Merge git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-for-linus
[wrt350n-kernel.git] / drivers / firewire / fw-ohci.c
blob996d61f0d4602cf0cd942aea5daf54e08739c1cb
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
33 #include <asm/page.h>
34 #include <asm/system.h>
36 #ifdef CONFIG_PPC_PMAC
37 #include <asm/pmac_feature.h>
38 #endif
40 #include "fw-ohci.h"
41 #include "fw-transaction.h"
43 #define DESCRIPTOR_OUTPUT_MORE 0
44 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
45 #define DESCRIPTOR_INPUT_MORE (2 << 12)
46 #define DESCRIPTOR_INPUT_LAST (3 << 12)
47 #define DESCRIPTOR_STATUS (1 << 11)
48 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
49 #define DESCRIPTOR_PING (1 << 7)
50 #define DESCRIPTOR_YY (1 << 6)
51 #define DESCRIPTOR_NO_IRQ (0 << 4)
52 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
53 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
54 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
55 #define DESCRIPTOR_WAIT (3 << 0)
57 struct descriptor {
58 __le16 req_count;
59 __le16 control;
60 __le32 data_address;
61 __le32 branch_address;
62 __le16 res_count;
63 __le16 transfer_status;
64 } __attribute__((aligned(16)));
66 struct db_descriptor {
67 __le16 first_size;
68 __le16 control;
69 __le16 second_req_count;
70 __le16 first_req_count;
71 __le32 branch_address;
72 __le16 second_res_count;
73 __le16 first_res_count;
74 __le32 reserved0;
75 __le32 first_buffer;
76 __le32 second_buffer;
77 __le32 reserved1;
78 } __attribute__((aligned(16)));
80 #define CONTROL_SET(regs) (regs)
81 #define CONTROL_CLEAR(regs) ((regs) + 4)
82 #define COMMAND_PTR(regs) ((regs) + 12)
83 #define CONTEXT_MATCH(regs) ((regs) + 16)
85 struct ar_buffer {
86 struct descriptor descriptor;
87 struct ar_buffer *next;
88 __le32 data[0];
91 struct ar_context {
92 struct fw_ohci *ohci;
93 struct ar_buffer *current_buffer;
94 struct ar_buffer *last_buffer;
95 void *pointer;
96 u32 regs;
97 struct tasklet_struct tasklet;
100 struct context;
102 typedef int (*descriptor_callback_t)(struct context *ctx,
103 struct descriptor *d,
104 struct descriptor *last);
107 * A buffer that contains a block of DMA-able coherent memory used for
108 * storing a portion of a DMA descriptor program.
110 struct descriptor_buffer {
111 struct list_head list;
112 dma_addr_t buffer_bus;
113 size_t buffer_size;
114 size_t used;
115 struct descriptor buffer[0];
118 struct context {
119 struct fw_ohci *ohci;
120 u32 regs;
121 int total_allocation;
124 * List of page-sized buffers for storing DMA descriptors.
125 * Head of list contains buffers in use and tail of list contains
126 * free buffers.
128 struct list_head buffer_list;
131 * Pointer to a buffer inside buffer_list that contains the tail
132 * end of the current DMA program.
134 struct descriptor_buffer *buffer_tail;
137 * The descriptor containing the branch address of the first
138 * descriptor that has not yet been filled by the device.
140 struct descriptor *last;
143 * The last descriptor in the DMA program. It contains the branch
144 * address that must be updated upon appending a new descriptor.
146 struct descriptor *prev;
148 descriptor_callback_t callback;
150 struct tasklet_struct tasklet;
153 #define IT_HEADER_SY(v) ((v) << 0)
154 #define IT_HEADER_TCODE(v) ((v) << 4)
155 #define IT_HEADER_CHANNEL(v) ((v) << 8)
156 #define IT_HEADER_TAG(v) ((v) << 14)
157 #define IT_HEADER_SPEED(v) ((v) << 16)
158 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
160 struct iso_context {
161 struct fw_iso_context base;
162 struct context context;
163 int excess_bytes;
164 void *header;
165 size_t header_length;
168 #define CONFIG_ROM_SIZE 1024
170 struct fw_ohci {
171 struct fw_card card;
173 u32 version;
174 __iomem char *registers;
175 dma_addr_t self_id_bus;
176 __le32 *self_id_cpu;
177 struct tasklet_struct bus_reset_tasklet;
178 int node_id;
179 int generation;
180 int request_generation;
181 u32 bus_seconds;
182 bool old_uninorth;
185 * Spinlock for accessing fw_ohci data. Never call out of
186 * this driver with this lock held.
188 spinlock_t lock;
189 u32 self_id_buffer[512];
191 /* Config rom buffers */
192 __be32 *config_rom;
193 dma_addr_t config_rom_bus;
194 __be32 *next_config_rom;
195 dma_addr_t next_config_rom_bus;
196 u32 next_header;
198 struct ar_context ar_request_ctx;
199 struct ar_context ar_response_ctx;
200 struct context at_request_ctx;
201 struct context at_response_ctx;
203 u32 it_context_mask;
204 struct iso_context *it_context_list;
205 u32 ir_context_mask;
206 struct iso_context *ir_context_list;
209 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
211 return container_of(card, struct fw_ohci, card);
214 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
215 #define IR_CONTEXT_BUFFER_FILL 0x80000000
216 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
217 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
218 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
219 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
221 #define CONTEXT_RUN 0x8000
222 #define CONTEXT_WAKE 0x1000
223 #define CONTEXT_DEAD 0x0800
224 #define CONTEXT_ACTIVE 0x0400
226 #define OHCI1394_MAX_AT_REQ_RETRIES 0x2
227 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
228 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
230 #define FW_OHCI_MAJOR 240
231 #define OHCI1394_REGISTER_SIZE 0x800
232 #define OHCI_LOOP_COUNT 500
233 #define OHCI1394_PCI_HCI_Control 0x40
234 #define SELF_ID_BUF_SIZE 0x800
235 #define OHCI_TCODE_PHY_PACKET 0x0e
236 #define OHCI_VERSION_1_1 0x010010
238 static char ohci_driver_name[] = KBUILD_MODNAME;
240 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
242 writel(data, ohci->registers + offset);
245 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
247 return readl(ohci->registers + offset);
250 static inline void flush_writes(const struct fw_ohci *ohci)
252 /* Do a dummy read to flush writes. */
253 reg_read(ohci, OHCI1394_Version);
256 static int
257 ohci_update_phy_reg(struct fw_card *card, int addr,
258 int clear_bits, int set_bits)
260 struct fw_ohci *ohci = fw_ohci(card);
261 u32 val, old;
263 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
264 flush_writes(ohci);
265 msleep(2);
266 val = reg_read(ohci, OHCI1394_PhyControl);
267 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
268 fw_error("failed to set phy reg bits.\n");
269 return -EBUSY;
272 old = OHCI1394_PhyControl_ReadData(val);
273 old = (old & ~clear_bits) | set_bits;
274 reg_write(ohci, OHCI1394_PhyControl,
275 OHCI1394_PhyControl_Write(addr, old));
277 return 0;
280 static int ar_context_add_page(struct ar_context *ctx)
282 struct device *dev = ctx->ohci->card.device;
283 struct ar_buffer *ab;
284 dma_addr_t uninitialized_var(ab_bus);
285 size_t offset;
287 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
288 if (ab == NULL)
289 return -ENOMEM;
