_blocked
= 0;
325 init_stripe(sh
, sector
, pd_idx
, disks
);
327 if (atomic_read(&sh
->count
)) {
328 BUG_ON(!list_empty(&sh
->lru
));
330 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
331 atomic_inc(&conf
->active_stripes
);
332 if (list_empty(&sh
->lru
) &&
333 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
335 list_del_init(&sh
->lru
);
338 } while (sh
== NULL
);
341 atomic_inc(&sh
->count
);
343 spin_unlock_irq(&conf
->device_lock
);
347 /* test_and_ack_op() ensures that we only dequeue an operation once */
348 #define test_and_ack_op(op, pend) \
350 if (test_bit(op, &sh->ops.pending) && \
351 !test_bit(op, &sh->ops.complete)) { \
352 if (test_and_set_bit(op, &sh->ops.ack)) \
353 clear_bit(op, &pend); \
357 clear_bit(op, &pend); \
360 /* find new work to run, do not resubmit work that is already
363 static unsigned long get_stripe_work(struct stripe_head
*sh
)
365 unsigned long pending
;
368 pending
= sh
->ops
.pending
;
370 test_and_ack_op(STRIPE_OP_BIOFILL
, pending
);
371 test_and_ack_op(STRIPE_OP_COMPUTE_BLK
, pending
);
372 test_and_ack_op(STRIPE_OP_PREXOR
, pending
);
373 test_and_ack_op(STRIPE_OP_BIODRAIN
, pending
);
374 test_and_ack_op(STRIPE_OP_POSTXOR
, pending
);
375 test_and_ack_op(STRIPE_OP_CHECK
, pending
);
376 if (test_and_clear_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
379 sh
->ops
.count
-= ack
;
380 BUG_ON(sh
->ops
.count
< 0);
386 raid5_end_read_request(struct bio
*bi
, unsigned int bytes_done
, int error
);
388 raid5_end_write_request (struct bio
*bi
, unsigned int bytes_done
, int error
);
390 static void ops_run_io(struct stripe_head
*sh
)
392 raid5_conf_t
*conf
= sh
->raid_conf
;
393 int i
, disks
= sh
->disks
;
397 for (i
= disks
; i
--; ) {
401 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
403 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
408 bi
= &sh
->dev
[i
].req
;
412 bi
->bi_end_io
= raid5_end_write_request
;
414 bi
->bi_end_io
= raid5_end_read_request
;
417 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
418 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
421 atomic_inc(&rdev
->nr_pending
);
425 if (test_bit(STRIPE_SYNCING
, &sh
->state
) ||
426 test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
) ||
427 test_bit(STRIPE_EXPAND_READY
, &sh
->state
))
428 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
430 bi
->bi_bdev
= rdev
->bdev
;
431 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
432 __FUNCTION__
, (unsigned long long)sh
->sector
,
434 atomic_inc(&sh
->count
);
435 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
436 bi
->bi_flags
= 1 << BIO_UPTODATE
;
440 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
441 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
442 bi
->bi_io_vec
[0].bv_offset
= 0;
443 bi
->bi_size
= STRIPE_SIZE
;
446 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
447 atomic_add(STRIPE_SECTORS
,
448 &rdev
->corrected_errors
);
449 generic_make_request(bi
);
452 set_bit(STRIPE_DEGRADED
, &sh
->state
);
453 pr_debug("skip op %ld on disc %d for sector %llu\n",
454 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
455 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
456 set_bit(STRIPE_HANDLE
, &sh
->state
);
461 static struct dma_async_tx_descriptor
*
462 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
463 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
466 struct page
*bio_page
;
470 if (bio
->bi_sector
>= sector
)
471 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
473 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
474 bio_for_each_segment(bvl
, bio
, i
) {
475 int len
= bio_iovec_idx(bio
, i
)->bv_len
;
479 if (page_offset
< 0) {
480 b_offset
= -page_offset
;
481 page_offset
+= b_offset
;
485 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
486 clen
= STRIPE_SIZE
- page_offset
;
491 b_offset
+= bio_iovec_idx(bio
, i
)->bv_offset
;
492 bio_page
= bio_iovec_idx(bio
, i
)->bv_page
;
494 tx
= async_memcpy(page
, bio_page
, page_offset
,
496 ASYNC_TX_DEP_ACK
| ASYNC_TX_KMAP_SRC
,
499 tx
= async_memcpy(bio_page
, page
, b_offset
,
501 ASYNC_TX_DEP_ACK
| ASYNC_TX_KMAP_DST
,
504 if (clen
< len
) /* hit end of page */
512 static void ops_complete_biofill(void *stripe_head_ref
)
514 struct stripe_head
*sh
= stripe_head_ref
;
515 struct bio
*return_bi
= NULL
;
516 raid5_conf_t
*conf
= sh
->raid_conf
;
517 int i
, more_to_read
= 0;
519 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
520 (unsigned long long)sh
->sector
);
522 /* clear completed biofills */
523 for (i
= sh
->disks
; i
--; ) {
524 struct r5dev
*dev
= &sh
->dev
[i
];
525 /* check if this stripe has new incoming reads */
529 /* acknowledge completion of a biofill operation */
530 /* and check if we need to reply to a read request
532 if (test_bit(R5_Wantfill
, &dev
->flags
) && !dev
->toread
) {
533 struct bio
*rbi
, *rbi2
;
534 clear_bit(R5_Wantfill
, &dev
->flags
);
536 /* The access to dev->read is outside of the
537 * spin_lock_irq(&conf->device_lock), but is protected
538 * by the STRIPE_OP_BIOFILL pending bit
543 while (rbi
&& rbi
->bi_sector
<
544 dev
->sector
+ STRIPE_SECTORS
) {
545 rbi2
= r5_next_bio(rbi
, dev
->sector
);
546 spin_lock_irq(&conf
->device_lock
);
547 if (--rbi
->bi_phys_segments
== 0) {
548 rbi
->bi_next
= return_bi
;
551 spin_unlock_irq(&conf
->device_lock
);
556 clear_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.ack
);
557 clear_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.pending
);
559 return_io(return_bi
);
562 set_bit(STRIPE_HANDLE
, &sh
->state
);
566 static void ops_run_biofill(struct stripe_head
*sh
)
568 struct dma_async_tx_descriptor
*tx
= NULL
;
569 raid5_conf_t
*conf
= sh
->raid_conf
;
572 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
573 (unsigned long long)sh
->sector
);
575 for (i
= sh
->disks
; i
--; ) {
576 struct r5dev
*dev
= &sh
->dev
[i
];
577 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
579 spin_lock_irq(&conf
->device_lock
);
580 dev
->read
= rbi
= dev
->toread
;
582 spin_unlock_irq(&conf
->device_lock
);
583 while (rbi
&& rbi
->bi_sector
<
584 dev
->sector
+ STRIPE_SECTORS
) {
585 tx
= async_copy_data(0, rbi
, dev
->page
,
587 rbi
= r5_next_bio(rbi
, dev
->sector
);
592 atomic_inc(&sh
->count
);
593 async_trigger_callback(ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
, tx
,
594 ops_complete_biofill
, sh
);
597 static void ops_complete_compute5(void *stripe_head_ref
)
599 struct stripe_head
*sh
= stripe_head_ref
;
600 int target
= sh
->ops
.target
;
601 struct r5dev
*tgt
= &sh
->dev
[target
];
603 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
604 (unsigned long long)sh
->sector
);
606 set_bit(R5_UPTODATE
, &tgt
->flags
);
607 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
608 clear_bit(R5_Wantcompute
, &tgt
->flags
);
609 set_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
);
610 set_bit(STRIPE_HANDLE
, &sh
->state
);
614 static struct dma_async_tx_descriptor
*
615 ops_run_compute5(struct stripe_head
*sh
, unsigned long pending
)
617 /* kernel stack size limits the total number of disks */
618 int disks
= sh
->disks
;
619 struct page
*xor_srcs
[disks
];
620 int target
= sh
->ops
.target
;
621 struct r5dev
*tgt
= &sh
->dev
[target
];
622 struct page
*xor_dest
= tgt
->page
;
624 struct dma_async_tx_descriptor
*tx
;
627 pr_debug("%s: stripe %llu block: %d\n",
628 __FUNCTION__
, (unsigned long long)sh
->sector
, target
);
629 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
631 for (i
= disks
; i
--; )
633 xor_srcs
[count
++] = sh
->dev
[i
].page
;
635 atomic_inc(&sh
->count
);
637 if (unlikely(count
== 1))
638 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
,
639 0, NULL
, ops_complete_compute5
, sh
);
641 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
642 ASYNC_TX_XOR_ZERO_DST
, NULL
,
643 ops_complete_compute5
, sh
);
645 /* ack now if postxor is not set to be run */
646 if (tx
&& !test_bit(STRIPE_OP_POSTXOR
, &pending
))
652 static void ops_complete_prexor(void *stripe_head_ref
)
654 struct stripe_head
*sh
= stripe_head_ref
;
656 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
657 (unsigned long long)sh
->sector
);
659 set_bit(STRIPE_OP_PREXOR
, &sh
->ops
.complete
);
662 static struct dma_async_tx_descriptor
*
663 ops_run_prexor(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
665 /* kernel stack size limits the total number of disks */
666 int disks
= sh
->disks
;
667 struct page
*xor_srcs
[disks
];
668 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
670 /* existing parity data subtracted */
671 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
673 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
674 (unsigned long long)sh
->sector
);
676 for (i
= disks
; i
--; ) {
677 struct r5dev
*dev
= &sh
->dev
[i
];
678 /* Only process blocks that are known to be uptodate */
679 if (dev
->towrite
&& test_bit(R5_Wantprexor
, &dev
->flags
))
680 xor_srcs
[count
++] = dev
->page
;
683 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
684 ASYNC_TX_DEP_ACK
| ASYNC_TX_XOR_DROP_DST
, tx
,
685 ops_complete_prexor
, sh
);
690 static struct dma_async_tx_descriptor
*
691 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
693 int disks
= sh
->disks
;
694 int pd_idx
= sh
->pd_idx
, i
;
696 /* check if prexor is active which means only process blocks
697 * that are part of a read-modify-write (Wantprexor)
699 int prexor
= test_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
);
701 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
702 (unsigned long long)sh
->sector
);
704 for (i
= disks
; i
--; ) {
705 struct r5dev
*dev
= &sh
->dev
[i
];
710 if (prexor
) { /* rmw */
712 test_bit(R5_Wantprexor
, &dev
->flags
))
715 if (i
!= pd_idx
&& dev
->towrite
&&
716 test_bit(R5_LOCKED
, &dev
->flags
))
723 spin_lock(&sh
->lock
);
724 chosen
= dev
->towrite
;
726 BUG_ON(dev
->written
);
727 wbi
= dev
->written
= chosen
;
728 spin_unlock(&sh
->lock
);
730 while (wbi
&& wbi
->bi_sector
<
731 dev
->sector
+ STRIPE_SECTORS
) {
732 tx
= async_copy_data(1, wbi
, dev
->page
,
734 wbi
= r5_next_bio(wbi
, dev
->sector
);
742 static void ops_complete_postxor(void *stripe_head_ref
)
744 struct stripe_head
*sh
= stripe_head_ref
;
746 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
747 (unsigned long long)sh
->sector
);
749 set_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
);
750 set_bit(STRIPE_HANDLE
, &sh
->state
);
754 static void ops_complete_write(void *stripe_head_ref
)
756 struct stripe_head
*sh
= stripe_head_ref
;
757 int disks
= sh
->disks
, i
, pd_idx
= sh
->pd_idx
;
759 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
760 (unsigned long long)sh
->sector
);
762 for (i
= disks
; i
--; ) {
763 struct r5dev
*dev
= &sh
->dev
[i
];
764 if (dev
->written
|| i
== pd_idx
)
765 set_bit(R5_UPTODATE
, &dev
->flags
);
768 set_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.complete
);
769 set_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
);
771 set_bit(STRIPE_HANDLE
, &sh
->state
);
776 ops_run_postxor(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
778 /* kernel stack size limits the total number of disks */
779 int disks
= sh
->disks
;
780 struct page
*xor_srcs
[disks
];
782 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
783 struct page
*xor_dest
;
784 int prexor
= test_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
);
786 dma_async_tx_callback callback
;
788 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
789 (unsigned long long)sh
->sector
);
791 /* check if prexor is active which means only process blocks
792 * that are part of a read-modify-write (written)
795 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
796 for (i
= disks
; i
--; ) {
797 struct r5dev
*dev
= &sh
->dev
[i
];
799 xor_srcs
[count
++] = dev
->page
;
802 xor_dest
= sh
->dev
[pd_idx
].page
;
803 for (i
= disks
; i
--; ) {
804 struct r5dev
*dev
= &sh
->dev
[i
];
806 xor_srcs
[count
++] = dev
->page
;
810 /* check whether this postxor is part of a write */
811 callback
= test_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
) ?
812 ops_complete_write
: ops_complete_postxor
;
814 /* 1/ if we prexor'd then the dest is reused as a source
815 * 2/ if we did not prexor then we are redoing the parity
816 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
817 * for the synchronous xor case
819 flags
= ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
|
820 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
822 atomic_inc(&sh
->count
);
824 if (unlikely(count
== 1)) {
825 flags
&= ~(ASYNC_TX_XOR_DROP_DST
| ASYNC_TX_XOR_ZERO_DST
);
826 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
,
827 flags
, tx
, callback
, sh
);
829 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
830 flags
, tx
, callback
, sh
);
833 static void ops_complete_check(void *stripe_head_ref
)
835 struct stripe_head
*sh
= stripe_head_ref
;
836 int pd_idx
= sh
->pd_idx
;
838 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
839 (unsigned long long)sh
->sector
);
841 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK
, &sh
->ops
.pending
) &&
842 sh
->ops
.zero_sum_result
== 0)
843 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
845 set_bit(STRIPE_OP_CHECK
, &sh
->ops
.complete
);
846 set_bit(STRIPE_HANDLE
, &sh
->state
);
850 static void ops_run_check(struct stripe_head
*sh
)
852 /* kernel stack size limits the total number of disks */
853 int disks
= sh
->disks
;
854 struct page
*xor_srcs
[disks
];
855 struct dma_async_tx_descriptor
*tx
;
857 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
858 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
860 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
861 (unsigned long long)sh
->sector
);
863 for (i
= disks
; i
--; ) {
864 struct r5dev
*dev
= &sh
->dev
[i
];
866 xor_srcs
[count
++] = dev
->page
;
869 tx
= async_xor_zero_sum(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
870 &sh
->ops
.zero_sum_result
, 0, NULL
, NULL
, NULL
);
873 set_bit(STRIPE_OP_MOD_DMA_CHECK
, &sh
->ops
.pending
);
875 clear_bit(STRIPE_OP_MOD_DMA_CHECK
, &sh
->ops
.pending
);
877 atomic_inc(&sh
->count
);
878 tx
= async_trigger_callback(ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
, tx
,
879 ops_complete_check
, sh
);
882 static void raid5_run_ops(struct stripe_head
*sh
, unsigned long pending
)
884 int overlap_clear
= 0, i
, disks
= sh
->disks
;
885 struct dma_async_tx_descriptor
*tx
= NULL
;
887 if (test_bit(STRIPE_OP_BIOFILL
, &pending
)) {
892 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &pending
))
893 tx
= ops_run_compute5(sh
, pending
);
895 if (test_bit(STRIPE_OP_PREXOR
, &pending
))
896 tx
= ops_run_prexor(sh
, tx
);
898 if (test_bit(STRIPE_OP_BIODRAIN
, &pending
)) {
899 tx
= ops_run_biodrain(sh
, tx
);
903 if (test_bit(STRIPE_OP_POSTXOR
, &pending
))
904 ops_run_postxor(sh
, tx
);
906 if (test_bit(STRIPE_OP_CHECK
, &pending
))
909 if (test_bit(STRIPE_OP_IO
, &pending
))
913 for (i
= disks
; i
--; ) {
914 struct r5dev
*dev
= &sh
->dev
[i
];
915 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
916 wake_up(&sh
->raid_conf
->wait_for_overlap
);
920 static int grow_one_stripe(raid5_conf_t
*conf
)
922 struct stripe_head
*sh
;
923 sh
= kmem_cache_alloc(conf
->slab_cache
, GFP_KERNEL
);
926 memset(sh
, 0, sizeof(*sh
) + (conf
->raid_disks
-1)*sizeof(struct r5dev
));
927 sh
->raid_conf
= conf
;
928 spin_lock_init(&sh
->lock
);
930 if (grow_buffers(sh
, conf
->raid_disks
)) {
931 shrink_buffers(sh
, conf
->raid_disks
);
932 kmem_cache_free(conf
->slab_cache
, sh
);
935 sh
->disks
= conf
->raid_disks
;
936 /* we just created an active stripe so... */
937 atomic_set(&sh
->count
, 1);
938 atomic_inc(&conf
->active_stripes
);
939 INIT_LIST_HEAD(&sh
->lru
);
944 static int grow_stripes(raid5_conf_t
*conf
, int num
)
946 struct kmem_cache
*sc
;
947 int devs
= conf
->raid_disks
;
949 sprintf(conf
->cache_name
[0], "raid5-%s", mdname(conf
->mddev
));
950 sprintf(conf
->cache_name
[1], "raid5-%s-alt", mdname(conf
->mddev
));
951 conf
->active_name
= 0;
952 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
953 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
957 conf
->slab_cache
= sc
;
958 conf
->pool_size
= devs
;
960 if (!grow_one_stripe(conf
))
965 #ifdef CONFIG_MD_RAID5_RESHAPE
966 static int resize_stripes(raid5_conf_t
*conf
, int newsize
)
968 /* Make all the stripes able to hold 'newsize' devices.
