Merge git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-for-linus
[wrt350n-kernel.git] / arch / blackfin / mm / blackfin_sram.c
blobe41f0e8ecacbd33d463295897aa1454d7b1e6023
1 /*
2 * File: arch/blackfin/mm/blackfin_sram.c
3 * Based on:
4 * Author:
6 * Created:
7 * Description: SRAM driver for Blackfin ADSP-BF5xx
9 * Modified:
10 * Copyright 2004-2007 Analog Devices Inc.
12 * Bugs: Enter bugs at http://blackfin.uclinux.org/
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, see the file COPYING, or write
26 * to the Free Software Foundation, Inc.,
27 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/types.h>
33 #include <linux/miscdevice.h>
34 #include <linux/ioport.h>
35 #include <linux/fcntl.h>
36 #include <linux/init.h>
37 #include <linux/poll.h>
38 #include <linux/proc_fs.h>
39 #include <linux/spinlock.h>
40 #include <linux/rtc.h>
41 #include <asm/blackfin.h>
42 #include "blackfin_sram.h"
44 spinlock_t l1sram_lock, l1_data_sram_lock, l1_inst_sram_lock;
46 #if CONFIG_L1_MAX_PIECE < 16
47 #undef CONFIG_L1_MAX_PIECE
48 #define CONFIG_L1_MAX_PIECE 16
49 #endif
51 #if CONFIG_L1_MAX_PIECE > 1024
52 #undef CONFIG_L1_MAX_PIECE
53 #define CONFIG_L1_MAX_PIECE 1024
54 #endif
56 #define SRAM_SLT_NULL 0
57 #define SRAM_SLT_FREE 1
58 #define SRAM_SLT_ALLOCATED 2
60 /* the data structure for L1 scratchpad and DATA SRAM */
61 struct l1_sram_piece {
62 void *paddr;
63 int size;
64 int flag;
65 pid_t pid;
68 static struct l1_sram_piece l1_ssram[CONFIG_L1_MAX_PIECE];
70 #if L1_DATA_A_LENGTH != 0
71 static struct l1_sram_piece l1_data_A_sram[CONFIG_L1_MAX_PIECE];
72 #endif
74 #if L1_DATA_B_LENGTH != 0
75 static struct l1_sram_piece l1_data_B_sram[CONFIG_L1_MAX_PIECE];
76 #endif
78 #if L1_CODE_LENGTH != 0
79 static struct l1_sram_piece l1_inst_sram[CONFIG_L1_MAX_PIECE];
80 #endif
82 /* L1 Scratchpad SRAM initialization function */
83 void __init l1sram_init(void)
85 printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
86 L1_SCRATCH_LENGTH >> 10);
88 memset(&l1_ssram, 0x00, sizeof(l1_ssram));
89 l1_ssram[0].paddr = (void *)L1_SCRATCH_START;
90 l1_ssram[0].size = L1_SCRATCH_LENGTH;
91 l1_ssram[0].flag = SRAM_SLT_FREE;
93 /* mutex initialize */
94 spin_lock_init(&l1sram_lock);
97 void __init l1_data_sram_init(void)
99 #if L1_DATA_A_LENGTH != 0
100 memset(&l1_data_A_sram, 0x00, sizeof(l1_data_A_sram));
101 l1_data_A_sram[0].paddr = (void *)L1_DATA_A_START +
102 (_ebss_l1 - _sdata_l1);
103 l1_data_A_sram[0].size = L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
104 l1_data_A_sram[0].flag = SRAM_SLT_FREE;
106 printk(KERN_INFO "Blackfin Data A SRAM: %d KB (%d KB free)\n",
107 L1_DATA_A_LENGTH >> 10, l1_data_A_sram[0].size >> 10);
108 #endif
109 #if L1_DATA_B_LENGTH != 0
110 memset(&l1_data_B_sram, 0x00, sizeof(l1_data_B_sram));
111 l1_data_B_sram[0].paddr = (void *)L1_DATA_B_START +
112 (_ebss_b_l1 - _sdata_b_l1);
113 l1_data_B_sram[0].size = L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
114 l1_data_B_sram[0].flag = SRAM_SLT_FREE;
116 printk(KERN_INFO "Blackfin Data B SRAM: %d KB (%d KB free)\n",
117 L1_DATA_B_LENGTH >> 10, l1_data_B_sram[0].size >> 10);
118 #endif
120 /* mutex initialize */
121 spin_lock_init(&l1_data_sram_lock);
124 void __init l1_inst_sram_init(void)
126 #if L1_CODE_LENGTH != 0
127 memset(&l1_inst_sram, 0x00, sizeof(l1_inst_sram));
128 l1_inst_sram[0].paddr = (void *)L1_CODE_START + (_etext_l1 - _stext_l1);
129 l1_inst_sram[0].size = L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
130 l1_inst_sram[0].flag = SRAM_SLT_FREE;
132 printk(KERN_INFO "Blackfin Instruction SRAM: %d KB (%d KB free)\n",
133 L1_CODE_LENGTH >> 10, l1_inst_sram[0].size >> 10);