291 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
292 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
293 DESCRIPTOR_STATUS |
294 DESCRIPTOR_BRANCH_ALWAYS);
295 offset = offsetof(struct ar_buffer, data);
296 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
297 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
298 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
299 ab->descriptor.branch_address = 0;
301 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
302 ctx->last_buffer->next = ab;
303 ctx->last_buffer = ab;
305 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
306 flush_writes(ctx->ohci);
308 return 0;
311 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
312 #define cond_le32_to_cpu(v) \
313 (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
314 #else
315 #define cond_le32_to_cpu(v) le32_to_cpu(v)
316 #endif
318 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
320 struct fw_ohci *ohci = ctx->ohci;
321 struct fw_packet p;
322 u32 status, length, tcode;
324 p.header[0] = cond_le32_to_cpu(buffer[0]);
325 p.header[1] = cond_le32_to_cpu(buffer[1]);
326 p.header[2] = cond_le32_to_cpu(buffer[2]);
328 tcode = (p.header[0] >> 4) & 0x0f;
329 switch (tcode) {
330 case TCODE_WRITE_QUADLET_REQUEST:
331 case TCODE_READ_QUADLET_RESPONSE:
332 p.header[3] = (__force __u32) buffer[3];
333 p.header_length = 16;
334 p.payload_length = 0;
335 break;
337 case TCODE_READ_BLOCK_REQUEST :
338 p.header[3] = cond_le32_to_cpu(buffer[3]);
339 p.header_length = 16;
340 p.payload_length = 0;
341 break;
343 case TCODE_WRITE_BLOCK_REQUEST:
344 case TCODE_READ_BLOCK_RESPONSE:
345 case TCODE_LOCK_REQUEST:
346 case TCODE_LOCK_RESPONSE:
347 p.header[3] = cond_le32_to_cpu(buffer[3]);
348 p.header_length = 16;
349 p.payload_length = p.header[3] >> 16;
350 break;
352 case TCODE_WRITE_RESPONSE:
353 case TCODE_READ_QUADLET_REQUEST:
354 case OHCI_TCODE_PHY_PACKET:
355 p.header_length = 12;
356 p.payload_length = 0;
357 break;
360 p.payload = (void *) buffer + p.header_length;
362 /* FIXME: What to do about evt_* errors? */
363 length = (p.header_length + p.payload_length + 3) / 4;
364 status = cond_le32_to_cpu(buffer[length]);
366 p.ack = ((status >> 16) & 0x1f) - 16;
367 p.speed = (status >> 21) & 0x7;
368 p.timestamp = status & 0xffff;
369 p.generation = ohci->request_generation;
372 * The OHCI bus reset handler synthesizes a phy packet with
373 * the new generation number when a bus reset happens (see
374 * section 8.4.2.3). This helps us determine when a request
375 * was received and make sure we send the response in the same
376 * generation. We only need this for requests; for responses
377 * we use the unique tlabel for finding the matching
378 * request.
381 if (p.ack + 16 == 0x09)
382 ohci->request_generation = (p.header[2] >> 16) & 0xff;
383 else if (ctx == &ohci->ar_request_ctx)
384 fw_core_handle_request(&ohci->card, &p);
385 else
386 fw_core_handle_response(&ohci->card, &p);
388 return buffer + length + 1;
391 static void ar_context_tasklet(unsigned long data)
393 struct ar_context *ctx = (struct ar_context *)data;
394 struct fw_ohci *ohci = ctx->ohci;
395 struct ar_buffer *ab;
396 struct descriptor *d;
397 void *buffer, *end;
399 ab = ctx->current_buffer;
400 d = &ab->descriptor;
402 if (d->res_count == 0) {
403 size_t size, rest, offset;
404 dma_addr_t buffer_bus;
407 * This descriptor is finished and we may have a
408 * packet split across this and the next buffer. We
409 * reuse the page for reassembling the split packet.
412 offset = offsetof(struct ar_buffer, data);
413 buffer_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
415 buffer = ab;
416 ab = ab->next;
417 d = &ab->descriptor;
418 size = buffer + PAGE_SIZE - ctx->pointer;
419 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
420 memmove(buffer, ctx->pointer, size);
421 memcpy(buffer + size, ab->data, rest);
422 ctx->current_buffer = ab;
423 ctx->pointer = (void *) ab->data + rest;
424 end = buffer + size + rest;
426 while (buffer < end)
427 buffer = handle_ar_packet(ctx, buffer);
429 dma_free_coherent(ohci->card.device, PAGE_SIZE,
430 buffer, buffer_bus);
431 ar_context_add_page(ctx);
432 } else {
433 buffer = ctx->pointer;
434 ctx->pointer = end =
435 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
437 while (buffer < end)
438 buffer = handle_ar_packet(ctx, buffer);
442 static int
443 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
445 struct ar_buffer ab;
447 ctx->regs = regs;
448 ctx->ohci = ohci;
449 ctx->last_buffer = &ab;
450 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
452 ar_context_add_page(ctx);
453 ar_context_add_page(ctx);
454 ctx->current_buffer = ab.next;
455 ctx->pointer = ctx->current_buffer->data;
457 return 0;
460 static void ar_context_run(struct ar_context *ctx)
462 struct ar_buffer *ab = ctx->current_buffer;
463 dma_addr_t ab_bus;
464 size_t offset;
466 offset = offsetof(struct ar_buffer, data);
467 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
469 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
470 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
471 flush_writes(ctx->ohci);
474 static struct descriptor *
475 find_branch_descriptor(struct descriptor *d, int z)
477 int b, key;
479 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
480 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
482 /* figure out which descriptor the branch address goes in */
483 if (z == 2 && (b == 3 || key == 2))
484 return d;
485 else
486 return d + z - 1;
489 static void context_tasklet(unsigned long data)
491 struct context *ctx = (struct context *) data;
492 struct descriptor *d, *last;
493 u32 address;
494 int z;
495 struct descriptor_buffer *desc;
497 desc = list_entry(ctx->buffer_list.next,
498 struct descriptor_buffer, list);
499 last = ctx->last;
500 while (last->branch_address != 0) {
501 struct descriptor_buffer *old_desc = desc;
502 address = le32_to_cpu(last->branch_address);
503 z = address & 0xf;
504 address &= ~0xf;
506 /* If the branch address points to a buffer outside of the
507 * current buffer, advance to the next buffer. */
508 if (address < desc->buffer_bus ||
509 address >= desc->buffer_bus + desc->used)
510 desc = list_entry(desc->list.next,
511 struct descriptor_buffer, list);
512 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
513 last = find_branch_descriptor(d, z);
515 if (!ctx->callback(ctx, d, last))
516 break;
518 if (old_desc != desc) {
519 /* If we've advanced to the next buffer, move the
520 * previous buffer to the free list. */
521 unsigned long flags;
522 old_desc->used = 0;
523 spin_lock_irqsave(&ctx->ohci->lock, flags);
524 list_move_tail(&old_desc->list, &ctx->buffer_list);
525 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
527 ctx->last = last;
532 * Allocate a new buffer and add it to the list of free buffers for this
533 * context. Must be called with ohci->lock held.