969 * New slots in each stripe get 'page' set to a new page.
971 * This happens in stages:
972 * 1/ create a new kmem_cache and allocate the required number of
974 * 2/ gather all the old stripe_heads and tranfer the pages across
975 * to the new stripe_heads. This will have the side effect of
976 * freezing the array as once all stripe_heads have been collected,
977 * no IO will be possible. Old stripe heads are freed once their
978 * pages have been transferred over, and the old kmem_cache is
979 * freed when all stripes are done.
980 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
981 * we simple return a failre status - no need to clean anything up.
982 * 4/ allocate new pages for the new slots in the new stripe_heads.
983 * If this fails, we don't bother trying the shrink the
984 * stripe_heads down again, we just leave them as they are.
985 * As each stripe_head is processed the new one is released into
988 * Once step2 is started, we cannot afford to wait for a write,
989 * so we use GFP_NOIO allocations.
991 struct stripe_head
*osh
, *nsh
;
992 LIST_HEAD(newstripes
);
993 struct disk_info
*ndisks
;
995 struct kmem_cache
*sc
;
998 if (newsize
<= conf
->pool_size
)
999 return 0; /* never bother to shrink */
1001 md_allow_write(conf
->mddev
);
1004 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
1005 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
1010 for (i
= conf
->max_nr_stripes
; i
; i
--) {
1011 nsh
= kmem_cache_alloc(sc
, GFP_KERNEL
);
1015 memset(nsh
, 0, sizeof(*nsh
) + (newsize
-1)*sizeof(struct r5dev
));
1017 nsh
->raid_conf
= conf
;
1018 spin_lock_init(&nsh
->lock
);
1020 list_add(&nsh
->lru
, &newstripes
);
1023 /* didn't get enough, give up */
1024 while (!list_empty(&newstripes
)) {
1025 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1026 list_del(&nsh
->lru
);
1027 kmem_cache_free(sc
, nsh
);
1029 kmem_cache_destroy(sc
);
1032 /* Step 2 - Must use GFP_NOIO now.
1033 * OK, we have enough stripes, start collecting inactive
1034 * stripes and copying them over
1036 list_for_each_entry(nsh
, &newstripes
, lru
) {
1037 spin_lock_irq(&conf
->device_lock
);
1038 wait_event_lock_irq(conf
->wait_for_stripe
,
1039 !list_empty(&conf
->inactive_list
),
1041 unplug_slaves(conf
->mddev
)
1043 osh
= get_free_stripe(conf
);
1044 spin_unlock_irq(&conf
->device_lock
);
1045 atomic_set(&nsh
->count
, 1);
1046 for(i
=0; i
<conf
->pool_size
; i
++)
1047 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
1048 for( ; i
<newsize
; i
++)
1049 nsh
->dev
[i
].page
= NULL
;
1050 kmem_cache_free(conf
->slab_cache
, osh
);
1052 kmem_cache_destroy(conf
->slab_cache
);
1055 * At this point, we are holding all the stripes so the array
1056 * is completely stalled, so now is a good time to resize
1059 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
1061 for (i
=0; i
<conf
->raid_disks
; i
++)
1062 ndisks
[i
] = conf
->disks
[i
];
1064 conf
->disks
= ndisks
;
1068 /* Step 4, return new stripes to service */
1069 while(!list_empty(&newstripes
)) {
1070 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1071 list_del_init(&nsh
->lru
);
1072 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
1073 if (nsh
->dev
[i
].page
== NULL
) {
1074 struct page
*p
= alloc_page(GFP_NOIO
);
1075 nsh
->dev
[i
].page
= p
;
1079 release_stripe(nsh
);
1081 /* critical section pass, GFP_NOIO no longer needed */
1083 conf
->slab_cache
= sc
;
1084 conf
->active_name
= 1-conf
->active_name
;
1085 conf
->pool_size
= newsize
;
1090 static int drop_one_stripe(raid5_conf_t
*conf
)
1092 struct stripe_head
*sh
;
1094 spin_lock_irq(&conf
->device_lock
);
1095 sh
= get_free_stripe(conf
);
1096 spin_unlock_irq(&conf
->device_lock
);
1099 BUG_ON(atomic_read(&sh
->count
));
1100 shrink_buffers(sh
, conf
->pool_size
);
1101 kmem_cache_free(conf
->slab_cache
, sh
);
1102 atomic_dec(&conf
->active_stripes
);
1106 static void shrink_stripes(raid5_conf_t
*conf
)
1108 while (drop_one_stripe(conf
))
1111 if (conf
->slab_cache
)
1112 kmem_cache_destroy(conf
->slab_cache
);
1113 conf
->slab_cache
= NULL
;
1116 static int raid5_end_read_request(struct bio
* bi
, unsigned int bytes_done
,
1119 struct stripe_head
*sh
= bi
->bi_private
;
1120 raid5_conf_t
*conf
= sh
->raid_conf
;
1121 int disks
= sh
->disks
, i
;
1122 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1123 char b
[BDEVNAME_SIZE
];
1129 for (i
=0 ; i
<disks
; i
++)
1130 if (bi
== &sh
->dev
[i
].req
)
1133 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1134 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1142 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1143 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1144 rdev
= conf
->disks
[i
].rdev
;
1145 printk(KERN_INFO
"raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1146 mdname(conf
->mddev
), STRIPE_SECTORS
,
1147 (unsigned long long)sh
->sector
+ rdev
->data_offset
,
1148 bdevname(rdev
->bdev
, b
));
1149 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1150 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1152 if (atomic_read(&conf
->disks
[i
].rdev
->read_errors
))
1153 atomic_set(&conf
->disks
[i
].rdev
->read_errors
, 0);
1155 const char *bdn
= bdevname(conf
->disks
[i
].rdev
->bdev
, b
);
1157 rdev
= conf
->disks
[i
].rdev
;
1159 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1160 atomic_inc(&rdev
->read_errors
);
1161 if (conf
->mddev
->degraded
)
1162 printk(KERN_WARNING
"raid5:%s: read error not correctable (sector %llu on %s).\n",
1163 mdname(conf
->mddev
),
1164 (unsigned long long)sh
->sector
+ rdev
->data_offset
,
1166 else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
1168 printk(KERN_WARNING
"raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1169 mdname(conf
->mddev
),
1170 (unsigned long long)sh
->sector
+ rdev
->data_offset
,
1172 else if (atomic_read(&rdev
->read_errors
)
1173 > conf
->max_nr_stripes
)
1175 "raid5:%s: Too many read errors, failing device %s.\n",
1176 mdname(conf
->mddev
), bdn
);
1180 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1182 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1183 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1184 md_error(conf
->mddev
, rdev
);
1187 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1188 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1189 set_bit(STRIPE_HANDLE
, &sh
->state
);
1194 static int raid5_end_write_request (struct bio
*bi
, unsigned int bytes_done
,
1197 struct stripe_head
*sh
= bi
->bi_private
;
1198 raid5_conf_t
*conf
= sh
->raid_conf
;
1199 int disks
= sh
->disks
, i
;
1200 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1205 for (i
=0 ; i
<disks
; i
++)
1206 if (bi
== &sh
->dev
[i
].req
)
1209 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1210 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1218 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
1220 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1222 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1223 set_bit(STRIPE_HANDLE
, &sh
->state
);
1229 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
);
1231 static void raid5_build_block (struct stripe_head
*sh
, int i
)
1233 struct r5dev
*dev
= &sh
->dev
[i
];
1235 bio_init(&dev
->req
);
1236 dev
->req
.bi_io_vec
= &dev
->vec
;
1238 dev
->req
.bi_max_vecs
++;
1239 dev
->vec
.bv_page
= dev
->page
;
1240 dev
->vec
.bv_len
= STRIPE_SIZE
;
1241 dev
->vec
.bv_offset
= 0;
1243 dev
->req
.bi_sector
= sh
->sector
;
1244 dev
->req
.bi_private
= sh
;
1247 dev
->sector
= compute_blocknr(sh
, i
);
1250 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1252 char b
[BDEVNAME_SIZE
];
1253 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
1254 pr_debug("raid5: error called\n");
1256 if (!test_bit(Faulty
, &rdev
->flags
)) {
1257 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1258 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1259 unsigned long flags
;
1260 spin_lock_irqsave(&conf
->device_lock
, flags
);
1262 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1264 * if recovery was running, make sure it aborts.
1266 set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
);
1268 set_bit(Faulty
, &rdev
->flags
);
1270 "raid5: Disk failure on %s, disabling device."
1271 " Operation continuing on %d devices\n",
1272 bdevname(rdev
->bdev
,b
), conf
->raid_disks
- mddev
->degraded
);
1277 * Input: a 'big' sector number,
1278 * Output: index of the data and parity disk, and the sector # in them.
1280 static sector_t
raid5_compute_sector(sector_t r_sector
, unsigned int raid_disks
,
1281 unsigned int data_disks
, unsigned int * dd_idx
,
1282 unsigned int * pd_idx
, raid5_conf_t
*conf
)
1285 unsigned long chunk_number
;
1286 unsigned int chunk_offset
;
1287 sector_t new_sector
;
1288 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1290 /* First compute the information on this sector */
1293 * Compute the chunk number and the sector offset inside the chunk
1295 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
1296 chunk_number
= r_sector
;
1297 BUG_ON(r_sector
!= chunk_number
);
1300 * Compute the stripe number
1302 stripe
= chunk_number
/ data_disks
;
1305 * Compute the data disk and parity disk indexes inside the stripe
1307 *dd_idx
= chunk_number
% data_disks
;
1310 * Select the parity disk based on the user selected algorithm.
1312 switch(conf
->level
) {
1314 *pd_idx
= data_disks
;
1317 switch (conf
->algorithm
) {
1318 case ALGORITHM_LEFT_ASYMMETRIC
:
1319 *pd_idx
= data_disks
- stripe
% raid_disks
;
1320 if (*dd_idx
>= *pd_idx
)
1323 case ALGORITHM_RIGHT_ASYMMETRIC
:
1324 *pd_idx
= stripe
% raid_disks
;
1325 if (*dd_idx
>= *pd_idx
)
1328 case ALGORITHM_LEFT_SYMMETRIC
:
1329 *pd_idx
= data_disks
- stripe
% raid_disks
;
1330 *dd_idx
= (*pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1332 case ALGORITHM_RIGHT_SYMMETRIC
:
1333 *pd_idx
= stripe
% raid_disks
;
1334 *dd_idx
= (*pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1337 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1343 /**** FIX THIS ****/
1344 switch (conf
->algorithm
) {
1345 case ALGORITHM_LEFT_ASYMMETRIC
:
1346 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1347 if (*pd_idx
== raid_disks
-1)
1348 (*dd_idx
)++; /* Q D D D P */
1349 else if (*dd_idx
>= *pd_idx
)
1350 (*dd_idx
) += 2; /* D D P Q D */
1352 case ALGORITHM_RIGHT_ASYMMETRIC
:
1353 *pd_idx
= stripe
% raid_disks
;
1354 if (*pd_idx
== raid_disks
-1)
1355 (*dd_idx
)++; /* Q D D D P */
1356 else if (*dd_idx
>= *pd_idx
)
1357 (*dd_idx
) += 2; /* D D P Q D */
1359 case ALGORITHM_LEFT_SYMMETRIC
:
1360 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1361 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1363 case ALGORITHM_RIGHT_SYMMETRIC
:
1364 *pd_idx
= stripe
% raid_disks
;
1365 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1368 printk (KERN_CRIT
"raid6: unsupported algorithm %d\n",
1375 * Finally, compute the new sector number
1377 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
1382 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
)
1384 raid5_conf_t
*conf
= sh
->raid_conf
;
1385 int raid_disks
= sh
->disks
;
1386 int data_disks
= raid_disks
- conf
->max_degraded
;
1387 sector_t new_sector
= sh
->sector
, check
;
1388 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1391 int chunk_number
, dummy1
, dummy2
, dd_idx
= i
;
1395 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
1396 stripe
= new_sector
;
1397 BUG_ON(new_sector
!= stripe
);
1399 if (i
== sh
->pd_idx
)
1401 switch(conf
->level
) {
1404 switch (conf
->algorithm
) {
1405 case ALGORITHM_LEFT_ASYMMETRIC
:
1406 case ALGORITHM_RIGHT_ASYMMETRIC
:
1410 case ALGORITHM_LEFT_SYMMETRIC
:
1411 case ALGORITHM_RIGHT_SYMMETRIC
:
1414 i
-= (sh
->pd_idx
+ 1);
1417 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1422 if (i
== raid6_next_disk(sh
->pd_idx
, raid_disks
))
1423 return 0; /* It is the Q disk */
1424 switch (conf
->algorithm
) {
1425 case ALGORITHM_LEFT_ASYMMETRIC
:
1426 case ALGORITHM_RIGHT_ASYMMETRIC
:
1427 if (sh
->pd_idx
== raid_disks
-1)
1428 i
--; /* Q D D D P */
1429 else if (i
> sh
->pd_idx
)
1430 i
-= 2; /* D D P Q D */
1432 case ALGORITHM_LEFT_SYMMETRIC
:
1433 case ALGORITHM_RIGHT_SYMMETRIC
:
1434 if (sh
->pd_idx
== raid_disks
-1)
1435 i
--; /* Q D D D P */
1440 i
-= (sh
->pd_idx
+ 2);
1444 printk (KERN_CRIT
"raid6: unsupported algorithm %d\n",
1450 chunk_number
= stripe
* data_disks
+ i
;
1451 r_sector
= (sector_t
)chunk_number
* sectors_per_chunk
+ chunk_offset
;
1453 check
= raid5_compute_sector (r_sector
, raid_disks
, data_disks
, &dummy1
, &dummy2
, conf
);
1454 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| dummy2
!= sh
->pd_idx
) {
1455 printk(KERN_ERR
"compute_blocknr: map not correct\n");
1464 * Copy data between a page in the stripe cache, and one or more bion
1465 * The page could align with the middle of the bio, or there could be
1466 * several bion, each with several bio_vecs, which cover part of the page
1467 * Multiple bion are linked together on bi_next. There may be extras
1468 * at the end of this list. We ignore them.