134 #endif
136 /* mutex initialize */
137 spin_lock_init(&l1_inst_sram_lock);
140 /* L1 memory allocate function */
141 static void *_l1_sram_alloc(size_t size, struct l1_sram_piece *pfree, int count)
143 int i, index = 0;
144 void *addr = NULL;
146 if (size <= 0)
147 return NULL;
149 /* Align the size */
150 size = (size + 3) & ~3;
152 /* not use the good method to match the best slot !!! */
153 /* search an available memory slot */
154 for (i = 0; i < count; i++) {
155 if ((pfree[i].flag == SRAM_SLT_FREE)
156 && (pfree[i].size >= size)) {
157 addr = pfree[i].paddr;
158 pfree[i].flag = SRAM_SLT_ALLOCATED;
159 pfree[i].pid = current->pid;
160 index = i;
161 break;
164 if (i >= count)
165 return NULL;
167 /* updated the NULL memory slot !!! */
168 if (pfree[i].size > size) {
169 for (i = 0; i < count; i++) {
170 if (pfree[i].flag == SRAM_SLT_NULL) {
171 pfree[i].pid = 0;
172 pfree[i].flag = SRAM_SLT_FREE;
173 pfree[i].paddr = addr + size;
174 pfree[i].size = pfree[index].size - size;
175 pfree[index].size = size;
176 break;
181 return addr;
184 /* Allocate the largest available block. */
185 static void *_l1_sram_alloc_max(struct l1_sram_piece *pfree, int count,
186 unsigned long *psize)
188 unsigned long best = 0;
189 int i, index = -1;
190 void *addr = NULL;
192 /* search an available memory slot */
193 for (i = 0; i < count; i++) {
194 if (pfree[i].flag == SRAM_SLT_FREE && pfree[i].size > best) {
195 addr = pfree[i].paddr;
196 index = i;
197 best = pfree[i].size;
200 if (index < 0)
201 return NULL;
202 *psize = best;
204 pfree[index].pid = current->pid;
205 pfree[index].flag = SRAM_SLT_ALLOCATED;
206 return addr;
209 /* L1 memory free function */
210 static int _l1_sram_free(const void *addr,
211 struct l1_sram_piece *pfree,
212 int count)
214 int i, index = 0;
216 /* search the relevant memory slot */
217 for (i = 0; i < count; i++) {
218 if (pfree[i].paddr == addr) {
219 if (pfree[i].flag != SRAM_SLT_ALLOCATED) {
220 /* error log */
221 return -1;
223 index = i;
224 break;
227 if (i >= count)
228 return -1;
230 pfree[index].pid = 0;
231 pfree[index].flag = SRAM_SLT_FREE;
233 /* link the next address slot */
234 for (i = 0; i < count; i++) {
235 if (((pfree[index].paddr + pfree[index].size) == pfree[i].paddr)
236 && (pfree[i].flag == SRAM_SLT_FREE)) {
237 pfree[i].pid = 0;
238 pfree[i].flag = SRAM_SLT_NULL;
239 pfree[index].size += pfree[i].size;
240 pfree[index].flag = SRAM_SLT_FREE;
241 break;
245 /* link the last address slot */
246 for (i = 0; i < count; i++) {
247 if (((pfree[i].paddr + pfree[i].size) == pfree[index].paddr) &&
248 (pfree[i].flag == SRAM_SLT_FREE)) {
249 pfree[index].flag = SRAM_SLT_NULL;
250 pfree[i].size += pfree[index].size;
251 break;
255 return 0;
258 int sram_free(const void *addr)
260 if (0) {}
261 #if L1_CODE_LENGTH != 0
262 else if (addr >= (void *)L1_CODE_START
263 && addr < (void *)(L1_CODE_START + L1_CODE_LENGTH))
264 return l1_inst_sram_free(addr);
265 #endif
266 #if L1_DATA_A_LENGTH != 0
267 else if (addr >= (void *)L1_DATA_A_START
268 && addr < (void *)(L1_DATA_A_START + L1_DATA_A_LENGTH))
269 return l1_data_A_sram_free(addr);
270 #endif
271 #if L1_DATA_B_LENGTH != 0
272 else if (addr >= (void *)L1_DATA_B_START
273 && addr < (void *)(L1_DATA_B_START + L1_DATA_B_LENGTH))
274 return l1_data_B_sram_free(addr);
275 #endif
276 else
277 return -1;
279 EXPORT_SYMBOL(sram_free);
281 void *l1_data_A_sram_alloc(size_t size)
283 unsigned flags;
284 void *addr = NULL;
286 /* add mutex operation */
287 spin_lock_irqsave(&l1_data_sram_lock, flags);
289 #if L1_DATA_A_LENGTH != 0
290 addr = _l1_sram_alloc(size, l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram));