535 static int
536 context_add_buffer(struct context *ctx)
538 struct descriptor_buffer *desc;
539 dma_addr_t uninitialized_var(bus_addr);
540 int offset;
543 * 16MB of descriptors should be far more than enough for any DMA
544 * program. This will catch run-away userspace or DoS attacks.
546 if (ctx->total_allocation >= 16*1024*1024)
547 return -ENOMEM;
549 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
550 &bus_addr, GFP_ATOMIC);
551 if (!desc)
552 return -ENOMEM;
554 offset = (void *)&desc->buffer - (void *)desc;
555 desc->buffer_size = PAGE_SIZE - offset;
556 desc->buffer_bus = bus_addr + offset;
557 desc->used = 0;
559 list_add_tail(&desc->list, &ctx->buffer_list);
560 ctx->total_allocation += PAGE_SIZE;
562 return 0;
565 static int
566 context_init(struct context *ctx, struct fw_ohci *ohci,
567 u32 regs, descriptor_callback_t callback)
569 ctx->ohci = ohci;
570 ctx->regs = regs;
571 ctx->total_allocation = 0;
573 INIT_LIST_HEAD(&ctx->buffer_list);
574 if (context_add_buffer(ctx) < 0)
575 return -ENOMEM;
577 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
578 struct descriptor_buffer, list);
580 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
581 ctx->callback = callback;
584 * We put a dummy descriptor in the buffer that has a NULL
585 * branch address and looks like it's been sent. That way we
586 * have a descriptor to append DMA programs to.
588 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
589 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
590 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
591 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
592 ctx->last = ctx->buffer_tail->buffer;
593 ctx->prev = ctx->buffer_tail->buffer;
595 return 0;
598 static void
599 context_release(struct context *ctx)
601 struct fw_card *card = &ctx->ohci->card;
602 struct descriptor_buffer *desc, *tmp;
604 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
605 dma_free_coherent(card->device, PAGE_SIZE, desc,
606 desc->buffer_bus -
607 ((void *)&desc->buffer - (void *)desc));
610 /* Must be called with ohci->lock held */
611 static struct descriptor *
612 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
614 struct descriptor *d = NULL;
615 struct descriptor_buffer *desc = ctx->buffer_tail;
617 if (z * sizeof(*d) > desc->buffer_size)
618 return NULL;
620 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
621 /* No room for the descriptor in this buffer, so advance to the
622 * next one. */
624 if (desc->list.next == &ctx->buffer_list) {
625 /* If there is no free buffer next in the list,
626 * allocate one. */
627 if (context_add_buffer(ctx) < 0)
628 return NULL;
630 desc = list_entry(desc->list.next,
631 struct descriptor_buffer, list);
632 ctx->buffer_tail = desc;
635 d = desc->buffer + desc->used / sizeof(*d);
636 memset(d, 0, z * sizeof(*d));
637 *d_bus = desc->buffer_bus + desc->used;
639 return d;
642 static void context_run(struct context *ctx, u32 extra)
644 struct fw_ohci *ohci = ctx->ohci;
646 reg_write(ohci, COMMAND_PTR(ctx->regs),
647 le32_to_cpu(ctx->last->branch_address));
648 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
649 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
650 flush_writes(ohci);
653 static void context_append(struct context *ctx,
654 struct descriptor *d, int z, int extra)
656 dma_addr_t d_bus;
657 struct descriptor_buffer *desc = ctx->buffer_tail;
659 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
661 desc->used += (z + extra) * sizeof(*d);
662 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
663 ctx->prev = find_branch_descriptor(d, z);
665 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
666 flush_writes(ctx->ohci);
669 static void context_stop(struct context *ctx)
671 u32 reg;
672 int i;
674 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
675 flush_writes(ctx->ohci);
677 for (i = 0; i < 10; i++) {
678 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
679 if ((reg & CONTEXT_ACTIVE) == 0)
680 break;
682 fw_notify("context_stop: still active (0x%08x)\n", reg);
683 mdelay(1);
687 struct driver_data {
688 struct fw_packet *packet;
692 * This function apppends a packet to the DMA queue for transmission.
693 * Must always be called with the ochi->lock held to ensure proper
694 * generation handling and locking around packet queue manipulation.
696 static int
697 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
699 struct fw_ohci *ohci = ctx->ohci;
700 dma_addr_t d_bus, uninitialized_var(payload_bus);
701 struct driver_data *driver_data;
702 struct descriptor *d, *last;
703 __le32 *header;
704 int z, tcode;
705 u32 reg;
707 d = context_get_descriptors(ctx, 4, &d_bus);
708 if (d == NULL) {
709 packet->ack = RCODE_SEND_ERROR;
710 return -1;
713 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
714 d[0].res_count = cpu_to_le16(packet->timestamp);
717 * The DMA format for asyncronous link packets is different
718 * from the IEEE1394 layout, so shift the fields around
719 * accordingly. If header_length is 8, it's a PHY packet, to
720 * which we need to prepend an extra quadlet.
723 header = (__le32 *) &d[1];
724 if (packet->header_length > 8) {
725 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
726 (packet->speed << 16));
727 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
728 (packet->header[0] & 0xffff0000));
729 header[2] = cpu_to_le32(packet->header[2]);
731 tcode = (packet->header[0] >> 4) & 0x0f;
732 if (TCODE_IS_BLOCK_PACKET(tcode))
733 header[3] = cpu_to_le32(packet->header[3]);
734 else
735 header[3] = (__force __le32) packet->header[3];
737 d[0].req_count = cpu_to_le16(packet->header_length);
738 } else {
739 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
740 (packet->speed << 16));
741 header[1] = cpu_to_le32(packet->header[0]);
742 header[2] = cpu_to_le32(packet->header[1]);
743 d[0].req_count = cpu_to_le16(12);
746 driver_data = (struct driver_data *) &d[3];
747 driver_data->packet = packet;
748 packet->driver_data = driver_data;
750 if (packet->payload_length > 0) {
751 payload_bus =
752 dma_map_single(ohci->card.device, packet->payload,
753 packet->payload_length, DMA_TO_DEVICE);
754 if (dma_mapping_error(payload_bus)) {
755 packet->ack = RCODE_SEND_ERROR;
756 return -1;
759 d[2].req_count = cpu_to_le16(packet->payload_length);
760 d[2].data_address = cpu_to_le32(payload_bus);
761 last = &d[2];
762 z = 3;
763 } else {
764 last = &d[0];
765 z = 2;
768 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
769 DESCRIPTOR_IRQ_ALWAYS |
770 DESCRIPTOR_BRANCH_ALWAYS);
772 /* FIXME: Document how the locking works. */
773 if (ohci->generation != packet->generation) {
774 if (packet->payload_length > 0)
775 dma_unmap_single(ohci->card.device, payload_bus,
776 packet->payload_length, DMA_TO_DEVICE);
777 packet->ack = RCODE_GENERATION;
778 return -1;
781 context_append(ctx, d, z, 4 - z);
783 /* If the context isn't already running, start it up. */
784 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
785 if ((reg & CONTEXT_RUN) == 0)
786 context_run(ctx, 0);
788 return 0;
791 static int handle_at_packet(struct context *context,
792 struct descriptor *d,
793 struct descriptor *last)
795 struct driver_data *driver_data;
796 struct fw_packet *packet;
797 struct fw_ohci *ohci = context->ohci;
798 dma_addr_t payload_bus;
799 int evt;
801 if (last->transfer_status == 0)
802 /* This descriptor isn't done yet, stop iteration. */
803 return 0;
805 driver_data = (struct driver_data *) &d[3];
806 packet = driver_data->packet;
807 if (packet == NULL)
808 /* This packet was cancelled, just continue. */
809 return 1;
811 payload_bus = le32_to_cpu(last->data_address);
812 if (payload_bus != 0)
813 dma_unmap_single(ohci->card.device, payload_bus,
814 packet->payload_length, DMA_TO_DEVICE);
816 evt = le16_to_cpu(last->transfer_status) & 0x1f;
817 packet->timestamp = le16_to_cpu(last->res_count);
819 switch (evt) {
820 case OHCI1394_evt_timeout:
821 /* Async response transmit timed out. */
822 packet->ack = RCODE_CANCELLED;
823 break;
825 case OHCI1394_evt_flushed:
827 * The packet was flushed should give same error as
828 * when we try to use a stale generation count.