1470 static void copy_data(int frombio
, struct bio
*bio
,
1474 char *pa
= page_address(page
);
1475 struct bio_vec
*bvl
;
1479 if (bio
->bi_sector
>= sector
)
1480 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
1482 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
1483 bio_for_each_segment(bvl
, bio
, i
) {
1484 int len
= bio_iovec_idx(bio
,i
)->bv_len
;
1488 if (page_offset
< 0) {
1489 b_offset
= -page_offset
;
1490 page_offset
+= b_offset
;
1494 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
1495 clen
= STRIPE_SIZE
- page_offset
;
1499 char *ba
= __bio_kmap_atomic(bio
, i
, KM_USER0
);
1501 memcpy(pa
+page_offset
, ba
+b_offset
, clen
);
1503 memcpy(ba
+b_offset
, pa
+page_offset
, clen
);
1504 __bio_kunmap_atomic(ba
, KM_USER0
);
1506 if (clen
< len
) /* hit end of page */
1512 #define check_xor() do { \
1513 if (count == MAX_XOR_BLOCKS) { \
1514 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1520 static void compute_block(struct stripe_head
*sh
, int dd_idx
)
1522 int i
, count
, disks
= sh
->disks
;
1523 void *ptr
[MAX_XOR_BLOCKS
], *dest
, *p
;
1525 pr_debug("compute_block, stripe %llu, idx %d\n",
1526 (unsigned long long)sh
->sector
, dd_idx
);
1528 dest
= page_address(sh
->dev
[dd_idx
].page
);
1529 memset(dest
, 0, STRIPE_SIZE
);
1531 for (i
= disks
; i
--; ) {
1534 p
= page_address(sh
->dev
[i
].page
);
1535 if (test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1538 printk(KERN_ERR
"compute_block() %d, stripe %llu, %d"
1539 " not present\n", dd_idx
,
1540 (unsigned long long)sh
->sector
, i
);
1545 xor_blocks(count
, STRIPE_SIZE
, dest
, ptr
);
1546 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1549 static void compute_parity5(struct stripe_head
*sh
, int method
)
1551 raid5_conf_t
*conf
= sh
->raid_conf
;
1552 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
, count
;
1553 void *ptr
[MAX_XOR_BLOCKS
], *dest
;
1556 pr_debug("compute_parity5, stripe %llu, method %d\n",
1557 (unsigned long long)sh
->sector
, method
);
1560 dest
= page_address(sh
->dev
[pd_idx
].page
);
1562 case READ_MODIFY_WRITE
:
1563 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
));
1564 for (i
=disks
; i
-- ;) {
1567 if (sh
->dev
[i
].towrite
&&
1568 test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
)) {
1569 ptr
[count
++] = page_address(sh
->dev
[i
].page
);
1570 chosen
= sh
->dev
[i
].towrite
;
1571 sh
->dev
[i
].towrite
= NULL
;
1573 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1574 wake_up(&conf
->wait_for_overlap
);
1576 BUG_ON(sh
->dev
[i
].written
);
1577 sh
->dev
[i
].written
= chosen
;
1582 case RECONSTRUCT_WRITE
:
1583 memset(dest
, 0, STRIPE_SIZE
);
1584 for (i
= disks
; i
-- ;)
1585 if (i
!=pd_idx
&& sh
->dev
[i
].towrite
) {
1586 chosen
= sh
->dev
[i
].towrite
;
1587 sh
->dev
[i
].towrite
= NULL
;
1589 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1590 wake_up(&conf
->wait_for_overlap
);
1592 BUG_ON(sh
->dev
[i
].written
);
1593 sh
->dev
[i
].written
= chosen
;
1600 xor_blocks(count
, STRIPE_SIZE
, dest
, ptr
);
1604 for (i
= disks
; i
--;)
1605 if (sh
->dev
[i
].written
) {
1606 sector_t sector
= sh
->dev
[i
].sector
;
1607 struct bio
*wbi
= sh
->dev
[i
].written
;
1608 while (wbi
&& wbi
->bi_sector
< sector
+ STRIPE_SECTORS
) {
1609 copy_data(1, wbi
, sh
->dev
[i
].page
, sector
);
1610 wbi
= r5_next_bio(wbi
, sector
);
1613 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1614 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1618 case RECONSTRUCT_WRITE
:
1622 ptr
[count
++] = page_address(sh
->dev
[i
].page
);
1626 case READ_MODIFY_WRITE
:
1627 for (i
= disks
; i
--;)
1628 if (sh
->dev
[i
].written
) {
1629 ptr
[count
++] = page_address(sh
->dev
[i
].page
);
1634 xor_blocks(count
, STRIPE_SIZE
, dest
, ptr
);
1636 if (method
!= CHECK_PARITY
) {
1637 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1638 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1640 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1643 static void compute_parity6(struct stripe_head
*sh
, int method
)
1645 raid6_conf_t
*conf
= sh
->raid_conf
;
1646 int i
, pd_idx
= sh
->pd_idx
, qd_idx
, d0_idx
, disks
= sh
->disks
, count
;
1648 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1651 qd_idx
= raid6_next_disk(pd_idx
, disks
);
1652 d0_idx
= raid6_next_disk(qd_idx
, disks
);
1654 pr_debug("compute_parity, stripe %llu, method %d\n",
1655 (unsigned long long)sh
->sector
, method
);
1658 case READ_MODIFY_WRITE
:
1659 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1660 case RECONSTRUCT_WRITE
:
1661 for (i
= disks
; i
-- ;)
1662 if ( i
!= pd_idx
&& i
!= qd_idx
&& sh
->dev
[i
].towrite
) {
1663 chosen
= sh
->dev
[i
].towrite
;
1664 sh
->dev
[i
].towrite
= NULL
;
1666 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1667 wake_up(&conf
->wait_for_overlap
);
1669 BUG_ON(sh
->dev
[i
].written
);
1670 sh
->dev
[i
].written
= chosen
;
1674 BUG(); /* Not implemented yet */
1677 for (i
= disks
; i
--;)
1678 if (sh
->dev
[i
].written
) {
1679 sector_t sector
= sh
->dev
[i
].sector
;
1680 struct bio
*wbi
= sh
->dev
[i
].written
;
1681 while (wbi
&& wbi
->bi_sector
< sector
+ STRIPE_SECTORS
) {
1682 copy_data(1, wbi
, sh
->dev
[i
].page
, sector
);
1683 wbi
= r5_next_bio(wbi
, sector
);
1686 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1687 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1691 // case RECONSTRUCT_WRITE:
1692 // case CHECK_PARITY:
1693 // case UPDATE_PARITY:
1694 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1695 /* FIX: Is this ordering of drives even remotely optimal? */
1699 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
1700 if (count
<= disks
-2 && !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1701 printk("block %d/%d not uptodate on parity calc\n", i
,count
);
1702 i
= raid6_next_disk(i
, disks
);
1703 } while ( i
!= d0_idx
);
1707 raid6_call
.gen_syndrome(disks
, STRIPE_SIZE
, ptrs
);
1710 case RECONSTRUCT_WRITE
:
1711 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1712 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1713 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1714 set_bit(R5_LOCKED
, &sh
->dev
[qd_idx
].flags
);
1717 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1718 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1724 /* Compute one missing block */
1725 static void compute_block_1(struct stripe_head
*sh
, int dd_idx
, int nozero
)
1727 int i
, count
, disks
= sh
->disks
;
1728 void *ptr
[MAX_XOR_BLOCKS
], *dest
, *p
;
1729 int pd_idx
= sh
->pd_idx
;
1730 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1732 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1733 (unsigned long long)sh
->sector
, dd_idx
);
1735 if ( dd_idx
== qd_idx
) {
1736 /* We're actually computing the Q drive */
1737 compute_parity6(sh
, UPDATE_PARITY
);
1739 dest
= page_address(sh
->dev
[dd_idx
].page
);
1740 if (!nozero
) memset(dest
, 0, STRIPE_SIZE
);
1742 for (i
= disks
; i
--; ) {
1743 if (i
== dd_idx
|| i
== qd_idx
)
1745 p
= page_address(sh
->dev
[i
].page
);
1746 if (test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1749 printk("compute_block() %d, stripe %llu, %d"
1750 " not present\n", dd_idx
,
1751 (unsigned long long)sh
->sector
, i
);
1756 xor_blocks(count
, STRIPE_SIZE
, dest
, ptr
);
1757 if (!nozero
) set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1758 else clear_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1762 /* Compute two missing blocks */
1763 static void compute_block_2(struct stripe_head
*sh
, int dd_idx1
, int dd_idx2
)
1765 int i
, count
, disks
= sh
->disks
;
1766 int pd_idx
= sh
->pd_idx
;
1767 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1768 int d0_idx
= raid6_next_disk(qd_idx
, disks
);
1771 /* faila and failb are disk numbers relative to d0_idx */
1772 /* pd_idx become disks-2 and qd_idx become disks-1 */
1773 faila
= (dd_idx1
< d0_idx
) ? dd_idx1
+(disks
-d0_idx
) : dd_idx1
-d0_idx
;
1774 failb
= (dd_idx2
< d0_idx
) ? dd_idx2
+(disks
-d0_idx
) : dd_idx2
-d0_idx
;
1776 BUG_ON(faila
== failb
);
1777 if ( failb
< faila
) { int tmp
= faila
; faila
= failb
; failb
= tmp
; }
1779 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1780 (unsigned long long)sh
->sector
, dd_idx1
, dd_idx2
, faila
, failb
);
1782 if ( failb
== disks
-1 ) {
1783 /* Q disk is one of the missing disks */
1784 if ( faila
== disks
-2 ) {
1785 /* Missing P+Q, just recompute */
1786 compute_parity6(sh
, UPDATE_PARITY
);
1789 /* We're missing D+Q; recompute D from P */
1790 compute_block_1(sh
, (dd_idx1
== qd_idx
) ? dd_idx2
: dd_idx1
, 0);
1791 compute_parity6(sh
, UPDATE_PARITY
); /* Is this necessary? */
1796 /* We're missing D+P or D+D; build pointer table */
1798 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1804 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
1805 i
= raid6_next_disk(i
, disks
);
1806 if (i
!= dd_idx1
&& i
!= dd_idx2
&&
1807 !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1808 printk("compute_2 with missing block %d/%d\n", count
, i
);
1809 } while ( i
!= d0_idx
);
1811 if ( failb
== disks
-2 ) {
1812 /* We're missing D+P. */
1813 raid6_datap_recov(disks
, STRIPE_SIZE
, faila
, ptrs
);
1815 /* We're missing D+D. */
1816 raid6_2data_recov(disks
, STRIPE_SIZE
, faila
, failb
, ptrs
);
1819 /* Both the above update both missing blocks */
1820 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx1
].flags
);
1821 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx2
].flags
);
1826 handle_write_operations5(struct stripe_head
*sh
, int rcw
, int expand
)
1828 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
1832 /* if we are not expanding this is a proper write request, and
1833 * there will be bios with new data to be drained into the
1837 set_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
);
1841 set_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
);
1844 for (i
= disks
; i
--; ) {
1845 struct r5dev
*dev
= &sh
->dev
[i
];
1848 set_bit(R5_LOCKED
, &dev
->flags
);
1850 clear_bit(R5_UPTODATE
, &dev
->flags
);
1855 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
1856 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
1858 set_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
);
1859 set_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
);
1860 set_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
);
1864 for (i
= disks
; i
--; ) {
1865 struct r5dev
*dev
= &sh
->dev
[i
];
1869 /* For a read-modify write there may be blocks that are
1870 * locked for reading while others are ready to be
1871 * written so we distinguish these blocks by the
1875 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
1876 test_bit(R5_Wantcompute
, &dev
->flags
))) {
1877 set_bit(R5_Wantprexor
, &dev
->flags
);
1878 set_bit(R5_LOCKED
, &dev
->flags
);
1879 clear_bit(R5_UPTODATE
, &dev
->flags
);
1885 /* keep the parity disk locked while asynchronous operations
1888 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1889 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1892 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1893 __FUNCTION__
, (unsigned long long)sh
->sector
,
1894 locked
, sh
->ops
.pending
);
1900 * Each stripe/dev can have one or more bion attached.
1901 * toread/towrite point to the first in a chain.
1902 * The bi_next chain must be in order.
1904 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
1907 raid5_conf_t
*conf
= sh
->raid_conf
;
1910 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1911 (unsigned long long)bi
->bi_sector
,
1912 (unsigned long long)sh
->sector
);
1915 spin_lock(&sh
->lock
);
1916 spin_lock_irq(&conf
->device_lock
);
1918 bip
= &sh
->dev
[dd_idx
].towrite
;
1919 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
1922 bip
= &sh
->dev
[dd_idx
].toread
;
1923 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
1924 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
1926 bip
= & (*bip
)->bi_next
;
1928 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
1931 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
1935 bi
->bi_phys_segments
++;
1936 spin_unlock_irq(&conf
->device_lock
);
1937 spin_unlock(&sh
->lock
);
1939 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1940 (unsigned long long)bi
->bi_sector
,
1941 (unsigned long long)sh
->sector
, dd_idx
);
1943 if (conf
->mddev
->bitmap
&& firstwrite
) {
1944 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
1946 sh
->bm_seq
= conf
->seq_flush
+1;
1947 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
1951 /* check if page is covered */
1952 sector_t sector
= sh
->dev
[dd_idx
].sector
;
1953 for (bi
=sh
->dev
[dd_idx
].towrite
;
1954 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
1955 bi
&& bi
->bi_sector
<= sector
;
1956 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
1957 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
1958 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
1960 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
1961 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
1966 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
1967 spin_unlock_irq(&conf
->device_lock
);
1968 spin_unlock(&sh
->lock
);
1972 static void end_reshape(raid5_conf_t
*conf
);
1974 static int page_is_zero(struct page
*p
)
1976 char *a
= page_address(p
);
1977 return ((*(u32
*)a
) == 0 &&
1978 memcmp(a
, a
+4, STRIPE_SIZE
-4)==0);
1981 static int stripe_to_pdidx(sector_t stripe
, raid5_conf_t
*conf
, int disks
)
1983 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1985 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
1987 raid5_compute_sector(stripe
* (disks
- conf
->max_degraded
)
1988 *sectors_per_chunk
+ chunk_offset
,
1989 disks
, disks
- conf
->max_degraded
,
1990 &dd_idx
, &pd_idx
, conf
);
1995 handle_requests_to_failed_array(raid5_conf_t
*conf
, struct stripe_head
*sh
,
1996 struct stripe_head_state
*s
, int disks
,
1997 struct bio
**return_bi
)
2000 for (i
= disks
; i
--; ) {
2004 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2007 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2008 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
2009 /* multiple read failures in one stripe */
2010 md_error(conf
->mddev
, rdev
);
2013 spin_lock_irq(&conf
->device_lock
);
2014 /* fail all writes first */
2015 bi
= sh
->dev
[i
].towrite
;
2016 sh
->dev
[i
].towrite
= NULL
;
2022 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2023 wake_up(&conf
->wait_for_overlap
);
2025 while (bi
&& bi
->bi_sector
<
2026 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2027 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2028 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2029 if (--bi
->bi_phys_segments
== 0) {
2030 md_write_end(conf
->mddev
);
2031 bi
->bi_next
= *return_bi
;
2036 /* and fail all 'written' */
2037 bi
= sh
->dev
[i
].written
;
2038 sh
->dev
[i
].written
= NULL
;
2039 if (bi
) bitmap_end
= 1;
2040 while (bi
&& bi
->bi_sector
<
2041 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2042 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2043 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2044 if (--bi
->bi_phys_segments
== 0) {
2045 md_write_end(conf
->mddev
);
2046 bi
->bi_next
= *return_bi
;
2052 /* fail any reads if this device is non-operational and
2053 * the data has not reached the cache yet.
2055 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
2056 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
2057 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
2058 bi
= sh
->dev
[i
].toread
;
2059 sh
->dev
[i
].toread
= NULL
;
2060 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2061 wake_up(&conf
->wait_for_overlap
);
2062 if (bi
) s
->to_read
--;
2063 while (bi
&& bi
->bi_sector
<
2064 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2065 struct bio
*nextbi
=
2066 r5_next_bio(bi
, sh
->dev
[i
].sector
);
2067 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2068 if (--bi
->bi_phys_segments
== 0) {
2069 bi
->bi_next
= *return_bi
;
2075 spin_unlock_irq(&conf
->device_lock
);
2077 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2078 STRIPE_SECTORS
, 0, 0);
2083 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
2086 static int __handle_issuing_new_read_requests5(struct stripe_head
*sh
,
2087 struct stripe_head_state
*s
, int disk_idx
, int disks
)
2089 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2090 struct r5dev
*failed_dev
= &sh
->dev
[s
->failed_num
];
2092 /* don't schedule compute operations or reads on the parity block while
2093 * a check is in flight
2095 if ((disk_idx
== sh
->pd_idx
) &&
2096 test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
))
2099 /* is the data in this block needed, and can we get it? */
2100 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2101 !test_bit(R5_UPTODATE
, &dev
->flags
) && (dev
->toread
||
2102 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2103 s
->syncing
|| s
->expanding
|| (s
->failed
&&
2104 (failed_dev
->toread
|| (failed_dev
->towrite
&&
2105 !test_bit(R5_OVERWRITE
, &failed_dev
->flags
)
2107 /* 1/ We would like to get this block, possibly by computing it,
2108 * but we might not be able to.
2110 * 2/ Since parity check operations potentially make the parity
2111 * block !uptodate it will need to be refreshed before any
2112 * compute operations on data disks are scheduled.