291 #endif
293 /* add mutex operation */
294 spin_unlock_irqrestore(&l1_data_sram_lock, flags);
296 pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
297 (long unsigned int)addr, size);
299 return addr;
301 EXPORT_SYMBOL(l1_data_A_sram_alloc);
303 int l1_data_A_sram_free(const void *addr)
305 unsigned flags;
306 int ret;
308 /* add mutex operation */
309 spin_lock_irqsave(&l1_data_sram_lock, flags);
311 #if L1_DATA_A_LENGTH != 0
312 ret = _l1_sram_free(addr,
313 l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram));
314 #else
315 ret = -1;
316 #endif
318 /* add mutex operation */
319 spin_unlock_irqrestore(&l1_data_sram_lock, flags);
321 return ret;
323 EXPORT_SYMBOL(l1_data_A_sram_free);
325 void *l1_data_B_sram_alloc(size_t size)
327 #if L1_DATA_B_LENGTH != 0
328 unsigned flags;
329 void *addr;
331 /* add mutex operation */
332 spin_lock_irqsave(&l1_data_sram_lock, flags);
334 addr = _l1_sram_alloc(size, l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram));
336 /* add mutex operation */
337 spin_unlock_irqrestore(&l1_data_sram_lock, flags);
339 pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
340 (long unsigned int)addr, size);
342 return addr;
343 #else
344 return NULL;
345 #endif
347 EXPORT_SYMBOL(l1_data_B_sram_alloc);
349 int l1_data_B_sram_free(const void *addr)
351 #if L1_DATA_B_LENGTH != 0
352 unsigned flags;
353 int ret;
355 /* add mutex operation */
356 spin_lock_irqsave(&l1_data_sram_lock, flags);
358 ret = _l1_sram_free(addr, l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram));
360 /* add mutex operation */
361 spin_unlock_irqrestore(&l1_data_sram_lock, flags);
363 return ret;
364 #else
365 return -1;
366 #endif
368 EXPORT_SYMBOL(l1_data_B_sram_free);
370 void *l1_data_sram_alloc(size_t size)
372 void *addr = l1_data_A_sram_alloc(size);
374 if (!addr)
375 addr = l1_data_B_sram_alloc(size);
377 return addr;
379 EXPORT_SYMBOL(l1_data_sram_alloc);
381 void *l1_data_sram_zalloc(size_t size)
383 void *addr = l1_data_sram_alloc(size);
385 if (addr)
386 memset(addr, 0x00, size);
388 return addr;
390 EXPORT_SYMBOL(l1_data_sram_zalloc);
392 int l1_data_sram_free(const void *addr)
394 int ret;
395 ret = l1_data_A_sram_free(addr);
396 if (ret == -1)
397 ret = l1_data_B_sram_free(addr);
398 return ret;
400 EXPORT_SYMBOL(l1_data_sram_free);
402 void *l1_inst_sram_alloc(size_t size)
404 #if L1_DATA_A_LENGTH != 0
405 unsigned flags;
406 void *addr;
408 /* add mutex operation */
409 spin_lock_irqsave(&l1_inst_sram_lock, flags);
411 addr = _l1_sram_alloc(size, l1_inst_sram, ARRAY_SIZE(l1_inst_sram));
413 /* add mutex operation */
414 spin_unlock_irqrestore(&l1_inst_sram_lock, flags);
416 pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
417 (long unsigned int)addr, size);
419 return addr;
420 #else
421 return NULL;
422 #endif
424 EXPORT_SYMBOL(l1_inst_sram_alloc);
426 int l1_inst_sram_free(const void *addr)
428 #if L1_CODE_LENGTH != 0
429 unsigned flags;
430 int ret;
432 /* add mutex operation */
433 spin_lock_irqsave(&l1_inst_sram_lock, flags);
435 ret = _l1_sram_free(addr, l1_inst_sram, ARRAY_SIZE(l1_inst_sram));
437 /* add mutex operation */
438 spin_unlock_irqrestore(&l1_inst_sram_lock, flags);
440 return ret;
441 #else
442 return -1;
443 #endif
445 EXPORT_SYMBOL(l1_inst_sram_free);
447 /* L1 Scratchpad memory allocate function */
448 void *l1sram_alloc(size_t size)
450 unsigned flags;
451 void *addr;
453 /* add mutex operation */
454 spin_lock_irqsave(&l1sram_lock, flags);
456 addr = _l1_sram_alloc(size, l1_ssram, ARRAY_SIZE(l1_ssram));
458 /* add mutex operation */
459 spin_unlock_irqrestore(&l1sram_lock, flags);
461 return addr;