830 packet->ack = RCODE_GENERATION;
831 break;
833 case OHCI1394_evt_missing_ack:
835 * Using a valid (current) generation count, but the
836 * node is not on the bus or not sending acks.
838 packet->ack = RCODE_NO_ACK;
839 break;
841 case ACK_COMPLETE + 0x10:
842 case ACK_PENDING + 0x10:
843 case ACK_BUSY_X + 0x10:
844 case ACK_BUSY_A + 0x10:
845 case ACK_BUSY_B + 0x10:
846 case ACK_DATA_ERROR + 0x10:
847 case ACK_TYPE_ERROR + 0x10:
848 packet->ack = evt - 0x10;
849 break;
851 default:
852 packet->ack = RCODE_SEND_ERROR;
853 break;
856 packet->callback(packet, &ohci->card, packet->ack);
858 return 1;
861 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
862 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
863 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
864 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
865 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
867 static void
868 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
870 struct fw_packet response;
871 int tcode, length, i;
873 tcode = HEADER_GET_TCODE(packet->header[0]);
874 if (TCODE_IS_BLOCK_PACKET(tcode))
875 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
876 else
877 length = 4;
879 i = csr - CSR_CONFIG_ROM;
880 if (i + length > CONFIG_ROM_SIZE) {
881 fw_fill_response(&response, packet->header,
882 RCODE_ADDRESS_ERROR, NULL, 0);
883 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
884 fw_fill_response(&response, packet->header,
885 RCODE_TYPE_ERROR, NULL, 0);
886 } else {
887 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
888 (void *) ohci->config_rom + i, length);
891 fw_core_handle_response(&ohci->card, &response);
894 static void
895 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
897 struct fw_packet response;
898 int tcode, length, ext_tcode, sel;
899 __be32 *payload, lock_old;
900 u32 lock_arg, lock_data;
902 tcode = HEADER_GET_TCODE(packet->header[0]);
903 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
904 payload = packet->payload;
905 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
907 if (tcode == TCODE_LOCK_REQUEST &&
908 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
909 lock_arg = be32_to_cpu(payload[0]);
910 lock_data = be32_to_cpu(payload[1]);
911 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
912 lock_arg = 0;
913 lock_data = 0;
914 } else {
915 fw_fill_response(&response, packet->header,
916 RCODE_TYPE_ERROR, NULL, 0);
917 goto out;
920 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
921 reg_write(ohci, OHCI1394_CSRData, lock_data);
922 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
923 reg_write(ohci, OHCI1394_CSRControl, sel);
925 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
926 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
927 else
928 fw_notify("swap not done yet\n");
930 fw_fill_response(&response, packet->header,
931 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
932 out:
933 fw_core_handle_response(&ohci->card, &response);
936 static void
937 handle_local_request(struct context *ctx, struct fw_packet *packet)
939 u64 offset;
940 u32 csr;
942 if (ctx == &ctx->ohci->at_request_ctx) {
943 packet->ack = ACK_PENDING;
944 packet->callback(packet, &ctx->ohci->card, packet->ack);
947 offset =
948 ((unsigned long long)
949 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
950 packet->header[2];
951 csr = offset - CSR_REGISTER_BASE;
953 /* Handle config rom reads. */
954 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
955 handle_local_rom(ctx->ohci, packet, csr);
956 else switch (csr) {
957 case CSR_BUS_MANAGER_ID:
958 case CSR_BANDWIDTH_AVAILABLE:
959 case CSR_CHANNELS_AVAILABLE_HI:
960 case CSR_CHANNELS_AVAILABLE_LO:
961 handle_local_lock(ctx->ohci, packet, csr);
962 break;
963 default:
964 if (ctx == &ctx->ohci->at_request_ctx)
965 fw_core_handle_request(&ctx->ohci->card, packet);
966 else
967 fw_core_handle_response(&ctx->ohci->card, packet);
968 break;
971 if (ctx == &ctx->ohci->at_response_ctx) {
972 packet->ack = ACK_COMPLETE;
973 packet->callback(packet, &ctx->ohci->card, packet->ack);
977 static void
978 at_context_transmit(struct context *ctx, struct fw_packet *packet)
980 unsigned long flags;
981 int retval;
983 spin_lock_irqsave(&ctx->ohci->lock, flags);
985 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
986 ctx->ohci->generation == packet->generation) {
987 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
988 handle_local_request(ctx, packet);
989 return;
992 retval = at_context_queue_packet(ctx, packet);
993 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
995 if (retval < 0)
996 packet->callback(packet, &ctx->ohci->card, packet->ack);
1000 static void bus_reset_tasklet(unsigned long data)
1002 struct fw_ohci *ohci = (struct fw_ohci *)data;
1003 int self_id_count, i, j, reg;
1004 int generation, new_generation;
1005 unsigned long flags;
1006 void *free_rom = NULL;
1007 dma_addr_t free_rom_bus = 0;
1009 reg = reg_read(ohci, OHCI1394_NodeID);
1010 if (!(reg & OHCI1394_NodeID_idValid)) {
1011 fw_notify("node ID not valid, new bus reset in progress\n");
1012 return;
1014 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1015 fw_notify("malconfigured bus\n");
1016 return;
1018 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1019 OHCI1394_NodeID_nodeNumber);
1022 * The count in the SelfIDCount register is the number of
1023 * bytes in the self ID receive buffer. Since we also receive
1024 * the inverted quadlets and a header quadlet, we shift one
1025 * bit extra to get the actual number of self IDs.
1028 self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
1029 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1030 rmb();
1032 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1033 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
1034 fw_error("inconsistent self IDs\n");
1035 ohci->self_id_buffer[j] =
1036 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1038 rmb();
1041 * Check the consistency of the self IDs we just read. The
1042 * problem we face is that a new bus reset can start while we
1043 * read out the self IDs from the DMA buffer. If this happens,
1044 * the DMA buffer will be overwritten with new self IDs and we
1045 * will read out inconsistent data. The OHCI specification
1046 * (section 11.2) recommends a technique similar to
1047 * linux/seqlock.h, where we remember the generation of the
1048 * self IDs in the buffer before reading them out and compare
1049 * it to the current generation after reading them out. If
1050 * the two generations match we know we have a consistent set
1051 * of self IDs.