2114 * 3/ We hold off parity block re-reads until check operations
2117 if ((s
->uptodate
== disks
- 1) &&
2118 !test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
)) {
2119 set_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
);
2120 set_bit(R5_Wantcompute
, &dev
->flags
);
2121 sh
->ops
.target
= disk_idx
;
2124 /* Careful: from this point on 'uptodate' is in the eye
2125 * of raid5_run_ops which services 'compute' operations
2126 * before writes. R5_Wantcompute flags a block that will
2127 * be R5_UPTODATE by the time it is needed for a
2128 * subsequent operation.
2131 return 0; /* uptodate + compute == disks */
2132 } else if ((s
->uptodate
< disks
- 1) &&
2133 test_bit(R5_Insync
, &dev
->flags
)) {
2134 /* Note: we hold off compute operations while checks are
2135 * in flight, but we still prefer 'compute' over 'read'
2136 * hence we only read if (uptodate < * disks-1)
2138 set_bit(R5_LOCKED
, &dev
->flags
);
2139 set_bit(R5_Wantread
, &dev
->flags
);
2140 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2143 pr_debug("Reading block %d (sync=%d)\n", disk_idx
,
2151 static void handle_issuing_new_read_requests5(struct stripe_head
*sh
,
2152 struct stripe_head_state
*s
, int disks
)
2156 /* Clear completed compute operations. Parity recovery
2157 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2158 * later on in this routine
2160 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
) &&
2161 !test_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
)) {
2162 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
);
2163 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.ack
);
2164 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
);
2167 /* look for blocks to read/compute, skip this if a compute
2168 * is already in flight, or if the stripe contents are in the
2169 * midst of changing due to a write
2171 if (!test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
) &&
2172 !test_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
) &&
2173 !test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
)) {
2174 for (i
= disks
; i
--; )
2175 if (__handle_issuing_new_read_requests5(
2176 sh
, s
, i
, disks
) == 0)
2179 set_bit(STRIPE_HANDLE
, &sh
->state
);
2182 static void handle_issuing_new_read_requests6(struct stripe_head
*sh
,
2183 struct stripe_head_state
*s
, struct r6_state
*r6s
,
2187 for (i
= disks
; i
--; ) {
2188 struct r5dev
*dev
= &sh
->dev
[i
];
2189 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2190 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2191 (dev
->toread
|| (dev
->towrite
&&
2192 !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2193 s
->syncing
|| s
->expanding
||
2195 (sh
->dev
[r6s
->failed_num
[0]].toread
||
2198 (sh
->dev
[r6s
->failed_num
[1]].toread
||
2200 /* we would like to get this block, possibly
2201 * by computing it, but we might not be able to
2203 if (s
->uptodate
== disks
-1) {
2204 pr_debug("Computing stripe %llu block %d\n",
2205 (unsigned long long)sh
->sector
, i
);
2206 compute_block_1(sh
, i
, 0);
2208 } else if ( s
->uptodate
== disks
-2 && s
->failed
>= 2 ) {
2209 /* Computing 2-failure is *very* expensive; only
2210 * do it if failed >= 2
2213 for (other
= disks
; other
--; ) {
2216 if (!test_bit(R5_UPTODATE
,
2217 &sh
->dev
[other
].flags
))
2221 pr_debug("Computing stripe %llu blocks %d,%d\n",
2222 (unsigned long long)sh
->sector
,
2224 compute_block_2(sh
, i
, other
);
2226 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2227 set_bit(R5_LOCKED
, &dev
->flags
);
2228 set_bit(R5_Wantread
, &dev
->flags
);
2230 pr_debug("Reading block %d (sync=%d)\n",
2235 set_bit(STRIPE_HANDLE
, &sh
->state
);
2239 /* handle_completed_write_requests
2240 * any written block on an uptodate or failed drive can be returned.
2241 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2242 * never LOCKED, so we don't need to test 'failed' directly.
2244 static void handle_completed_write_requests(raid5_conf_t
*conf
,
2245 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2250 for (i
= disks
; i
--; )
2251 if (sh
->dev
[i
].written
) {
2253 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2254 test_bit(R5_UPTODATE
, &dev
->flags
)) {
2255 /* We can return any write requests */
2256 struct bio
*wbi
, *wbi2
;
2258 pr_debug("Return write for disc %d\n", i
);
2259 spin_lock_irq(&conf
->device_lock
);
2261 dev
->written
= NULL
;
2262 while (wbi
&& wbi
->bi_sector
<
2263 dev
->sector
+ STRIPE_SECTORS
) {
2264 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2265 if (--wbi
->bi_phys_segments
== 0) {
2266 md_write_end(conf
->mddev
);
2267 wbi
->bi_next
= *return_bi
;
2272 if (dev
->towrite
== NULL
)
2274 spin_unlock_irq(&conf
->device_lock
);
2276 bitmap_endwrite(conf
->mddev
->bitmap
,
2279 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
2285 static void handle_issuing_new_write_requests5(raid5_conf_t
*conf
,
2286 struct stripe_head
*sh
, struct stripe_head_state
*s
, int disks
)
2288 int rmw
= 0, rcw
= 0, i
;
2289 for (i
= disks
; i
--; ) {
2290 /* would I have to read this buffer for read_modify_write */
2291 struct r5dev
*dev
= &sh
->dev
[i
];
2292 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2293 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2294 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2295 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2296 if (test_bit(R5_Insync
, &dev
->flags
))
2299 rmw
+= 2*disks
; /* cannot read it */
2301 /* Would I have to read this buffer for reconstruct_write */
2302 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
2303 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2304 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2305 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2306 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2311 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2312 (unsigned long long)sh
->sector
, rmw
, rcw
);
2313 set_bit(STRIPE_HANDLE
, &sh
->state
);
2314 if (rmw
< rcw
&& rmw
> 0)
2315 /* prefer read-modify-write, but need to get some data */
2316 for (i
= disks
; i
--; ) {
2317 struct r5dev
*dev
= &sh
->dev
[i
];
2318 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2319 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2320 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2321 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2322 test_bit(R5_Insync
, &dev
->flags
)) {
2324 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2325 pr_debug("Read_old block "
2326 "%d for r-m-w\n", i
);
2327 set_bit(R5_LOCKED
, &dev
->flags
);
2328 set_bit(R5_Wantread
, &dev
->flags
);
2329 if (!test_and_set_bit(
2330 STRIPE_OP_IO
, &sh
->ops
.pending
))
2334 set_bit(STRIPE_DELAYED
, &sh
->state
);
2335 set_bit(STRIPE_HANDLE
, &sh
->state
);
2339 if (rcw
<= rmw
&& rcw
> 0)
2340 /* want reconstruct write, but need to get some data */
2341 for (i
= disks
; i
--; ) {
2342 struct r5dev
*dev
= &sh
->dev
[i
];
2343 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2345 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2346 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2347 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2348 test_bit(R5_Insync
, &dev
->flags
)) {
2350 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2351 pr_debug("Read_old block "
2352 "%d for Reconstruct\n", i
);
2353 set_bit(R5_LOCKED
, &dev
->flags
);
2354 set_bit(R5_Wantread
, &dev
->flags
);
2355 if (!test_and_set_bit(
2356 STRIPE_OP_IO
, &sh
->ops
.pending
))
2360 set_bit(STRIPE_DELAYED
, &sh
->state
);
2361 set_bit(STRIPE_HANDLE
, &sh
->state
);
2365 /* now if nothing is locked, and if we have enough data,
2366 * we can start a write request
2368 /* since handle_stripe can be called at any time we need to handle the
2369 * case where a compute block operation has been submitted and then a
2370 * subsequent call wants to start a write request. raid5_run_ops only
2371 * handles the case where compute block and postxor are requested
2372 * simultaneously. If this is not the case then new writes need to be
2373 * held off until the compute completes.
2375 if ((s
->req_compute
||
2376 !test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
)) &&
2377 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
2378 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
2379 s
->locked
+= handle_write_operations5(sh
, rcw
== 0, 0);
2382 static void handle_issuing_new_write_requests6(raid5_conf_t
*conf
,
2383 struct stripe_head
*sh
, struct stripe_head_state
*s
,
2384 struct r6_state
*r6s
, int disks
)
2386 int rcw
= 0, must_compute
= 0, pd_idx
= sh
->pd_idx
, i
;
2387 int qd_idx
= r6s
->qd_idx
;
2388 for (i
= disks
; i
--; ) {
2389 struct r5dev
*dev
= &sh
->dev
[i
];
2390 /* Would I have to read this buffer for reconstruct_write */
2391 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2392 && i
!= pd_idx
&& i
!= qd_idx
2393 && (!test_bit(R5_LOCKED
, &dev
->flags
)
2395 !test_bit(R5_UPTODATE
, &dev
->flags
)) {
2396 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2398 pr_debug("raid6: must_compute: "
2399 "disk %d flags=%#lx\n", i
, dev
->flags
);
2404 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2405 (unsigned long long)sh
->sector
, rcw
, must_compute
);
2406 set_bit(STRIPE_HANDLE
, &sh
->state
);
2409 /* want reconstruct write, but need to get some data */
2410 for (i
= disks
; i
--; ) {
2411 struct r5dev
*dev
= &sh
->dev
[i
];
2412 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2413 && !(s
->failed
== 0 && (i
== pd_idx
|| i
== qd_idx
))
2414 && !test_bit(R5_LOCKED
, &dev
->flags
) &&
2415 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2416 test_bit(R5_Insync
, &dev
->flags
)) {
2418 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2419 pr_debug("Read_old stripe %llu "
2420 "block %d for Reconstruct\n",
2421 (unsigned long long)sh
->sector
, i
);
2422 set_bit(R5_LOCKED
, &dev
->flags
);
2423 set_bit(R5_Wantread
, &dev
->flags
);
2426 pr_debug("Request delayed stripe %llu "
2427 "block %d for Reconstruct\n",
2428 (unsigned long long)sh
->sector
, i
);
2429 set_bit(STRIPE_DELAYED
, &sh
->state
);
2430 set_bit(STRIPE_HANDLE
, &sh
->state
);
2434 /* now if nothing is locked, and if we have enough data, we can start a
2437 if (s
->locked
== 0 && rcw
== 0 &&
2438 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
2439 if (must_compute
> 0) {
2440 /* We have failed blocks and need to compute them */
2441 switch (s
->failed
) {
2445 compute_block_1(sh
, r6s
->failed_num
[0], 0);
2448 compute_block_2(sh
, r6s
->failed_num
[0],
2449 r6s
->failed_num
[1]);
2451 default: /* This request should have been failed? */
2456 pr_debug("Computing parity for stripe %llu\n",
2457 (unsigned long long)sh
->sector
);
2458 compute_parity6(sh
, RECONSTRUCT_WRITE
);
2459 /* now every locked buffer is ready to be written */
2460 for (i
= disks
; i
--; )
2461 if (test_bit(R5_LOCKED
, &sh
->dev
[i
].flags
)) {
2462 pr_debug("Writing stripe %llu block %d\n",
2463 (unsigned long long)sh
->sector
, i
);
2465 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2467 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2468 set_bit(STRIPE_INSYNC
, &sh
->state
);
2470 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2471 atomic_dec(&conf
->preread_active_stripes
);
2472 if (atomic_read(&conf
->preread_active_stripes
) <
2474 md_wakeup_thread(conf
->mddev
->thread
);
2479 static void handle_parity_checks5(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2480 struct stripe_head_state
*s
, int disks
)
2482 set_bit(STRIPE_HANDLE
, &sh
->state
);
2483 /* Take one of the following actions:
2484 * 1/ start a check parity operation if (uptodate == disks)
2485 * 2/ finish a check parity operation and act on the result
2486 * 3/ skip to the writeback section if we previously
2487 * initiated a recovery operation
2489 if (s
->failed
== 0 &&
2490 !test_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
)) {
2491 if (!test_and_set_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
)) {
2492 BUG_ON(s
->uptodate
!= disks
);
2493 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2497 test_and_clear_bit(STRIPE_OP_CHECK
, &sh
->ops
.complete
)) {
2498 clear_bit(STRIPE_OP_CHECK
, &sh
->ops
.ack
);
2499 clear_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
);
2501 if (sh
->ops
.zero_sum_result
== 0)
2502 /* parity is correct (on disc,
2503 * not in buffer any more)
2505 set_bit(STRIPE_INSYNC
, &sh
->state
);
2507 conf
->mddev
->resync_mismatches
+=
2510 MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2511 /* don't try to repair!! */
2512 set_bit(STRIPE_INSYNC
, &sh
->state
);
2514 set_bit(STRIPE_OP_COMPUTE_BLK
,
2516 set_bit(STRIPE_OP_MOD_REPAIR_PD
,
2518 set_bit(R5_Wantcompute
,
2519 &sh
->dev
[sh
->pd_idx
].flags
);
2520 sh
->ops
.target
= sh
->pd_idx
;
2528 /* check if we can clear a parity disk reconstruct */
2529 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
) &&
2530 test_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
)) {
2532 clear_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
);
2533 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
);
2534 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.ack
);
2535 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
);
2538 /* Wait for check parity and compute block operations to complete
2541 if (!test_bit(STRIPE_INSYNC
, &sh
->state
) &&
2542 !test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
) &&
2543 !test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
)) {
2545 /* either failed parity check, or recovery is happening */
2547 s
->failed_num
= sh
->pd_idx
;
2548 dev
= &sh
->dev
[s
->failed_num
];
2549 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
2550 BUG_ON(s
->uptodate
!= disks
);
2552 set_bit(R5_LOCKED
, &dev
->flags
);
2553 set_bit(R5_Wantwrite
, &dev
->flags
);
2554 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2557 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2559 set_bit(STRIPE_INSYNC
, &sh
->state
);
2564 static void handle_parity_checks6(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2565 struct stripe_head_state
*s
,
2566 struct r6_state
*r6s
, struct page
*tmp_page
,
2569 int update_p
= 0, update_q
= 0;
2571 int pd_idx
= sh
->pd_idx
;
2572 int qd_idx
= r6s
->qd_idx
;
2574 set_bit(STRIPE_HANDLE
, &sh
->state
);
2576 BUG_ON(s
->failed
> 2);
2577 BUG_ON(s
->uptodate
< disks
);
2578 /* Want to check and possibly repair P and Q.
2579 * However there could be one 'failed' device, in which
2580 * case we can only check one of them, possibly using the
2581 * other to generate missing data
2584 /* If !tmp_page, we cannot do the calculations,
2585 * but as we have set STRIPE_HANDLE, we will soon be called
2586 * by stripe_handle with a tmp_page - just wait until then.
2589 if (s
->failed
== r6s
->q_failed
) {
2590 /* The only possible failed device holds 'Q', so it
2591 * makes sense to check P (If anything else were failed,
2592 * we would have used P to recreate it).
2594 compute_block_1(sh
, pd_idx
, 1);
2595 if (!page_is_zero(sh
->dev
[pd_idx
].page
)) {
2596 compute_block_1(sh
, pd_idx
, 0);
2600 if (!r6s
->q_failed
&& s
->failed
< 2) {
2601 /* q is not failed, and we didn't use it to generate
2602 * anything, so it makes sense to check it
2604 memcpy(page_address(tmp_page
),
2605 page_address(sh
->dev
[qd_idx
].page
),
2607 compute_parity6(sh
, UPDATE_PARITY
);
2608 if (memcmp(page_address(tmp_page
),
2609 page_address(sh
->dev
[qd_idx
].page
),
2610 STRIPE_SIZE
) != 0) {
2611 clear_bit(STRIPE_INSYNC
, &sh
->state
);
2615 if (update_p
|| update_q
) {
2616 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2617 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2618 /* don't try to repair!! */
2619 update_p
= update_q
= 0;
2622 /* now write out any block on a failed drive,
2623 * or P or Q if they need it
2626 if (s
->failed
== 2) {
2627 dev
= &sh
->dev
[r6s
->failed_num
[1]];
2629 set_bit(R5_LOCKED
, &dev
->flags
);
2630 set_bit(R5_Wantwrite
, &dev
->flags
);
2632 if (s
->failed
>= 1) {
2633 dev
= &sh
->dev
[r6s
->failed_num
[0]];
2635 set_bit(R5_LOCKED
, &dev
->flags
);
2636 set_bit(R5_Wantwrite
, &dev
->flags
);
2640 dev
= &sh
->dev
[pd_idx
];
2642 set_bit(R5_LOCKED
, &dev
->flags
);
2643 set_bit(R5_Wantwrite
, &dev
->flags
);
2646 dev
= &sh
->dev
[qd_idx
];
2648 set_bit(R5_LOCKED
, &dev
->flags
);
2649 set_bit(R5_Wantwrite
, &dev
->flags
);
2651 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2653 set_bit(STRIPE_INSYNC
, &sh
->state
);
2657 static void handle_stripe_expansion(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2658 struct r6_state
*r6s
)
2662 /* We have read all the blocks in this stripe and now we need to
2663 * copy some of them into a target stripe for expand.