464 /* L1 Scratchpad memory allocate function */
465 void *l1sram_alloc_max(size_t *psize)
467 unsigned flags;
468 void *addr;
470 /* add mutex operation */
471 spin_lock_irqsave(&l1sram_lock, flags);
473 addr = _l1_sram_alloc_max(l1_ssram, ARRAY_SIZE(l1_ssram), psize);
475 /* add mutex operation */
476 spin_unlock_irqrestore(&l1sram_lock, flags);
478 return addr;
481 /* L1 Scratchpad memory free function */
482 int l1sram_free(const void *addr)
484 unsigned flags;
485 int ret;
487 /* add mutex operation */
488 spin_lock_irqsave(&l1sram_lock, flags);
490 ret = _l1_sram_free(addr, l1_ssram, ARRAY_SIZE(l1_ssram));
492 /* add mutex operation */
493 spin_unlock_irqrestore(&l1sram_lock, flags);
495 return ret;
498 int sram_free_with_lsl(const void *addr)
500 struct sram_list_struct *lsl, **tmp;
501 struct mm_struct *mm = current->mm;
503 for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
504 if ((*tmp)->addr == addr)
505 goto found;
506 return -1;
507 found:
508 lsl = *tmp;
509 sram_free(addr);
510 *tmp = lsl->next;
511 kfree(lsl);
513 return 0;
515 EXPORT_SYMBOL(sram_free_with_lsl);
517 void *sram_alloc_with_lsl(size_t size, unsigned long flags)
519 void *addr = NULL;
520 struct sram_list_struct *lsl = NULL;
521 struct mm_struct *mm = current->mm;
523 lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
524 if (!lsl)
525 return NULL;
527 if (flags & L1_INST_SRAM)
528 addr = l1_inst_sram_alloc(size);
530 if (addr == NULL && (flags & L1_DATA_A_SRAM))
531 addr = l1_data_A_sram_alloc(size);
533 if (addr == NULL && (flags & L1_DATA_B_SRAM))
534 addr = l1_data_B_sram_alloc(size);
536 if (addr == NULL) {
537 kfree(lsl);
538 return NULL;
540 lsl->addr = addr;
541 lsl->length = size;
542 lsl->next = mm->context.sram_list;
543 mm->context.sram_list = lsl;
544 return addr;
546 EXPORT_SYMBOL(sram_alloc_with_lsl);
548 #ifdef CONFIG_PROC_FS
549 /* Once we get a real allocator, we'll throw all of this away.
550 * Until then, we need some sort of visibility into the L1 alloc.
552 static void _l1sram_proc_read(char *buf, int *len, const char *desc,
553 struct l1_sram_piece *pfree, const int array_size)
555 int i;
557 *len += sprintf(&buf[*len], "--- L1 %-14s Size PID State\n", desc);
558 for (i = 0; i < array_size; ++i) {
559 const char *alloc_type;
560 switch (pfree[i].flag) {
561 case SRAM_SLT_NULL: alloc_type = "NULL"; break;
562 case SRAM_SLT_FREE: alloc_type = "FREE"; break;
563 case SRAM_SLT_ALLOCATED: alloc_type = "ALLOCATED"; break;
564 default: alloc_type = "????"; break;
566 *len += sprintf(&buf[*len], "%p-%p %8i %4i %s\n",
567 pfree[i].paddr, pfree[i].paddr + pfree[i].size,
568 pfree[i].size, pfree[i].pid, alloc_type);
571 static int l1sram_proc_read(char *buf, char **start, off_t offset, int count,
572 int *eof, void *data)
574 int len = 0;
576 _l1sram_proc_read(buf, &len, "Scratchpad",
577 l1_ssram, ARRAY_SIZE(l1_ssram));
578 #if L1_DATA_A_LENGTH != 0
579 _l1sram_proc_read(buf, &len, "Data A",
580 l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram));
581 #endif
582 #if L1_DATA_B_LENGTH != 0
583 _l1sram_proc_read(buf, &len, "Data B",
584 l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram));
585 #endif
586 #if L1_CODE_LENGTH != 0
587 _l1sram_proc_read(buf, &len, "Instruction",
588 l1_inst_sram, ARRAY_SIZE(l1_inst_sram));
589 #endif
591 return len;
594 static int __init l1sram_proc_init(void)
596 struct proc_dir_entry *ptr;
597 ptr = create_proc_entry("sram", S_IFREG | S_IRUGO, NULL);
598 if (!ptr) {
599 printk(KERN_WARNING "unable to create /proc/sram\n");
600 return -1;
602 ptr->owner = THIS_MODULE;
603 ptr->read_proc = l1sram_proc_read;
604 return 0;
606 late_initcall(l1sram_proc_init);
607 #endif