1054 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1055 if (new_generation != generation) {
1056 fw_notify("recursive bus reset detected, "
1057 "discarding self ids\n");
1058 return;
1061 /* FIXME: Document how the locking works. */
1062 spin_lock_irqsave(&ohci->lock, flags);
1064 ohci->generation = generation;
1065 context_stop(&ohci->at_request_ctx);
1066 context_stop(&ohci->at_response_ctx);
1067 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1070 * This next bit is unrelated to the AT context stuff but we
1071 * have to do it under the spinlock also. If a new config rom
1072 * was set up before this reset, the old one is now no longer
1073 * in use and we can free it. Update the config rom pointers
1074 * to point to the current config rom and clear the
1075 * next_config_rom pointer so a new udpate can take place.
1078 if (ohci->next_config_rom != NULL) {
1079 if (ohci->next_config_rom != ohci->config_rom) {
1080 free_rom = ohci->config_rom;
1081 free_rom_bus = ohci->config_rom_bus;
1083 ohci->config_rom = ohci->next_config_rom;
1084 ohci->config_rom_bus = ohci->next_config_rom_bus;
1085 ohci->next_config_rom = NULL;
1088 * Restore config_rom image and manually update
1089 * config_rom registers. Writing the header quadlet
1090 * will indicate that the config rom is ready, so we
1091 * do that last.
1093 reg_write(ohci, OHCI1394_BusOptions,
1094 be32_to_cpu(ohci->config_rom[2]));
1095 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1096 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1099 spin_unlock_irqrestore(&ohci->lock, flags);
1101 if (free_rom)
1102 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1103 free_rom, free_rom_bus);
1105 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1106 self_id_count, ohci->self_id_buffer);
1109 static irqreturn_t irq_handler(int irq, void *data)
1111 struct fw_ohci *ohci = data;
1112 u32 event, iso_event, cycle_time;
1113 int i;
1115 event = reg_read(ohci, OHCI1394_IntEventClear);
1117 if (!event || !~event)
1118 return IRQ_NONE;
1120 reg_write(ohci, OHCI1394_IntEventClear, event);
1122 if (event & OHCI1394_selfIDComplete)
1123 tasklet_schedule(&ohci->bus_reset_tasklet);
1125 if (event & OHCI1394_RQPkt)
1126 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1128 if (event & OHCI1394_RSPkt)
1129 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1131 if (event & OHCI1394_reqTxComplete)
1132 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1134 if (event & OHCI1394_respTxComplete)
1135 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1137 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1138 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1140 while (iso_event) {
1141 i = ffs(iso_event) - 1;
1142 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1143 iso_event &= ~(1 << i);
1146 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1147 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1149 while (iso_event) {
1150 i = ffs(iso_event) - 1;
1151 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1152 iso_event &= ~(1 << i);
1155 if (unlikely(event & OHCI1394_postedWriteErr))
1156 fw_error("PCI posted write error\n");
1158 if (unlikely(event & OHCI1394_cycleTooLong)) {
1159 if (printk_ratelimit())
1160 fw_notify("isochronous cycle too long\n");
1161 reg_write(ohci, OHCI1394_LinkControlSet,
1162 OHCI1394_LinkControl_cycleMaster);
1165 if (event & OHCI1394_cycle64Seconds) {
1166 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1167 if ((cycle_time & 0x80000000) == 0)
1168 ohci->bus_seconds++;
1171 return IRQ_HANDLED;
1174 static int software_reset(struct fw_ohci *ohci)
1176 int i;
1178 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1180 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1181 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1182 OHCI1394_HCControl_softReset) == 0)
1183 return 0;
1184 msleep(1);
1187 return -EBUSY;
1190 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1192 struct fw_ohci *ohci = fw_ohci(card);
1193 struct pci_dev *dev = to_pci_dev(card->device);
1195 if (software_reset(ohci)) {
1196 fw_error("Failed to reset ohci card.\n");
1197 return -EBUSY;
1201 * Now enable LPS, which we need in order to start accessing
1202 * most of the registers. In fact, on some cards (ALI M5251),
1203 * accessing registers in the SClk domain without LPS enabled
1204 * will lock up the machine. Wait 50msec to make sure we have
1205 * full link enabled.
1207 reg_write(ohci, OHCI1394_HCControlSet,
1208 OHCI1394_HCControl_LPS |
1209 OHCI1394_HCControl_postedWriteEnable);
1210 flush_writes(ohci);
1211 msleep(50);
1213 reg_write(ohci, OHCI1394_HCControlClear,
1214 OHCI1394_HCControl_noByteSwapData);
1216 reg_write(ohci, OHCI1394_LinkControlSet,
1217 OHCI1394_LinkControl_rcvSelfID |
1218 OHCI1394_LinkControl_cycleTimerEnable |
1219 OHCI1394_LinkControl_cycleMaster);
1221 reg_write(ohci, OHCI1394_ATRetries,
1222 OHCI1394_MAX_AT_REQ_RETRIES |
1223 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1224 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1226 ar_context_run(&ohci->ar_request_ctx);
1227 ar_context_run(&ohci->ar_response_ctx);
1229 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1230 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1231 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1232 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1233 reg_write(ohci, OHCI1394_IntMaskSet,
1234 OHCI1394_selfIDComplete |
1235 OHCI1394_RQPkt | OHCI1394_RSPkt |
1236 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1237 OHCI1394_isochRx | OHCI1394_isochTx |
1238 OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1239 OHCI1394_cycle64Seconds | OHCI1394_masterIntEnable);
1241 /* Activate link_on bit and contender bit in our self ID packets.*/
1242 if (ohci_update_phy_reg(card, 4, 0,
1243 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1244 return -EIO;
1247 * When the link is not yet enabled, the atomic config rom
1248 * update mechanism described below in ohci_set_config_rom()
1249 * is not active. We have to update ConfigRomHeader and
1250 * BusOptions manually, and the write to ConfigROMmap takes
1251 * effect immediately. We tie this to the enabling of the
1252 * link, so we have a valid config rom before enabling - the
1253 * OHCI requires that ConfigROMhdr and BusOptions have valid
1254 * values before enabling.
1256 * However, when the ConfigROMmap is written, some controllers
1257 * always read back quadlets 0 and 2 from the config rom to
1258 * the ConfigRomHeader and BusOptions registers on bus reset.
1259 * They shouldn't do that in this initial case where the link
1260 * isn't enabled. This means we have to use the same
1261 * workaround here, setting the bus header to 0 and then write
1262 * the right values in the bus reset tasklet.
1265 if (config_rom) {
1266 ohci->next_config_rom =
1267 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1268 &ohci->next_config_rom_bus,
1269 GFP_KERNEL);
1270 if (ohci->next_config_rom == NULL)
1271 return -ENOMEM;
1273 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1274 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1275 } else {
1277 * In the suspend case, config_rom is NULL, which
1278 * means that we just reuse the old config rom.