2665 struct dma_async_tx_descriptor
*tx
= NULL
;
2666 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2667 for (i
= 0; i
< sh
->disks
; i
++)
2668 if (i
!= sh
->pd_idx
&& (r6s
&& i
!= r6s
->qd_idx
)) {
2669 int dd_idx
, pd_idx
, j
;
2670 struct stripe_head
*sh2
;
2672 sector_t bn
= compute_blocknr(sh
, i
);
2673 sector_t s
= raid5_compute_sector(bn
, conf
->raid_disks
,
2675 conf
->max_degraded
, &dd_idx
,
2677 sh2
= get_active_stripe(conf
, s
, conf
->raid_disks
,
2680 /* so far only the early blocks of this stripe
2681 * have been requested. When later blocks
2682 * get requested, we will try again
2685 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
2686 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
2687 /* must have already done this block */
2688 release_stripe(sh2
);
2692 /* place all the copies on one channel */
2693 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
2694 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
2695 ASYNC_TX_DEP_ACK
, tx
, NULL
, NULL
);
2697 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
2698 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
2699 for (j
= 0; j
< conf
->raid_disks
; j
++)
2700 if (j
!= sh2
->pd_idx
&&
2701 (r6s
&& j
!= r6s
->qd_idx
) &&
2702 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
2704 if (j
== conf
->raid_disks
) {
2705 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
2706 set_bit(STRIPE_HANDLE
, &sh2
->state
);
2708 release_stripe(sh2
);
2710 /* done submitting copies, wait for them to complete */
2711 if (i
+ 1 >= sh
->disks
) {
2713 dma_wait_for_async_tx(tx
);
2719 * handle_stripe - do things to a stripe.
2721 * We lock the stripe and then examine the state of various bits
2722 * to see what needs to be done.
2724 * return some read request which now have data
2725 * return some write requests which are safely on disc
2726 * schedule a read on some buffers
2727 * schedule a write of some buffers
2728 * return confirmation of parity correctness
2730 * buffers are taken off read_list or write_list, and bh_cache buffers
2731 * get BH_Lock set before the stripe lock is released.
2735 static void handle_stripe5(struct stripe_head
*sh
)
2737 raid5_conf_t
*conf
= sh
->raid_conf
;
2738 int disks
= sh
->disks
, i
;
2739 struct bio
*return_bi
= NULL
;
2740 struct stripe_head_state s
;
2742 unsigned long pending
= 0;
2744 memset(&s
, 0, sizeof(s
));
2745 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2746 "ops=%lx:%lx:%lx\n", (unsigned long long)sh
->sector
, sh
->state
,
2747 atomic_read(&sh
->count
), sh
->pd_idx
,
2748 sh
->ops
.pending
, sh
->ops
.ack
, sh
->ops
.complete
);
2750 spin_lock(&sh
->lock
);
2751 clear_bit(STRIPE_HANDLE
, &sh
->state
);
2752 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2754 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2755 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2756 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2757 /* Now to look around and see what can be done */
2760 for (i
=disks
; i
--; ) {
2762 struct r5dev
*dev
= &sh
->dev
[i
];
2763 clear_bit(R5_Insync
, &dev
->flags
);
2765 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2766 "written %p\n", i
, dev
->flags
, dev
->toread
, dev
->read
,
2767 dev
->towrite
, dev
->written
);
2769 /* maybe we can request a biofill operation
2771 * new wantfill requests are only permitted while
2772 * STRIPE_OP_BIOFILL is clear
2774 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
2775 !test_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.pending
))
2776 set_bit(R5_Wantfill
, &dev
->flags
);
2778 /* now count some things */
2779 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
2780 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
2781 if (test_bit(R5_Wantcompute
, &dev
->flags
)) s
.compute
++;
2783 if (test_bit(R5_Wantfill
, &dev
->flags
))
2785 else if (dev
->toread
)
2789 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
2794 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2795 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
2796 /* The ReadError flag will just be confusing now */
2797 clear_bit(R5_ReadError
, &dev
->flags
);
2798 clear_bit(R5_ReWrite
, &dev
->flags
);
2800 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
2801 || test_bit(R5_ReadError
, &dev
->flags
)) {
2805 set_bit(R5_Insync
, &dev
->flags
);
2809 if (s
.to_fill
&& !test_and_set_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.pending
))
2812 pr_debug("locked=%d uptodate=%d to_read=%d"
2813 " to_write=%d failed=%d failed_num=%d\n",
2814 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
,
2815 s
.failed
, s
.failed_num
);
2816 /* check if the array has lost two devices and, if so, some requests might
2819 if (s
.failed
> 1 && s
.to_read
+s
.to_write
+s
.written
)
2820 handle_requests_to_failed_array(conf
, sh
, &s
, disks
,
2822 if (s
.failed
> 1 && s
.syncing
) {
2823 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
2824 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2828 /* might be able to return some write requests if the parity block
2829 * is safe, or on a failed drive
2831 dev
= &sh
->dev
[sh
->pd_idx
];
2833 ((test_bit(R5_Insync
, &dev
->flags
) &&
2834 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2835 test_bit(R5_UPTODATE
, &dev
->flags
)) ||
2836 (s
.failed
== 1 && s
.failed_num
== sh
->pd_idx
)))
2837 handle_completed_write_requests(conf
, sh
, disks
, &return_bi
);
2839 /* Now we might consider reading some blocks, either to check/generate
2840 * parity, or to satisfy requests
2841 * or to load a block that is being partially written.
2843 if (s
.to_read
|| s
.non_overwrite
||
2844 (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
||
2845 test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
))
2846 handle_issuing_new_read_requests5(sh
, &s
, disks
);
2848 /* Now we check to see if any write operations have recently
2852 /* leave prexor set until postxor is done, allows us to distinguish
2853 * a rmw from a rcw during biodrain
2855 if (test_bit(STRIPE_OP_PREXOR
, &sh
->ops
.complete
) &&
2856 test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
)) {
2858 clear_bit(STRIPE_OP_PREXOR
, &sh
->ops
.complete
);
2859 clear_bit(STRIPE_OP_PREXOR
, &sh
->ops
.ack
);
2860 clear_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
);
2862 for (i
= disks
; i
--; )
2863 clear_bit(R5_Wantprexor
, &sh
->dev
[i
].flags
);
2866 /* if only POSTXOR is set then this is an 'expand' postxor */
2867 if (test_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.complete
) &&
2868 test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
)) {
2870 clear_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.complete
);
2871 clear_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.ack
);
2872 clear_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
);
2874 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
);
2875 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.ack
);
2876 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
);
2878 /* All the 'written' buffers and the parity block are ready to
2879 * be written back to disk
2881 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
2882 for (i
= disks
; i
--; ) {
2884 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
2885 (i
== sh
->pd_idx
|| dev
->written
)) {
2886 pr_debug("Writing block %d\n", i
);
2887 set_bit(R5_Wantwrite
, &dev
->flags
);
2888 if (!test_and_set_bit(
2889 STRIPE_OP_IO
, &sh
->ops
.pending
))
2891 if (!test_bit(R5_Insync
, &dev
->flags
) ||
2892 (i
== sh
->pd_idx
&& s
.failed
== 0))
2893 set_bit(STRIPE_INSYNC
, &sh
->state
);
2896 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2897 atomic_dec(&conf
->preread_active_stripes
);
2898 if (atomic_read(&conf
->preread_active_stripes
) <
2900 md_wakeup_thread(conf
->mddev
->thread
);
2904 /* Now to consider new write requests and what else, if anything
2905 * should be read. We do not handle new writes when:
2906 * 1/ A 'write' operation (copy+xor) is already in flight.
2907 * 2/ A 'check' operation is in flight, as it may clobber the parity
2910 if (s
.to_write
&& !test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
) &&
2911 !test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
))
2912 handle_issuing_new_write_requests5(conf
, sh
, &s
, disks
);
2914 /* maybe we need to check and possibly fix the parity for this stripe
2915 * Any reads will already have been scheduled, so we just see if enough
2916 * data is available. The parity check is held off while parity
2917 * dependent operations are in flight.
2919 if ((s
.syncing
&& s
.locked
== 0 &&
2920 !test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
) &&
2921 !test_bit(STRIPE_INSYNC
, &sh
->state
)) ||
2922 test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
) ||
2923 test_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
))
2924 handle_parity_checks5(conf
, sh
, &s
, disks
);
2926 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
2927 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
2928 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2931 /* If the failed drive is just a ReadError, then we might need to progress
2932 * the repair/check process
2934 if (s
.failed
== 1 && !conf
->mddev
->ro
&&
2935 test_bit(R5_ReadError
, &sh
->dev
[s
.failed_num
].flags
)
2936 && !test_bit(R5_LOCKED
, &sh
->dev
[s
.failed_num
].flags
)
2937 && test_bit(R5_UPTODATE
, &sh
->dev
[s
.failed_num
].flags
)
2939 dev
= &sh
->dev
[s
.failed_num
];
2940 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
2941 set_bit(R5_Wantwrite
, &dev
->flags
);
2942 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2944 set_bit(R5_ReWrite
, &dev
->flags
);
2945 set_bit(R5_LOCKED
, &dev
->flags
);
2948 /* let's read it back */
2949 set_bit(R5_Wantread
, &dev
->flags
);
2950 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2952 set_bit(R5_LOCKED
, &dev
->flags
);
2957 /* Finish postxor operations initiated by the expansion
2960 if (test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
) &&
2961 !test_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
)) {
2963 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
2965 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
);
2966 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.ack
);
2967 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
);
2969 for (i
= conf
->raid_disks
; i
--; ) {
2970 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2971 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2976 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
2977 !test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
)) {
2978 /* Need to write out all blocks after computing parity */
2979 sh
->disks
= conf
->raid_disks
;
2980 sh
->pd_idx
= stripe_to_pdidx(sh
->sector
, conf
,
2982 s
.locked
+= handle_write_operations5(sh
, 0, 1);
2983 } else if (s
.expanded
&&
2984 !test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
)) {
2985 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2986 atomic_dec(&conf
->reshape_stripes
);
2987 wake_up(&conf
->wait_for_overlap
);
2988 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
2991 if (s
.expanding
&& s
.locked
== 0)
2992 handle_stripe_expansion(conf
, sh
, NULL
);
2995 pending
= get_stripe_work(sh
);
2997 spin_unlock(&sh
->lock
);
3000 raid5_run_ops(sh
, pending
);
3002 return_io(return_bi
);
3006 static void handle_stripe6(struct stripe_head
*sh
, struct page
*tmp_page
)
3008 raid6_conf_t
*conf
= sh
->raid_conf
;
3009 int disks
= sh
->disks
;
3010 struct bio
*return_bi
= NULL
;
3011 int i
, pd_idx
= sh
->pd_idx
;
3012 struct stripe_head_state s
;
3013 struct r6_state r6s
;
3014 struct r5dev
*dev
, *pdev
, *qdev
;
3016 r6s
.qd_idx
= raid6_next_disk(pd_idx
, disks
);
3017 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3018 "pd_idx=%d, qd_idx=%d\n",
3019 (unsigned long long)sh
->sector
, sh
->state
,
3020 atomic_read(&sh
->count
), pd_idx
, r6s
.qd_idx
);
3021 memset(&s
, 0, sizeof(s
));
3023 spin_lock(&sh
->lock
);
3024 clear_bit(STRIPE_HANDLE
, &sh
->state
);
3025 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3027 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
3028 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3029 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3030 /* Now to look around and see what can be done */
3033 for (i
=disks
; i
--; ) {
3036 clear_bit(R5_Insync
, &dev
->flags
);
3038 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3039 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
3040 /* maybe we can reply to a read */
3041 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
) {
3042 struct bio
*rbi
, *rbi2
;
3043 pr_debug("Return read for disc %d\n", i
);
3044 spin_lock_irq(&conf
->device_lock
);
3047 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
3048 wake_up(&conf
->wait_for_overlap
);
3049 spin_unlock_irq(&conf
->device_lock
);
3050 while (rbi
&& rbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
3051 copy_data(0, rbi
, dev
->page
, dev
->sector
);
3052 rbi2
= r5_next_bio(rbi
, dev
->sector
);
3053 spin_lock_irq(&conf
->device_lock
);
3054 if (--rbi
->bi_phys_segments
== 0) {
3055 rbi
->bi_next
= return_bi
;
3058 spin_unlock_irq(&conf
->device_lock
);
3063 /* now count some things */
3064 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
3065 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
3072 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
3077 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3078 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
3079 /* The ReadError flag will just be confusing now */
3080 clear_bit(R5_ReadError
, &dev
->flags
);
3081 clear_bit(R5_ReWrite
, &dev
->flags
);
3083 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
3084 || test_bit(R5_ReadError
, &dev
->flags
)) {
3086 r6s
.failed_num
[s
.failed
] = i
;
3089 set_bit(R5_Insync
, &dev
->flags
);
3092 pr_debug("locked=%d uptodate=%d to_read=%d"
3093 " to_write=%d failed=%d failed_num=%d,%d\n",
3094 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
3095 r6s
.failed_num
[0], r6s
.failed_num
[1]);
3096 /* check if the array has lost >2 devices and, if so, some requests
3097 * might need to be failed
3099 if (s
.failed
> 2 && s
.to_read
+s
.to_write
+s
.written
)
3100 handle_requests_to_failed_array(conf
, sh
, &s
, disks
,
3102 if (s
.failed
> 2 && s
.syncing
) {
3103 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
3104 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3109 * might be able to return some write requests if the parity blocks
3110 * are safe, or on a failed drive
3112 pdev
= &sh
->dev
[pd_idx
];
3113 r6s
.p_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == pd_idx
)
3114 || (s
.failed
>= 2 && r6s
.failed_num
[1] == pd_idx
);
3115 qdev
= &sh
->dev
[r6s
.qd_idx
];
3116 r6s
.q_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == r6s
.qd_idx
)
3117 || (s
.failed
>= 2 && r6s
.failed_num
[1] == r6s
.qd_idx
);
3120 ( r6s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
3121 && !test_bit(R5_LOCKED
, &pdev
->flags
)
3122 && test_bit(R5_UPTODATE
, &pdev
->flags
)))) &&
3123 ( r6s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
3124 && !test_bit(R5_LOCKED
, &qdev
->flags
)
3125 && test_bit(R5_UPTODATE
, &qdev
->flags
)))))
3126 handle_completed_write_requests(conf
, sh
, disks
, &return_bi
);
3128 /* Now we might consider reading some blocks, either to check/generate
3129 * parity, or to satisfy requests
3130 * or to load a block that is being partially written.