1280 ohci->next_config_rom = ohci->config_rom;
1281 ohci->next_config_rom_bus = ohci->config_rom_bus;
1284 ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1285 ohci->next_config_rom[0] = 0;
1286 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1287 reg_write(ohci, OHCI1394_BusOptions,
1288 be32_to_cpu(ohci->next_config_rom[2]));
1289 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1291 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1293 if (request_irq(dev->irq, irq_handler,
1294 IRQF_SHARED, ohci_driver_name, ohci)) {
1295 fw_error("Failed to allocate shared interrupt %d.\n",
1296 dev->irq);
1297 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1298 ohci->config_rom, ohci->config_rom_bus);
1299 return -EIO;
1302 reg_write(ohci, OHCI1394_HCControlSet,
1303 OHCI1394_HCControl_linkEnable |
1304 OHCI1394_HCControl_BIBimageValid);
1305 flush_writes(ohci);
1308 * We are ready to go, initiate bus reset to finish the
1309 * initialization.
1312 fw_core_initiate_bus_reset(&ohci->card, 1);
1314 return 0;
1317 static int
1318 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1320 struct fw_ohci *ohci;
1321 unsigned long flags;
1322 int retval = -EBUSY;
1323 __be32 *next_config_rom;
1324 dma_addr_t uninitialized_var(next_config_rom_bus);
1326 ohci = fw_ohci(card);
1329 * When the OHCI controller is enabled, the config rom update
1330 * mechanism is a bit tricky, but easy enough to use. See
1331 * section 5.5.6 in the OHCI specification.
1333 * The OHCI controller caches the new config rom address in a
1334 * shadow register (ConfigROMmapNext) and needs a bus reset
1335 * for the changes to take place. When the bus reset is
1336 * detected, the controller loads the new values for the
1337 * ConfigRomHeader and BusOptions registers from the specified
1338 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1339 * shadow register. All automatically and atomically.
1341 * Now, there's a twist to this story. The automatic load of
1342 * ConfigRomHeader and BusOptions doesn't honor the
1343 * noByteSwapData bit, so with a be32 config rom, the
1344 * controller will load be32 values in to these registers
1345 * during the atomic update, even on litte endian
1346 * architectures. The workaround we use is to put a 0 in the
1347 * header quadlet; 0 is endian agnostic and means that the
1348 * config rom isn't ready yet. In the bus reset tasklet we
1349 * then set up the real values for the two registers.
1351 * We use ohci->lock to avoid racing with the code that sets
1352 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1355 next_config_rom =
1356 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1357 &next_config_rom_bus, GFP_KERNEL);
1358 if (next_config_rom == NULL)
1359 return -ENOMEM;
1361 spin_lock_irqsave(&ohci->lock, flags);
1363 if (ohci->next_config_rom == NULL) {
1364 ohci->next_config_rom = next_config_rom;
1365 ohci->next_config_rom_bus = next_config_rom_bus;
1367 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1368 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1369 length * 4);
1371 ohci->next_header = config_rom[0];
1372 ohci->next_config_rom[0] = 0;
1374 reg_write(ohci, OHCI1394_ConfigROMmap,
1375 ohci->next_config_rom_bus);
1376 retval = 0;
1379 spin_unlock_irqrestore(&ohci->lock, flags);
1382 * Now initiate a bus reset to have the changes take
1383 * effect. We clean up the old config rom memory and DMA
1384 * mappings in the bus reset tasklet, since the OHCI
1385 * controller could need to access it before the bus reset
1386 * takes effect.
1388 if (retval == 0)
1389 fw_core_initiate_bus_reset(&ohci->card, 1);
1390 else
1391 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1392 next_config_rom, next_config_rom_bus);
1394 return retval;
1397 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1399 struct fw_ohci *ohci = fw_ohci(card);
1401 at_context_transmit(&ohci->at_request_ctx, packet);
1404 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1406 struct fw_ohci *ohci = fw_ohci(card);
1408 at_context_transmit(&ohci->at_response_ctx, packet);
1411 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1413 struct fw_ohci *ohci = fw_ohci(card);
1414 struct context *ctx = &ohci->at_request_ctx;
1415 struct driver_data *driver_data = packet->driver_data;
1416 int retval = -ENOENT;
1418 tasklet_disable(&ctx->tasklet);
1420 if (packet->ack != 0)
1421 goto out;
1423 driver_data->packet = NULL;
1424 packet->ack = RCODE_CANCELLED;
1425 packet->callback(packet, &ohci->card, packet->ack);
1426 retval = 0;
1428 out:
1429 tasklet_enable(&ctx->tasklet);
1431 return retval;
1434 static int
1435 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1437 struct fw_ohci *ohci = fw_ohci(card);
1438 unsigned long flags;
1439 int n, retval = 0;
1442 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1443 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1446 spin_lock_irqsave(&ohci->lock, flags);
1448 if (ohci->generation != generation) {
1449 retval = -ESTALE;
1450 goto out;
1454 * Note, if the node ID contains a non-local bus ID, physical DMA is
1455 * enabled for _all_ nodes on remote buses.
1458 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1459 if (n < 32)
1460 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1461 else
1462 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1464 flush_writes(ohci);
1465 out:
1466 spin_unlock_irqrestore(&ohci->lock, flags);
1467 return retval;
1470 static u64
1471 ohci_get_bus_time(struct fw_card *card)
1473 struct fw_ohci *ohci = fw_ohci(card);
1474 u32 cycle_time;
1475 u64 bus_time;
1477 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1478 bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1480 return bus_time;
1483 static int handle_ir_dualbuffer_packet(struct context *context,
1484 struct descriptor *d,
1485 struct descriptor *last)
1487 struct iso_context *ctx =
1488 container_of(context, struct iso_context, context);
1489 struct db_descriptor *db = (struct db_descriptor *) d;
1490 __le32 *ir_header;
1491 size_t header_length;
1492 void *p, *end;
1493 int i;
1495 if (db->first_res_count != 0 && db->second_res_count != 0) {
1496 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1497 /* This descriptor isn't done yet, stop iteration. */
1498 return 0;
1500 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1503 header_length = le16_to_cpu(db->first_req_count) -
1504 le16_to_cpu(db->first_res_count);
1506 i = ctx->header_length;
1507 p = db + 1;
1508 end = p + header_length;
1509 while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1511 * The iso header is byteswapped to little endian by
1512 * the controller, but the remaining header quadlets
1513 * are big endian. We want to present all the headers
1514 * as big endian, so we have to swap the first
1515 * quadlet.
1517 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1518 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1519 i += ctx->base.header_size;
1520 ctx->excess_bytes +=
1521 (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1522 p += ctx->base.header_size + 4;
1524 ctx->header_length = i;
1526 ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1527 le16_to_cpu(db->second_res_count);
1529 if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1530 ir_header = (__le32 *) (db + 1);
1531 ctx->base.callback(&ctx->base,
1532 le32_to_cpu(ir_header[0]) & 0xffff,
1533 ctx->header_length, ctx->header,
1534 ctx->base.callback_data);
1535 ctx->header_length = 0;
1538 return 1;
1541 static int handle_ir_packet_per_buffer(struct context *context,
1542 struct descriptor *d,
1543 struct descriptor *last)
1545 struct iso_context *ctx =
1546 container_of(context, struct iso_context, context);
1547 struct descriptor *pd;
1548 __le32 *ir_header;
1549 void *p;
1550 int i;
1552 for (pd = d; pd <= last; pd++) {
1553 if (pd->transfer_status)
1554 break;
1556 if (pd > last)
1557 /* Descriptor(s) not done yet, stop iteration */
1558 return 0;
1560 i = ctx->header_length;
1561 p = last + 1;
1563 if (ctx->base.header_size > 0 &&
1564 i + ctx->base.header_size <= PAGE_SIZE) {
1566 * The iso header is byteswapped to little endian by
1567 * the controller, but the remaining header quadlets
1568 * are big endian. We want to present all the headers
1569 * as big endian, so we have to swap the first quadlet.
1571 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1572 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1573 ctx->header_length += ctx->base.header_size;
1576 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1577 ir_header = (__le32 *) p;
1578 ctx->base.callback(&ctx->base,
1579 le32_to_cpu(ir_header[0]) & 0xffff,
1580 ctx->header_length, ctx->header,
1581 ctx->base.callback_data);
1582 ctx->header_length = 0;
1585 return 1;
1588 static int handle_it_packet(struct context *context,
1589 struct descriptor *d,
1590 struct descriptor *last)
1592 struct iso_context *ctx =
1593 container_of(context, struct iso_context, context);
1595 if (last->transfer_status == 0)
1596 /* This descriptor isn't done yet, stop iteration. */
1597 return 0;
1599 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1600 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1601 0, NULL, ctx->base.callback_data);
1603 return 1;
1606 static struct fw_iso_context *
1607 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1609 struct fw_ohci *ohci = fw_ohci(card);
1610 struct iso_context *ctx, *list;
1611 descriptor_callback_t callback;
1612 u32 *mask, regs;
1613 unsigned long flags;
1614 int index, retval = -ENOMEM;
1616 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1617 mask = &ohci->it_context_mask;
1618 list = ohci->it_context_list;
1619 callback = handle_it_packet;
1620 } else {
1621 mask = &ohci->ir_context_mask;
1622 list = ohci->ir_context_list;
1623 if (ohci->version >= OHCI_VERSION_1_1)
1624 callback = handle_ir_dualbuffer_packet;
1625 else
1626 callback = handle_ir_packet_per_buffer;
1629 spin_lock_irqsave(&ohci->lock, flags);
1630 index = ffs(*mask) - 1;
1631 if (index >= 0)
1632 *mask &= ~(1 << index);
1633 spin_unlock_irqrestore(&ohci->lock, flags);
1635 if (index < 0)
1636 return ERR_PTR(-EBUSY);
1638 if (type == FW_ISO_CONTEXT_TRANSMIT)
1639 regs = OHCI1394_IsoXmitContextBase(index);
1640 else
1641 regs = OHCI1394_IsoRcvContextBase(index);
1643 ctx = &list[index];
1644 memset(ctx, 0, sizeof(*ctx));
1645 ctx->header_length = 0;
1646 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1647 if (ctx->header == NULL)
1648 goto out;
1650 retval = context_init(&ctx->context, ohci, regs, callback);
1651 if (retval < 0)
1652 goto out_with_header;
1654 return &ctx->base;
1656 out_with_header:
1657 free_page((unsigned long)ctx->header);
1658 out:
1659 spin_lock_irqsave(&ohci->lock, flags);
1660 *mask |= 1 << index;
1661 spin_unlock_irqrestore(&ohci->lock, flags);
1663 return ERR_PTR(retval);
1666 static int ohci_start_iso(struct fw_iso_context *base,
1667 s32 cycle, u32 sync, u32 tags)
1669 struct iso_context *ctx = container_of(base, struct iso_context, base);
1670 struct fw_ohci *ohci = ctx->context.ohci;
1671 u32 control, match;
1672 int index;
1674 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1675 index = ctx - ohci->it_context_list;
1676 match = 0;
1677 if (cycle >= 0)
1678 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1679 (cycle & 0x7fff) << 16;
1681 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1682 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1683 context_run(&ctx->context, match);
1684 } else {
1685 index = ctx - ohci->ir_context_list;
1686 control = IR_CONTEXT_ISOCH_HEADER;
1687 if (ohci->version >= OHCI_VERSION_1_1)
1688 control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1689 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1690 if (cycle >= 0) {
1691 match |= (cycle & 0x07fff) << 12;
1692 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1695 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1696 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1697 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1698 context_run(&ctx->context, control);
1701 return 0;
1704 static int ohci_stop_iso(struct fw_iso_context *base)
1706 struct fw_ohci *ohci = fw_ohci(base->card);
1707 struct iso_context *ctx = container_of(base, struct iso_context, base);
1708 int index;
1710 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1711 index = ctx - ohci->it_context_list;
1712 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1713 } else {
1714 index = ctx - ohci->ir_context_list;
1715 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1717 flush_writes(ohci);
1718 context_stop(&ctx->context);
1720 return 0;
1723 static void ohci_free_iso_context(struct fw_iso_context *base)
1725 struct fw_ohci *ohci = fw_ohci(base->card);
1726 struct iso_context *ctx = container_of(base, struct iso_context, base);
1727 unsigned long flags;
1728 int index;
1730 ohci_stop_iso(base);
1731 context_release(&ctx->context);
1732 free_page((unsigned long)ctx->header);
1734 spin_lock_irqsave(&ohci->lock, flags);
1736 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1737 index = ctx - ohci->it_context_list;
1738 ohci->it_context_mask |= 1 << index;
1739 } else {
1740 index = ctx - ohci->ir_context_list;
1741 ohci->ir_context_mask |= 1 << index;
1744 spin_unlock_irqrestore(&ohci->lock, flags);
1747 static int
1748 ohci_queue_iso_transmit(struct fw_iso_context *base,
1749 struct fw_iso_packet *packet,
1750 struct fw_iso_buffer *buffer,
1751 unsigned long payload)
1753 struct iso_context *ctx = container_of(base, struct iso_context, base);
1754 struct descriptor *d, *last, *pd;
1755 struct fw_iso_packet *p;
1756 __le32 *header;
1757 dma_addr_t d_bus, page_bus;
1758 u32 z, header_z, payload_z, irq;
1759 u32 payload_index, payload_end_index, next_page_index;
1760 int page, end_page, i, length, offset;
1763 * FIXME: Cycle lost behavior should be configurable: lose
1764 * packet, retransmit or terminate..