3132 if (s
.to_read
|| s
.non_overwrite
|| (s
.to_write
&& s
.failed
) ||
3133 (s
.syncing
&& (s
.uptodate
< disks
)) || s
.expanding
)
3134 handle_issuing_new_read_requests6(sh
, &s
, &r6s
, disks
);
3136 /* now to consider writing and what else, if anything should be read */
3138 handle_issuing_new_write_requests6(conf
, sh
, &s
, &r6s
, disks
);
3140 /* maybe we need to check and possibly fix the parity for this stripe
3141 * Any reads will already have been scheduled, so we just see if enough
3144 if (s
.syncing
&& s
.locked
== 0 && !test_bit(STRIPE_INSYNC
, &sh
->state
))
3145 handle_parity_checks6(conf
, sh
, &s
, &r6s
, tmp_page
, disks
);
3147 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3148 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
3149 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3152 /* If the failed drives are just a ReadError, then we might need
3153 * to progress the repair/check process
3155 if (s
.failed
<= 2 && !conf
->mddev
->ro
)
3156 for (i
= 0; i
< s
.failed
; i
++) {
3157 dev
= &sh
->dev
[r6s
.failed_num
[i
]];
3158 if (test_bit(R5_ReadError
, &dev
->flags
)
3159 && !test_bit(R5_LOCKED
, &dev
->flags
)
3160 && test_bit(R5_UPTODATE
, &dev
->flags
)
3162 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3163 set_bit(R5_Wantwrite
, &dev
->flags
);
3164 set_bit(R5_ReWrite
, &dev
->flags
);
3165 set_bit(R5_LOCKED
, &dev
->flags
);
3167 /* let's read it back */
3168 set_bit(R5_Wantread
, &dev
->flags
);
3169 set_bit(R5_LOCKED
, &dev
->flags
);
3174 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
3175 /* Need to write out all blocks after computing P&Q */
3176 sh
->disks
= conf
->raid_disks
;
3177 sh
->pd_idx
= stripe_to_pdidx(sh
->sector
, conf
,
3179 compute_parity6(sh
, RECONSTRUCT_WRITE
);
3180 for (i
= conf
->raid_disks
; i
-- ; ) {
3181 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3183 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3185 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3186 } else if (s
.expanded
) {
3187 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3188 atomic_dec(&conf
->reshape_stripes
);
3189 wake_up(&conf
->wait_for_overlap
);
3190 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3193 if (s
.expanding
&& s
.locked
== 0)
3194 handle_stripe_expansion(conf
, sh
, &r6s
);
3196 spin_unlock(&sh
->lock
);
3198 return_io(return_bi
);
3200 for (i
=disks
; i
-- ;) {
3204 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
3206 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
3211 bi
= &sh
->dev
[i
].req
;
3215 bi
->bi_end_io
= raid5_end_write_request
;
3217 bi
->bi_end_io
= raid5_end_read_request
;
3220 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3221 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
3224 atomic_inc(&rdev
->nr_pending
);
3228 if (s
.syncing
|| s
.expanding
|| s
.expanded
)
3229 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
3231 bi
->bi_bdev
= rdev
->bdev
;
3232 pr_debug("for %llu schedule op %ld on disc %d\n",
3233 (unsigned long long)sh
->sector
, bi
->bi_rw
, i
);
3234 atomic_inc(&sh
->count
);
3235 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
3236 bi
->bi_flags
= 1 << BIO_UPTODATE
;
3238 bi
->bi_max_vecs
= 1;
3240 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
3241 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
3242 bi
->bi_io_vec
[0].bv_offset
= 0;
3243 bi
->bi_size
= STRIPE_SIZE
;
3246 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
3247 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
3248 generic_make_request(bi
);
3251 set_bit(STRIPE_DEGRADED
, &sh
->state
);
3252 pr_debug("skip op %ld on disc %d for sector %llu\n",
3253 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
3254 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3255 set_bit(STRIPE_HANDLE
, &sh
->state
);
3260 static void handle_stripe(struct stripe_head
*sh
, struct page
*tmp_page
)
3262 if (sh
->raid_conf
->level
== 6)
3263 handle_stripe6(sh
, tmp_page
);
3270 static void raid5_activate_delayed(raid5_conf_t
*conf
)
3272 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
3273 while (!list_empty(&conf
->delayed_list
)) {
3274 struct list_head
*l
= conf
->delayed_list
.next
;
3275 struct stripe_head
*sh
;
3276 sh
= list_entry(l
, struct stripe_head
, lru
);
3278 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3279 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3280 atomic_inc(&conf
->preread_active_stripes
);
3281 list_add_tail(&sh
->lru
, &conf
->handle_list
);
3286 static void activate_bit_delay(raid5_conf_t
*conf
)
3288 /* device_lock is held */
3289 struct list_head head
;
3290 list_add(&head
, &conf
->bitmap_list
);
3291 list_del_init(&conf
->bitmap_list
);
3292 while (!list_empty(&head
)) {
3293 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
3294 list_del_init(&sh
->lru
);
3295 atomic_inc(&sh
->count
);
3296 __release_stripe(conf
, sh
);
3300 static void unplug_slaves(mddev_t
*mddev
)
3302 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3306 for (i
=0; i
<mddev
->raid_disks
; i
++) {
3307 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3308 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
3309 request_queue_t
*r_queue
= bdev_get_queue(rdev
->bdev
);
3311 atomic_inc(&rdev
->nr_pending
);
3314 if (r_queue
->unplug_fn
)
3315 r_queue
->unplug_fn(r_queue
);
3317 rdev_dec_pending(rdev
, mddev
);
3324 static void raid5_unplug_device(request_queue_t
*q
)
3326 mddev_t
*mddev
= q
->queuedata
;
3327 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3328 unsigned long flags
;
3330 spin_lock_irqsave(&conf
->device_lock
, flags
);
3332 if (blk_remove_plug(q
)) {
3334 raid5_activate_delayed(conf
);
3336 md_wakeup_thread(mddev
->thread
);
3338 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3340 unplug_slaves(mddev
);
3343 static int raid5_issue_flush(request_queue_t
*q
, struct gendisk
*disk
,
3344 sector_t
*error_sector
)
3346 mddev_t
*mddev
= q
->queuedata
;
3347 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3351 for (i
=0; i
<mddev
->raid_disks
&& ret
== 0; i
++) {
3352 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3353 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
3354 struct block_device
*bdev
= rdev
->bdev
;
3355 request_queue_t
*r_queue
= bdev_get_queue(bdev
);
3357 if (!r_queue
->issue_flush_fn
)
3360 atomic_inc(&rdev
->nr_pending
);
3362 ret
= r_queue
->issue_flush_fn(r_queue
, bdev
->bd_disk
,
3364 rdev_dec_pending(rdev
, mddev
);
3373 static int raid5_congested(void *data
, int bits
)
3375 mddev_t
*mddev
= data
;
3376 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3378 /* No difference between reads and writes. Just check
3379 * how busy the stripe_cache is
3381 if (conf
->inactive_blocked
)
3385 if (list_empty_careful(&conf
->inactive_list
))
3391 /* We want read requests to align with chunks where possible,
3392 * but write requests don't need to.
3394 static int raid5_mergeable_bvec(request_queue_t
*q
, struct bio
*bio
, struct bio_vec
*biovec
)
3396 mddev_t
*mddev
= q
->queuedata
;
3397 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3399 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
3400 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3402 if (bio_data_dir(bio
) == WRITE
)
3403 return biovec
->bv_len
; /* always allow writes to be mergeable */
3405 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
3406 if (max
< 0) max
= 0;
3407 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
3408 return biovec
->bv_len
;
3414 static int in_chunk_boundary(mddev_t
*mddev
, struct bio
*bio
)
3416 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3417 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
3418 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3420 return chunk_sectors
>=
3421 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
3425 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3426 * later sampled by raid5d.
3428 static void add_bio_to_retry(struct bio
*bi
,raid5_conf_t
*conf
)
3430 unsigned long flags
;
3432 spin_lock_irqsave(&conf
->device_lock
, flags
);
3434 bi
->bi_next
= conf
->retry_read_aligned_list
;
3435 conf
->retry_read_aligned_list
= bi
;
3437 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3438 md_wakeup_thread(conf
->mddev
->thread
);
3442 static struct bio
*remove_bio_from_retry(raid5_conf_t
*conf
)
3446 bi
= conf
->retry_read_aligned
;
3448 conf
->retry_read_aligned
= NULL
;
3451 bi
= conf
->retry_read_aligned_list
;
3453 conf
->retry_read_aligned_list
= bi
->bi_next
;
3455 bi
->bi_phys_segments
= 1; /* biased count of active stripes */
3456 bi
->bi_hw_segments
= 0; /* count of processed stripes */
3464 * The "raid5_align_endio" should check if the read succeeded and if it
3465 * did, call bio_endio on the original bio (having bio_put the new bio
3467 * If the read failed..
3469 static int raid5_align_endio(struct bio
*bi
, unsigned int bytes
, int error
)
3471 struct bio
* raid_bi
= bi
->bi_private
;
3474 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3481 mddev
= raid_bi
->bi_bdev
->bd_disk
->queue
->queuedata
;
3482 conf
= mddev_to_conf(mddev
);
3483 rdev
= (void*)raid_bi
->bi_next
;
3484 raid_bi
->bi_next
= NULL
;
3486 rdev_dec_pending(rdev
, conf
->mddev
);
3488 if (!error
&& uptodate
) {
3489 bio_endio(raid_bi
, bytes
, 0);
3490 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3491 wake_up(&conf
->wait_for_stripe
);
3496 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3498 add_bio_to_retry(raid_bi
, conf
);
3502 static int bio_fits_rdev(struct bio
*bi
)
3504 request_queue_t
*q
= bdev_get_queue(bi
->bi_bdev
);
3506 if ((bi
->bi_size
>>9) > q
->max_sectors
)
3508 blk_recount_segments(q
, bi
);
3509 if (bi
->bi_phys_segments
> q
->max_phys_segments
||
3510 bi
->bi_hw_segments
> q
->max_hw_segments
)
3513 if (q
->merge_bvec_fn
)
3514 /* it's too hard to apply the merge_bvec_fn at this stage,
3523 static int chunk_aligned_read(request_queue_t
*q
, struct bio
* raid_bio
)
3525 mddev_t
*mddev
= q
->queuedata
;
3526 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3527 const unsigned int raid_disks
= conf
->raid_disks
;
3528 const unsigned int data_disks
= raid_disks
- conf
->max_degraded
;
3529 unsigned int dd_idx
, pd_idx
;
3530 struct bio
* align_bi
;
3533 if (!in_chunk_boundary(mddev
, raid_bio
)) {
3534 pr_debug("chunk_aligned_read : non aligned\n");
3538 * use bio_clone to make a copy of the bio
3540 align_bi
= bio_clone(raid_bio
, GFP_NOIO
);
3544 * set bi_end_io to a new function, and set bi_private to the
3547 align_bi
->bi_end_io
= raid5_align_endio
;
3548 align_bi
->bi_private
= raid_bio
;
3552 align_bi
->bi_sector
= raid5_compute_sector(raid_bio
->bi_sector
,
3560 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
3561 if (rdev
&& test_bit(In_sync
, &rdev
->flags
)) {
3562 atomic_inc(&rdev
->nr_pending
);
3564 raid_bio
->bi_next
= (void*)rdev
;
3565 align_bi
->bi_bdev
= rdev
->bdev
;
3566 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3567 align_bi
->bi_sector
+= rdev
->data_offset
;
3569 if (!bio_fits_rdev(align_bi
)) {
3570 /* too big in some way */
3572 rdev_dec_pending(rdev
, mddev
);
3576 spin_lock_irq(&conf
->device_lock
);
3577 wait_event_lock_irq(conf
->wait_for_stripe
,
3579 conf
->device_lock
, /* nothing */);
3580 atomic_inc(&conf
->active_aligned_reads
);
3581 spin_unlock_irq(&conf
->device_lock
);
3583 generic_make_request(align_bi
);
3593 static int make_request(request_queue_t
*q
, struct bio
* bi
)
3595 mddev_t
*mddev
= q
->queuedata
;
3596 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3597 unsigned int dd_idx
, pd_idx
;
3598 sector_t new_sector
;
3599 sector_t logical_sector
, last_sector
;
3600 struct stripe_head
*sh
;
3601 const int rw
= bio_data_dir(bi
);
3604 if (unlikely(bio_barrier(bi
))) {
3605 bio_endio(bi
, bi
->bi_size
, -EOPNOTSUPP
);
3609 md_write_start(mddev
, bi
);
3611 disk_stat_inc(mddev
->gendisk
, ios
[rw
]);
3612 disk_stat_add(mddev
->gendisk
, sectors
[rw
], bio_sectors(bi
));
3615 mddev
->reshape_position
== MaxSector
&&
3616 chunk_aligned_read(q
,bi
))
3619 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3620 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
3622 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
3624 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
3626 int disks
, data_disks
;
3629 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
3630 if (likely(conf
->expand_progress
== MaxSector
))
3631 disks
= conf
->raid_disks
;
3633 /* spinlock is needed as expand_progress may be
3634 * 64bit on a 32bit platform, and so it might be
3635 * possible to see a half-updated value
3636 * Ofcourse expand_progress could change after
3637 * the lock is dropped, so once we get a reference
3638 * to the stripe that we think it is, we will have
3641 spin_lock_irq(&conf
->device_lock
);
3642 disks
= conf
->raid_disks
;
3643 if (logical_sector
>= conf
->expand_progress
)
3644 disks
= conf
->previous_raid_disks
;
3646 if (logical_sector
>= conf
->expand_lo
) {
3647 spin_unlock_irq(&conf
->device_lock
);
3652 spin_unlock_irq(&conf
->device_lock
);
3654 data_disks
= disks
- conf
->max_degraded
;
3656 new_sector
= raid5_compute_sector(logical_sector
, disks
, data_disks
,
3657 &dd_idx
, &pd_idx
, conf
);
3658 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3659 (unsigned long long)new_sector
,
3660 (unsigned long long)logical_sector
);
3662 sh
= get_active_stripe(conf
, new_sector
, disks
, pd_idx
, (bi
->bi_rw
&RWA_MASK
));
3664 if (unlikely(conf
->expand_progress
!= MaxSector
)) {
3665 /* expansion might have moved on while waiting for a
3666 * stripe, so we must do the range check again.
3667 * Expansion could still move past after this
3668 * test, but as we are holding a reference to
3669 * 'sh', we know that if that happens,
3670 * STRIPE_EXPANDING will get set and the expansion
3671 * won't proceed until we finish with the stripe.
3674 spin_lock_irq(&conf
->device_lock
);
3675 if (logical_sector
< conf
->expand_progress
&&
3676 disks
== conf
->previous_raid_disks
)
3677 /* mismatch, need to try again */
3679 spin_unlock_irq(&conf
->device_lock
);
3685 /* FIXME what if we get a false positive because these
3686 * are being updated.
3688 if (logical_sector
>= mddev
->suspend_lo
&&
3689 logical_sector
< mddev
->suspend_hi
) {
3695 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
3696 !add_stripe_bio(sh
, bi
, dd_idx
, (bi
->bi_rw
&RW_MASK
))) {
3697 /* Stripe is busy expanding or
3698 * add failed due to overlap. Flush everything
3701 raid5_unplug_device(mddev
->queue
);
3706 finish_wait(&conf
->wait_for_overlap
, &w
);
3707 handle_stripe(sh
, NULL
);
3710 /* cannot get stripe for read-ahead, just give-up */
3711 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3712 finish_wait(&conf
->wait_for_overlap
, &w
);
3717 spin_lock_irq(&conf
->device_lock
);
3718 remaining
= --bi
->bi_phys_segments
;
3719 spin_unlock_irq(&conf
->device_lock
);
3720 if (remaining
== 0) {
3721 int bytes
= bi
->bi_size
;
3724 md_write_end(mddev
);
3726 bi
->bi_end_io(bi
, bytes
,
3727 test_bit(BIO_UPTODATE
, &bi
->bi_flags
)
3733 static sector_t
reshape_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
)
3735 /* reshaping is quite different to recovery/resync so it is
3736 * handled quite separately ... here.
3738 * On each call to sync_request, we gather one chunk worth of
3739 * destination stripes and flag them as expanding.
3740 * Then we find all the source stripes and request reads.
3741 * As the reads complete, handle_stripe will copy the data
3742 * into the destination stripe and release that stripe.
3744 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3745 struct stripe_head
*sh
;
3747 sector_t first_sector
, last_sector
;
3748 int raid_disks
= conf
->previous_raid_disks
;
3749 int data_disks
= raid_disks
- conf
->max_degraded
;
3750 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
3753 sector_t writepos
, safepos
, gap
;
3755 if (sector_nr
== 0 &&
3756 conf
->expand_progress
!= 0) {
3757 /* restarting in the middle, skip the initial sectors */
3758 sector_nr
= conf
->expand_progress
;
3759 sector_div(sector_nr
, new_data_disks
);
3764 /* we update the metadata when there is more than 3Meg
3765 * in the block range (that is rather arbitrary, should
3766 * probably be time based) or when the data about to be
3767 * copied would over-write the source of the data at
3768 * the front of the range.
3769 * i.e. one new_stripe forward from expand_progress new_maps
3770 * to after where expand_lo old_maps to
3772 writepos
= conf
->expand_progress
+
3773 conf
->chunk_size
/512*(new_data_disks
);
3774 sector_div(writepos
, new_data_disks
);
3775 safepos
= conf
->expand_lo
;
3776 sector_div(safepos
, data_disks
);
3777 gap
= conf
->expand_progress
- conf
->expand_lo
;
3779 if (writepos
>= safepos
||
3780 gap
> (new_data_disks
)*3000*2 /*3Meg*/) {
3781 /* Cannot proceed until we've updated the superblock... */
3782 wait_event(conf
->wait_for_overlap
,
3783 atomic_read(&conf
->reshape_stripes
)==0);
3784 mddev
->reshape_position
= conf
->expand_progress
;
3785 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3786 md_wakeup_thread(mddev
->thread
);
3787 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
3788 kthread_should_stop());
3789 spin_lock_irq(&conf
->device_lock
);
3790 conf
->expand_lo
= mddev
->reshape_position
;
3791 spin_unlock_irq(&conf
->device_lock
);
3792 wake_up(&conf
->wait_for_overlap
);
3795 for (i
=0; i
< conf
->chunk_size
/512; i
+= STRIPE_SECTORS
) {
3798 pd_idx
= stripe_to_pdidx(sector_nr
+i
, conf
, conf
->raid_disks
);
3799 sh
= get_active_stripe(conf
, sector_nr
+i
,
3800 conf
->raid_disks
, pd_idx
, 0);
3801 set_bit(STRIPE_EXPANDING
, &sh
->state
);
3802 atomic_inc(&conf
->reshape_stripes
);
3803 /* If any of this stripe is beyond the end of the old
3804 * array, then we need to zero those blocks
3806 for (j
=sh
->disks
; j
--;) {
3808 if (j
== sh
->pd_idx
)
3810 if (conf
->level
== 6 &&
3811 j
== raid6_next_disk(sh
->pd_idx
, sh
->disks
))
3813 s
= compute_blocknr(sh
, j
);
3814 if (s
< (mddev
->array_size
<<1)) {
3818 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
3819 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
3820 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
3823 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3824 set_bit(STRIPE_HANDLE
, &sh
->state
);
3828 spin_lock_irq(&conf
->device_lock
);
3829 conf
->expand_progress
= (sector_nr
+ i
) * new_data_disks
;
3830 spin_unlock_irq(&conf
->device_lock
);
3831 /* Ok, those stripe are ready. We can start scheduling
3832 * reads on the source stripes.
3833 * The source stripes are determined by mapping the first and last
3834 * block on the destination stripes.
3837 raid5_compute_sector(sector_nr
*(new_data_disks
),
3838 raid_disks
, data_disks
,
3839 &dd_idx
, &pd_idx
, conf
);
3841 raid5_compute_sector((sector_nr
+conf
->chunk_size
/512)
3842 *(new_data_disks
) -1,
3843 raid_disks
, data_disks
,
3844 &dd_idx
, &pd_idx
, conf
);
3845 if (last_sector
>= (mddev
->size
<<1))
3846 last_sector
= (mddev
->size
<<1)-1;
3847 while (first_sector
<= last_sector
) {
3848 pd_idx
= stripe_to_pdidx(first_sector
, conf
,
3849 conf
->previous_raid_disks
);
3850 sh
= get_active_stripe(conf
, first_sector
,
3851 conf
->previous_raid_disks
, pd_idx
, 0);
3852 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3853 set_bit(STRIPE_HANDLE
, &sh
->state
);
3855 first_sector
+= STRIPE_SECTORS
;
3857 return conf
->chunk_size
>>9;
3860 /* FIXME go_faster isn't used */
3861 static inline sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
3863 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3864 struct stripe_head
*sh
;
3866 int raid_disks
= conf
->raid_disks
;
3867 sector_t max_sector
= mddev
->size
<< 1;
3869 int still_degraded
= 0;
3872 if (sector_nr
>= max_sector
) {
3873 /* just being told to finish up .. nothing much to do */
3874 unplug_slaves(mddev
);
3875 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
3880 if (mddev
->curr_resync
< max_sector
) /* aborted */
3881 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
3883 else /* completed sync */
3885 bitmap_close_sync(mddev
->bitmap
);
3890 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
3891 return reshape_request(mddev
, sector_nr
, skipped
);
3893 /* if there is too many failed drives and we are trying
3894 * to resync, then assert that we are finished, because there is
3895 * nothing we can do.
3897 if (mddev
->degraded
>= conf
->max_degraded
&&
3898 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3899 sector_t rv
= (mddev
->size
<< 1) - sector_nr
;
3903 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
3904 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
3905 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
3906 /* we can skip this block, and probably more */
3907 sync_blocks
/= STRIPE_SECTORS
;
3909 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
3912 pd_idx
= stripe_to_pdidx(sector_nr
, conf
, raid_disks
);
3913 sh
= get_active_stripe(conf
, sector_nr
, raid_disks
, pd_idx
, 1);
3915 sh
= get_active_stripe(conf
, sector_nr
, raid_disks
, pd_idx
, 0);
3916 /* make sure we don't swamp the stripe cache if someone else
3917 * is trying to get access
3919 schedule_timeout_uninterruptible(1);
3921 /* Need to check if array will still be degraded after recovery/resync
3922 * We don't need to check the 'failed' flag as when that gets set,
3925 for (i
=0; i
<mddev
->raid_disks
; i
++)
3926 if (conf
->disks
[i
].rdev
== NULL
)
3929 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
3931 spin_lock(&sh
->lock
);
3932 set_bit(STRIPE_SYNCING
, &sh
->state
);
3933 clear_bit(STRIPE_INSYNC
, &sh
->state
);
3934 spin_unlock(&sh
->lock
);
3936 handle_stripe(sh
, NULL
);
3939 return STRIPE_SECTORS
;
3942 static int retry_aligned_read(raid5_conf_t
*conf
, struct bio
*raid_bio
)
3944 /* We may not be able to submit a whole bio at once as there
3945 * may not be enough stripe_heads available.
3946 * We cannot pre-allocate enough stripe_heads as we may need
3947 * more than exist in the cache (if we allow ever large chunks).
3948 * So we do one stripe head at a time and record in
3949 * ->bi_hw_segments how many have been done.
3951 * We *know* that this entire raid_bio is in one chunk, so
3952 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3954 struct stripe_head
*sh
;
3956 sector_t sector
, logical_sector
, last_sector
;
3961 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3962 sector
= raid5_compute_sector( logical_sector
,
3964 conf
->raid_disks
- conf
->max_degraded
,
3968 last_sector
= raid_bio
->bi_sector
+ (raid_bio
->bi_size
>>9);
3970 for (; logical_sector
< last_sector
;
3971 logical_sector
+= STRIPE_SECTORS
,
3972 sector
+= STRIPE_SECTORS
,
3975 if (scnt
< raid_bio
->bi_hw_segments
)
3976 /* already done this stripe */
3979 sh
= get_active_stripe(conf
, sector
, conf
->raid_disks
, pd_idx
, 1);
3982 /* failed to get a stripe - must wait */
3983 raid_bio
->bi_hw_segments
= scnt
;
3984 conf
->retry_read_aligned
= raid_bio
;
3988 set_bit(R5_ReadError
, &sh
->dev
[dd_idx
].flags
);
3989 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
3991 raid_bio
->bi_hw_segments
= scnt
;
3992 conf
->retry_read_aligned
= raid_bio
;
3996 handle_stripe(sh
, NULL
);
4000 spin_lock_irq(&conf
->device_lock
);
4001 remaining
= --raid_bio
->bi_phys_segments
;
4002 spin_unlock_irq(&conf
->device_lock
);
4003 if (remaining
== 0) {
4004 int bytes
= raid_bio
->bi_size
;
4006 raid_bio
->bi_size
= 0;
4007 raid_bio
->bi_end_io(raid_bio
, bytes
,
4008 test_bit(BIO_UPTODATE
, &raid_bio
->bi_flags
)
4011 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4012 wake_up(&conf
->wait_for_stripe
);
4019 * This is our raid5 kernel thread.
4021 * We scan the hash table for stripes which can be handled now.
4022 * During the scan, completed stripes are saved for us by the interrupt
4023 * handler, so that they will not have to wait for our next wakeup.
4025 static void raid5d (mddev_t
*mddev
)
4027 struct stripe_head
*sh
;
4028 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4031 pr_debug("+++ raid5d active\n");
4033 md_check_recovery(mddev
);
4036 spin_lock_irq(&conf
->device_lock
);
4038 struct list_head
*first
;
4041 if (conf
->seq_flush
!= conf
->seq_write
) {
4042 int seq
= conf
->seq_flush
;
4043 spin_unlock_irq(&conf
->device_lock
);
4044 bitmap_unplug(mddev
->bitmap
);
4045 spin_lock_irq(&conf
->device_lock
);
4046 conf
->seq_write
= seq
;
4047 activate_bit_delay(conf
);
4050 if (list_empty(&conf
->handle_list
) &&
4051 atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
&&
4052 !blk_queue_plugged(mddev
->queue
) &&
4053 !list_empty(&conf
->delayed_list
))
4054 raid5_activate_delayed(conf
);
4056 while ((bio
= remove_bio_from_retry(conf
))) {
4058 spin_unlock_irq(&conf
->device_lock
);
4059 ok
= retry_aligned_read(conf
, bio
);
4060 spin_lock_irq(&conf
->device_lock
);
4066 if (list_empty(&conf
->handle_list
)) {
4067 async_tx_issue_pending_all();
4071 first
= conf
->handle_list
.next
;
4072 sh
= list_entry(first
, struct stripe_head
, lru
);
4074 list_del_init(first
);
4075 atomic_inc(&sh
->count
);
4076 BUG_ON(atomic_read(&sh
->count
)!= 1);
4077 spin_unlock_irq(&conf
->device_lock
);
4080 handle_stripe(sh
, conf
->spare_page
);
4083 spin_lock_irq(&conf
->device_lock
);
4085 pr_debug("%d stripes handled\n", handled
);
4087 spin_unlock_irq(&conf
->device_lock
);
4089 unplug_slaves(mddev
);
4091 pr_debug("--- raid5d inactive\n");
4095 raid5_show_stripe_cache_size(mddev_t
*mddev
, char *page
)
4097 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4099 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
4105 raid5_store_stripe_cache_size(mddev_t
*mddev
, const char *page
, size_t len
)
4107 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4110 if (len
>= PAGE_SIZE
)
4115 new = simple_strtoul(page
, &end
, 10);
4116 if (!*page
|| (*end
&& *end
!= '\n') )
4118 if (new <= 16 || new > 32768)
4120 while (new < conf
->max_nr_stripes
) {
4121 if (drop_one_stripe(conf
))
4122 conf
->max_nr_stripes
--;
4126 md_allow_write(mddev
);
4127 while (new > conf
->max_nr_stripes
) {
4128 if (grow_one_stripe(conf
))
4129 conf
->max_nr_stripes
++;
4135 static struct md_sysfs_entry
4136 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
4137 raid5_show_stripe_cache_size
,
4138 raid5_store_stripe_cache_size
);
4141 stripe_cache_active_show(mddev_t
*mddev
, char *page
)
4143 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4145 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
4150 static struct md_sysfs_entry
4151 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
4153 static struct attribute
*raid5_attrs
[] = {
4154 &raid5_stripecache_size
.attr
,
4155 &raid5_stripecache_active
.attr
,
4158 static struct attribute_group raid5_attrs_group
= {
4160 .attrs
= raid5_attrs
,
4163 static int run(mddev_t
*mddev
)
4166 int raid_disk
, memory
;
4168 struct disk_info
*disk
;
4169 struct list_head
*tmp
;
4170 int working_disks
= 0;
4172 if (mddev
->level
!= 5 && mddev
->level
!= 4 && mddev
->level
!= 6) {
4173 printk(KERN_ERR
"raid5: %s: raid level not set to 4/5/6 (%d)\n",
4174 mdname(mddev
), mddev
->level
);
4178 if (mddev
->reshape_position
!= MaxSector
) {
4179 /* Check that we can continue the reshape.
4180 * Currently only disks can change, it must
4181 * increase, and we must be past the point where
4182 * a stripe over-writes itself
4184 sector_t here_new
, here_old
;
4186 int max_degraded
= (mddev
->level
== 5 ? 1 : 2);
4188 if (mddev
->new_level
!= mddev
->level
||
4189 mddev
->new_layout
!= mddev
->layout
||
4190 mddev
->new_chunk
!= mddev
->chunk_size
) {
4191 printk(KERN_ERR
"raid5: %s: unsupported reshape "
4192 "required - aborting.\n",
4196 if (mddev
->delta_disks
<= 0) {
4197 printk(KERN_ERR
"raid5: %s: unsupported reshape "
4198 "(reduce disks) required - aborting.\n",
4202 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4203 /* reshape_position must be on a new-stripe boundary, and one
4204 * further up in new geometry must map after here in old
4207 here_new
= mddev
->reshape_position
;
4208 if (sector_div(here_new
, (mddev
->chunk_size
>>9)*
4209 (mddev
->raid_disks
- max_degraded
))) {
4210 printk(KERN_ERR
"raid5: reshape_position not "
4211 "on a stripe boundary\n");
4214 /* here_new is the stripe we will write to */
4215 here_old
= mddev
->reshape_position
;
4216 sector_div(here_old
, (mddev
->chunk_size
>>9)*
4217 (old_disks
-max_degraded
));
4218 /* here_old is the first stripe that we might need to read
4220 if (here_new
>= here_old
) {
4221 /* Reading from the same stripe as writing to - bad */
4222 printk(KERN_ERR
"raid5: reshape_position too early for "
4223 "auto-recovery - aborting.\n");
4226 printk(KERN_INFO
"raid5: reshape will continue\n");
4227 /* OK, we should be able to continue; */
4231 mddev
->private = kzalloc(sizeof (raid5_conf_t
), GFP_KERNEL
);
4232 if ((conf
= mddev
->private) == NULL
)
4234 if (mddev
->reshape_position
== MaxSector
) {
4235 conf
->previous_raid_disks
= conf
->raid_disks
= mddev
->raid_disks
;
4237 conf
->raid_disks
= mddev
->raid_disks
;
4238 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4241 conf
->disks
= kzalloc(conf
->raid_disks
* sizeof(struct disk_info
),
4246 conf
->mddev
= mddev
;
4248 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
4251 if (mddev
->level
== 6) {
4252 conf
->spare_page
= alloc_page(GFP_KERNEL
);
4253 if (!conf
->spare_page
)
4256 spin_lock_init(&conf
->device_lock
);
4257 init_waitqueue_head(&conf
->wait_for_stripe
);
4258 init_waitqueue_head(&conf
->wait_for_overlap
);
4259 INIT_LIST_HEAD(&conf
->handle_list
);
4260 INIT_LIST_HEAD(&conf
->delayed_list
);
4261 INIT_LIST_HEAD(&conf
->bitmap_list
);
4262 INIT_LIST_HEAD(&conf
->inactive_list
);
4263 atomic_set(&conf
->active_stripes
, 0);
4264 atomic_set(&conf
->preread_active_stripes
, 0);
4265 atomic_set(&conf
->active_aligned_reads
, 0);
4267 pr_debug("raid5: run(%s) called.\n", mdname(mddev
));
4269 ITERATE_RDEV(mddev
,rdev
,tmp
) {
4270 raid_disk
= rdev
->raid_disk
;
4271 if (raid_disk
>= conf
->raid_disks
4274 disk
= conf
->disks
+ raid_disk
;
4278 if (test_bit(In_sync
, &rdev
->flags
)) {
4279 char b
[BDEVNAME_SIZE
];
4280 printk(KERN_INFO
"raid5: device %s operational as raid"
4281 " disk %d\n", bdevname(rdev
->bdev
,b
),
4288 * 0 for a fully functional array, 1 or 2 for a degraded array.
4290 mddev
->degraded
= conf
->raid_disks
- working_disks
;
4291 conf
->mddev
= mddev
;
4292 conf
->chunk_size
= mddev
->chunk_size
;
4293 conf
->level
= mddev
->level
;
4294 if (conf
->level
== 6)
4295 conf
->max_degraded
= 2;
4297 conf
->max_degraded
= 1;
4298 conf
->algorithm
= mddev
->layout
;
4299 conf
->max_nr_stripes
= NR_STRIPES
;
4300 conf
->expand_progress
= mddev
->reshape_position
;
4302 /* device size must be a multiple of chunk size */
4303 mddev
->size
&= ~(mddev
->chunk_size
/1024 -1);
4304 mddev
->resync_max_sectors
= mddev
->size
<< 1;
4306 if (conf
->level
== 6 && conf
->raid_disks
< 4) {
4307 printk(KERN_ERR
"raid6: not enough configured devices for %s (%d, minimum 4)\n",
4308 mdname(mddev
), conf
->raid_disks
);
4311 if (!conf
->chunk_size
|| conf
->chunk_size
% 4) {
4312 printk(KERN_ERR
"raid5: invalid chunk size %d for %s\n",
4313 conf
->chunk_size
, mdname(mddev
));
4316 if (conf
->algorithm
> ALGORITHM_RIGHT_SYMMETRIC
) {
4318 "raid5: unsupported parity algorithm %d for %s\n",
4319 conf
->algorithm
, mdname(mddev
));
4322 if (mddev
->degraded
> conf
->max_degraded
) {
4323 printk(KERN_ERR
"raid5: not enough operational devices for %s"
4324 " (%d/%d failed)\n",
4325 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
4329 if (mddev
->degraded
> 0 &&
4330 mddev
->recovery_cp
!= MaxSector
) {
4331 if (mddev
->ok_start_degraded
)
4333 "raid5: starting dirty degraded array: %s"
4334 "- data corruption possible.\n",
4338 "raid5: cannot start dirty degraded array for %s\n",
4345 mddev
->thread
= md_register_thread(raid5d
, mddev
, "%s_raid5");
4346 if (!mddev
->thread
) {
4348 "raid5: couldn't allocate thread for %s\n",
4353 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
4354 conf
->raid_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
4355 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
4357 "raid5: couldn't allocate %dkB for buffers\n", memory
);
4358 shrink_stripes(conf
);
4359 md_unregister_thread(mddev
->thread
);
4362 printk(KERN_INFO
"raid5: allocated %dkB for %s\n",
4363 memory
, mdname(mddev
));
4365 if (mddev
->degraded
== 0)
4366 printk("raid5: raid level %d set %s active with %d out of %d"
4367 " devices, algorithm %d\n", conf
->level
, mdname(mddev
),
4368 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
4371 printk(KERN_ALERT
"raid5: raid level %d set %s active with %d"
4372 " out of %d devices, algorithm %d\n", conf
->level
,
4373 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
4374 mddev
->raid_disks
, conf
->algorithm
);
4376 print_raid5_conf(conf
);
4378 if (conf
->expand_progress
!= MaxSector
) {
4379 printk("...ok start reshape thread\n");
4380 conf
->expand_lo
= conf
->expand_progress
;
4381 atomic_set(&conf
->reshape_stripes
, 0);
4382 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4383 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4384 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4385 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4386 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4390 /* read-ahead size must cover two whole stripes, which is
4391 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4394 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4395 int stripe
= data_disks
*
4396 (mddev
->chunk_size
/ PAGE_SIZE
);
4397 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4398 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4401 /* Ok, everything is just fine now */
4402 if (sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
4404 "raid5: failed to create sysfs attributes for %s\n",
4407 mddev
->queue
->unplug_fn
= raid5_unplug_device
;
4408 mddev
->queue
->issue_flush_fn
= raid5_issue_flush
;
4409 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
4410 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
4412 mddev
->array_size
= mddev
->size
* (conf
->previous_raid_disks
-
4413 conf
->max_degraded
);
4415 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
4420 print_raid5_conf(conf
);
4421 safe_put_page(conf
->spare_page
);
4423 kfree(conf
->stripe_hashtbl
);
4426 mddev
->private = NULL
;
4427 printk(KERN_ALERT
"raid5: failed to run raid set %s\n", mdname(mddev
));
4433 static int stop(mddev_t
*mddev
)
4435 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4437 md_unregister_thread(mddev
->thread
);
4438 mddev
->thread
= NULL
;
4439 shrink_stripes(conf
);
4440 kfree(conf
->stripe_hashtbl
);
4441 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
4442 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
4443 sysfs_remove_group(&mddev
->kobj
, &raid5_attrs_group
);
4446 mddev
->private = NULL
;
4451 static void print_sh (struct seq_file
*seq
, struct stripe_head
*sh
)
4455 seq_printf(seq
, "sh %llu, pd_idx %d, state %ld.\n",
4456 (unsigned long long)sh
->sector
, sh
->pd_idx
, sh
->state
);
4457 seq_printf(seq
, "sh %llu, count %d.\n",
4458 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
));
4459 seq_printf(seq
, "sh %llu, ", (unsigned long long)sh
->sector
);
4460 for (i
= 0; i
< sh
->disks
; i
++) {
4461 seq_printf(seq
, "(cache%d: %p %ld) ",
4462 i
, sh
->dev
[i
].page
, sh
->dev
[i
].flags
);
4464 seq_printf(seq
, "\n");
4467 static void printall (struct seq_file
*seq
, raid5_conf_t
*conf
)
4469 struct stripe_head
*sh
;
4470 struct hlist_node
*hn
;
4473 spin_lock_irq(&conf
->device_lock
);
4474 for (i
= 0; i
< NR_HASH
; i
++) {
4475 hlist_for_each_entry(sh
, hn
, &conf
->stripe_hashtbl
[i
], hash
) {
4476 if (sh
->raid_conf
!= conf
)
4481 spin_unlock_irq(&conf
->device_lock
);
4485 static void status (struct seq_file
*seq
, mddev_t
*mddev
)
4487 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4490 seq_printf (seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
, mddev
->chunk_size
>> 10, mddev
->layout
);
4491 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
4492 for (i
= 0; i
< conf
->raid_disks
; i
++)
4493 seq_printf (seq
, "%s",
4494 conf
->disks
[i
].rdev
&&
4495 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
4496 seq_printf (seq
, "]");
4498 seq_printf (seq
, "\n");
4499 printall(seq
, conf
);
4503 static void print_raid5_conf (raid5_conf_t
*conf
)
4506 struct disk_info
*tmp
;
4508 printk("RAID5 conf printout:\n");
4510 printk("(conf==NULL)\n");
4513 printk(" --- rd:%d wd:%d\n", conf
->raid_disks
,
4514 conf
->raid_disks
- conf
->mddev
->degraded
);
4516 for (i
= 0; i
< conf
->raid_disks
; i
++) {
4517 char b
[BDEVNAME_SIZE
];
4518 tmp
= conf
->disks
+ i
;
4520 printk(" disk %d, o:%d, dev:%s\n",
4521 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
4522 bdevname(tmp
->rdev
->bdev
,b
));
4526 static int raid5_spare_active(mddev_t
*mddev
)
4529 raid5_conf_t
*conf
= mddev
->private;
4530 struct disk_info
*tmp
;
4532 for (i
= 0; i
< conf
->raid_disks
; i
++) {
4533 tmp
= conf
->disks
+ i
;
4535 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
4536 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
4537 unsigned long flags
;
4538 spin_lock_irqsave(&conf
->device_lock
, flags
);
4540 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4543 print_raid5_conf(conf
);
4547 static int raid5_remove_disk(mddev_t
*mddev
, int number
)
4549 raid5_conf_t
*conf
= mddev
->private;
4552 struct disk_info
*p
= conf
->disks
+ number
;
4554 print_raid5_conf(conf
);
4557 if (test_bit(In_sync
, &rdev
->flags
) ||
4558 atomic_read(&rdev
->nr_pending
)) {
4564 if (atomic_read(&rdev
->nr_pending
)) {
4565 /* lost the race, try later */
4572 print_raid5_conf(conf
);
4576 static int raid5_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
4578 raid5_conf_t
*conf
= mddev
->private;
4581 struct disk_info
*p
;
4583 if (mddev
->degraded
> conf
->max_degraded
)
4584 /* no point adding a device */
4588 * find the disk ... but prefer rdev->saved_raid_disk
4591 if (rdev
->saved_raid_disk
>= 0 &&
4592 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
4593 disk
= rdev
->saved_raid_disk
;
4596 for ( ; disk
< conf
->raid_disks
; disk
++)
4597 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
4598 clear_bit(In_sync
, &rdev
->flags
);
4599 rdev
->raid_disk
= disk
;
4601 if (rdev
->saved_raid_disk
!= disk
)
4603 rcu_assign_pointer(p
->rdev
, rdev
);
4606 print_raid5_conf(conf
);
4610 static int raid5_resize(mddev_t
*mddev
, sector_t sectors
)
4612 /* no resync is happening, and there is enough space
4613 * on all devices, so we can resize.
4614 * We need to make sure resync covers any new space.
4615 * If the array is shrinking we should possibly wait until
4616 * any io in the removed space completes, but it hardly seems
4619 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4621 sectors
&= ~((sector_t
)mddev
->chunk_size
/512 - 1);
4622 mddev
->array_size
= (sectors
* (mddev
->raid_disks
-conf
->max_degraded
))>>1;
4623 set_capacity(mddev
->gendisk
, mddev
->array_size
<< 1);
4625 if (sectors
/2 > mddev
->size
&& mddev
->recovery_cp
== MaxSector
) {
4626 mddev
->recovery_cp
= mddev
->size
<< 1;
4627 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4629 mddev
->size
= sectors
/2;
4630 mddev
->resync_max_sectors
= sectors
;
4634 #ifdef CONFIG_MD_RAID5_RESHAPE
4635 static int raid5_check_reshape(mddev_t
*mddev
)
4637 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4640 if (mddev
->delta_disks
< 0 ||
4641 mddev
->new_level
!= mddev
->level
)
4642 return -EINVAL
; /* Cannot shrink array or change level yet */
4643 if (mddev
->delta_disks
== 0)
4644 return 0; /* nothing to do */
4646 /* Can only proceed if there are plenty of stripe_heads.
4647 * We need a minimum of one full stripe,, and for sensible progress
4648 * it is best to have about 4 times that.
4649 * If we require 4 times, then the default 256 4K stripe_heads will
4650 * allow for chunk sizes up to 256K, which is probably OK.
4651 * If the chunk size is greater, user-space should request more
4652 * stripe_heads first.
4654 if ((mddev
->chunk_size
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
||
4655 (mddev
->new_chunk
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
) {
4656 printk(KERN_WARNING
"raid5: reshape: not enough stripes. Needed %lu\n",
4657 (mddev
->chunk_size
/ STRIPE_SIZE
)*4);
4661 err
= resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
4665 if (mddev
->degraded
> conf
->max_degraded
)
4667 /* looks like we might be able to manage this */
4671 static int raid5_start_reshape(mddev_t
*mddev
)
4673 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4675 struct list_head
*rtmp
;
4677 int added_devices
= 0;
4678 unsigned long flags
;
4680 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4683 ITERATE_RDEV(mddev
, rdev
, rtmp
)
4684 if (rdev
->raid_disk
< 0 &&
4685 !test_bit(Faulty
, &rdev
->flags
))
4688 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
4689 /* Not enough devices even to make a degraded array
4694 atomic_set(&conf
->reshape_stripes
, 0);
4695 spin_lock_irq(&conf
->device_lock
);
4696 conf
->previous_raid_disks
= conf
->raid_disks
;
4697 conf
->raid_disks
+= mddev
->delta_disks
;
4698 conf
->expand_progress
= 0;
4699 conf
->expand_lo
= 0;
4700 spin_unlock_irq(&conf
->device_lock
);
4702 /* Add some new drives, as many as will fit.
4703 * We know there are enough to make the newly sized array work.
4705 ITERATE_RDEV(mddev
, rdev
, rtmp
)
4706 if (rdev
->raid_disk
< 0 &&
4707 !test_bit(Faulty
, &rdev
->flags
)) {
4708 if (raid5_add_disk(mddev
, rdev
)) {
4710 set_bit(In_sync
, &rdev
->flags
);
4712 rdev
->recovery_offset
= 0;
4713 sprintf(nm
, "rd%d", rdev
->raid_disk
);
4714 if (sysfs_create_link(&mddev
->kobj
,
4717 "raid5: failed to create "
4718 " link %s for %s\n",
4724 spin_lock_irqsave(&conf
->device_lock
, flags
);
4725 mddev
->degraded
= (conf
->raid_disks
- conf
->previous_raid_disks
) - added_devices
;
4726 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4727 mddev
->raid_disks
= conf
->raid_disks
;
4728 mddev
->reshape_position
= 0;
4729 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4731 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4732 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4733 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4734 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4735 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4737 if (!mddev
->sync_thread
) {
4738 mddev
->recovery
= 0;
4739 spin_lock_irq(&conf
->device_lock
);
4740 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
4741 conf
->expand_progress
= MaxSector
;
4742 spin_unlock_irq(&conf
->device_lock
);
4745 md_wakeup_thread(mddev
->sync_thread
);
4746 md_new_event(mddev
);
4751 static void end_reshape(raid5_conf_t
*conf
)
4753 struct block_device
*bdev
;
4755 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
4756 conf
->mddev
->array_size
= conf
->mddev
->size
*
4757 (conf
->raid_disks
- conf
->max_degraded
);
4758 set_capacity(conf
->mddev
->gendisk
, conf
->mddev
->array_size
<< 1);
4759 conf
->mddev
->changed
= 1;
4761 bdev
= bdget_disk(conf
->mddev
->gendisk
, 0);
4763 mutex_lock(&bdev
->bd_inode
->i_mutex
);
4764 i_size_write(bdev
->bd_inode
, (loff_t
)conf
->mddev
->array_size
<< 10);
4765 mutex_unlock(&bdev
->bd_inode
->i_mutex
);
4768 spin_lock_irq(&conf
->device_lock
);
4769 conf
->expand_progress
= MaxSector
;
4770 spin_unlock_irq(&conf
->device_lock
);
4771 conf
->mddev
->reshape_position
= MaxSector
;
4773 /* read-ahead size must cover two whole stripes, which is
4774 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4777 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4778 int stripe
= data_disks
*
4779 (conf
->mddev
->chunk_size
/ PAGE_SIZE
);
4780 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4781 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4786 static void raid5_quiesce(mddev_t
*mddev
, int state
)
4788 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4791 case 2: /* resume for a suspend */
4792 wake_up(&conf
->wait_for_overlap
);
4795 case 1: /* stop all writes */
4796 spin_lock_irq(&conf
->device_lock
);
4798 wait_event_lock_irq(conf
->wait_for_stripe
,
4799 atomic_read(&conf
->active_stripes
) == 0 &&
4800 atomic_read(&conf
->active_aligned_reads
) == 0,
4801 conf
->device_lock
, /* nothing */);
4802 spin_unlock_irq(&conf
->device_lock
);
4805 case 0: /* re-enable writes */
4806 spin_lock_irq(&conf
->device_lock
);
4808 wake_up(&conf
->wait_for_stripe
);
4809 wake_up(&conf
->wait_for_overlap
);
4810 spin_unlock_irq(&conf
->device_lock
);
4815 static struct mdk_personality raid6_personality
=
4819 .owner
= THIS_MODULE
,
4820 .make_request
= make_request
,
4824 .error_handler
= error
,
4825 .hot_add_disk
= raid5_add_disk
,
4826 .hot_remove_disk
= raid5_remove_disk
,
4827 .spare_active
= raid5_spare_active
,
4828 .sync_request
= sync_request
,
4829 .resize
= raid5_resize
,
4830 #ifdef CONFIG_MD_RAID5_RESHAPE
4831 .check_reshape
= raid5_check_reshape
,
4832 .start_reshape
= raid5_start_reshape
,
4834 .quiesce
= raid5_quiesce
,
4836 static struct mdk_personality raid5_personality
=
4840 .owner
= THIS_MODULE
,
4841 .make_request
= make_request
,
4845 .error_handler
= error
,
4846 .hot_add_disk
= raid5_add_disk
,
4847 .hot_remove_disk
= raid5_remove_disk
,
4848 .spare_active
= raid5_spare_active
,
4849 .sync_request
= sync_request
,
4850 .resize
= raid5_resize
,
4851 #ifdef CONFIG_MD_RAID5_RESHAPE
4852 .check_reshape
= raid5_check_reshape
,
4853 .start_reshape
= raid5_start_reshape
,
4855 .quiesce
= raid5_quiesce
,
4858 static struct mdk_personality raid4_personality
=
4862 .owner
= THIS_MODULE
,
4863 .make_request
= make_request
,
4867 .error_handler
= error
,
4868 .hot_add_disk
= raid5_add_disk
,
4869 .hot_remove_disk
= raid5_remove_disk
,
4870 .spare_active
= raid5_spare_active
,
4871 .sync_request
= sync_request
,
4872 .resize
= raid5_resize
,
4873 #ifdef CONFIG_MD_RAID5_RESHAPE
4874 .check_reshape
= raid5_check_reshape
,
4875 .start_reshape
= raid5_start_reshape
,
4877 .quiesce
= raid5_quiesce
,
4880 static int __init
raid5_init(void)
4884 e
= raid6_select_algo();
4887 register_md_personality(&raid6_personality
);
4888 register_md_personality(&raid5_personality
);
4889 register_md_personality(&raid4_personality
);
4893 static void raid5_exit(void)
4895 unregister_md_personality(&raid6_personality
);
4896 unregister_md_personality(&raid5_personality
);
4897 unregister_md_personality(&raid4_personality
);
4900 module_init(raid5_init
);
4901 module_exit(raid5_exit
);
4902 MODULE_LICENSE("GPL");
4903 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4904 MODULE_ALIAS("md-raid5");
4905 MODULE_ALIAS("md-raid4");
4906 MODULE_ALIAS("md-level-5");
4907 MODULE_ALIAS("md-level-4");
4908 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4909 MODULE_ALIAS("md-raid6");
4910 MODULE_ALIAS("md-level-6");
4912 /* This used to be two separate modules, they were: */
4913 MODULE_ALIAS("raid5");
4914 MODULE_ALIAS("raid6");