1767 p = packet;
1768 payload_index = payload;
1770 if (p->skip)
1771 z = 1;
1772 else
1773 z = 2;
1774 if (p->header_length > 0)
1775 z++;
1777 /* Determine the first page the payload isn't contained in. */
1778 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1779 if (p->payload_length > 0)
1780 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1781 else
1782 payload_z = 0;
1784 z += payload_z;
1786 /* Get header size in number of descriptors. */
1787 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1789 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1790 if (d == NULL)
1791 return -ENOMEM;
1793 if (!p->skip) {
1794 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1795 d[0].req_count = cpu_to_le16(8);
1797 header = (__le32 *) &d[1];
1798 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
1799 IT_HEADER_TAG(p->tag) |
1800 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
1801 IT_HEADER_CHANNEL(ctx->base.channel) |
1802 IT_HEADER_SPEED(ctx->base.speed));
1803 header[1] =
1804 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1805 p->payload_length));
1808 if (p->header_length > 0) {
1809 d[2].req_count = cpu_to_le16(p->header_length);
1810 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1811 memcpy(&d[z], p->header, p->header_length);
1814 pd = d + z - payload_z;
1815 payload_end_index = payload_index + p->payload_length;
1816 for (i = 0; i < payload_z; i++) {
1817 page = payload_index >> PAGE_SHIFT;
1818 offset = payload_index & ~PAGE_MASK;
1819 next_page_index = (page + 1) << PAGE_SHIFT;
1820 length =
1821 min(next_page_index, payload_end_index) - payload_index;
1822 pd[i].req_count = cpu_to_le16(length);
1824 page_bus = page_private(buffer->pages[page]);
1825 pd[i].data_address = cpu_to_le32(page_bus + offset);
1827 payload_index += length;
1830 if (p->interrupt)
1831 irq = DESCRIPTOR_IRQ_ALWAYS;
1832 else
1833 irq = DESCRIPTOR_NO_IRQ;
1835 last = z == 2 ? d : d + z - 1;
1836 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1837 DESCRIPTOR_STATUS |
1838 DESCRIPTOR_BRANCH_ALWAYS |
1839 irq);
1841 context_append(&ctx->context, d, z, header_z);
1843 return 0;
1846 static int
1847 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1848 struct fw_iso_packet *packet,
1849 struct fw_iso_buffer *buffer,
1850 unsigned long payload)
1852 struct iso_context *ctx = container_of(base, struct iso_context, base);
1853 struct db_descriptor *db = NULL;
1854 struct descriptor *d;
1855 struct fw_iso_packet *p;
1856 dma_addr_t d_bus, page_bus;
1857 u32 z, header_z, length, rest;
1858 int page, offset, packet_count, header_size;
1861 * FIXME: Cycle lost behavior should be configurable: lose
1862 * packet, retransmit or terminate..
1865 p = packet;
1866 z = 2;
1869 * The OHCI controller puts the status word in the header
1870 * buffer too, so we need 4 extra bytes per packet.
1872 packet_count = p->header_length / ctx->base.header_size;
1873 header_size = packet_count * (ctx->base.header_size + 4);
1875 /* Get header size in number of descriptors. */
1876 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1877 page = payload >> PAGE_SHIFT;
1878 offset = payload & ~PAGE_MASK;
1879 rest = p->payload_length;
1881 /* FIXME: make packet-per-buffer/dual-buffer a context option */
1882 while (rest > 0) {
1883 d = context_get_descriptors(&ctx->context,
1884 z + header_z, &d_bus);
1885 if (d == NULL)
1886 return -ENOMEM;
1888 db = (struct db_descriptor *) d;
1889 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1890 DESCRIPTOR_BRANCH_ALWAYS);
1891 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1892 if (p->skip && rest == p->payload_length) {
1893 db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
1894 db->first_req_count = db->first_size;
1895 } else {
1896 db->first_req_count = cpu_to_le16(header_size);
1898 db->first_res_count = db->first_req_count;
1899 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
1901 if (p->skip && rest == p->payload_length)
1902 length = 4;
1903 else if (offset + rest < PAGE_SIZE)
1904 length = rest;
1905 else
1906 length = PAGE_SIZE - offset;
1908 db->second_req_count = cpu_to_le16(length);
1909 db->second_res_count = db->second_req_count;
1910 page_bus = page_private(buffer->pages[page]);
1911 db->second_buffer = cpu_to_le32(page_bus + offset);
1913 if (p->interrupt && length == rest)
1914 db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1916 context_append(&ctx->context, d, z, header_z);
1917 offset = (offset + length) & ~PAGE_MASK;
1918 rest -= length;
1919 if (offset == 0)
1920 page++;
1923 return 0;
1926 static int
1927 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
1928 struct fw_iso_packet *packet,
1929 struct fw_iso_buffer *buffer,
1930 unsigned long payload)
1932 struct iso_context *ctx = container_of(base, struct iso_context, base);
1933 struct descriptor *d = NULL, *pd = NULL;
1934 struct fw_iso_packet *p = packet;
1935 dma_addr_t d_bus, page_bus;
1936 u32 z, header_z, rest;
1937 int i, j, length;
1938 int page, offset, packet_count, header_size, payload_per_buffer;
1941 * The OHCI controller puts the status word in the
1942 * buffer too, so we need 4 extra bytes per packet.
1944 packet_count = p->header_length / ctx->base.header_size;
1945 header_size = ctx->base.header_size + 4;
1947 /* Get header size in number of descriptors. */
1948 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1949 page = payload >> PAGE_SHIFT;
1950 offset = payload & ~PAGE_MASK;
1951 payload_per_buffer = p->payload_length / packet_count;
1953 for (i = 0; i < packet_count; i++) {
1954 /* d points to the header descriptor */
1955 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
1956 d = context_get_descriptors(&ctx->context,
1957 z + header_z, &d_bus);
1958 if (d == NULL)
1959 return -ENOMEM;
1961 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
1962 DESCRIPTOR_INPUT_MORE);
1963 if (p->skip && i == 0)
1964 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
1965 d->req_count = cpu_to_le16(header_size);
1966 d->res_count = d->req_count;
1967 d->transfer_status = 0;
1968 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
1970 rest = payload_per_buffer;
1971 for (j = 1; j < z; j++) {
1972 pd = d + j;
1973 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
1974 DESCRIPTOR_INPUT_MORE);
1976 if (offset + rest < PAGE_SIZE)
1977 length = rest;
1978 else
1979 length = PAGE_SIZE - offset;
1980 pd->req_count = cpu_to_le16(length);
1981 pd->res_count = pd->req_count;
1982 pd->transfer_status = 0;
1984 page_bus = page_private(buffer->pages[page]);
1985 pd->data_address = cpu_to_le32(page_bus + offset);
1987 offset = (offset + length) & ~PAGE_MASK;
1988 rest -= length;
1989 if (offset == 0)
1990 page++;
1992 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
1993 DESCRIPTOR_INPUT_LAST |
1994 DESCRIPTOR_BRANCH_ALWAYS);
1995 if (p->interrupt && i == packet_count - 1)
1996 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1998 context_append(&ctx->context, d, z, header_z);
2001 return 0;
2004 static int
2005 ohci_queue_iso(struct fw_iso_context *base,
2006 struct fw_iso_packet *packet,
2007 struct fw_iso_buffer *buffer,
2008 unsigned long payload)
2010 struct iso_context *ctx = container_of(base, struct iso_context, base);
2011 unsigned long flags;
2012 int retval;
2014 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2015 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2016 retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
2017 else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
2018 retval = ohci_queue_iso_receive_dualbuffer(base, packet,
2019 buffer, payload);
2020 else
2021 retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2022 buffer,
2023 payload);
2024 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2026 return retval;
2029 static const struct fw_card_driver ohci_driver = {
2030 .name = ohci_driver_name,
2031 .enable = ohci_enable,
2032 .update_phy_reg = ohci_update_phy_reg,
2033 .set_config_rom = ohci_set_config_rom,
2034 .send_request = ohci_send_request,
2035 .send_response = ohci_send_response,
2036 .cancel_packet = ohci_cancel_packet,
2037 .enable_phys_dma = ohci_enable_phys_dma,
2038 .get_bus_time = ohci_get_bus_time,
2040 .allocate_iso_context = ohci_allocate_iso_context,
2041 .free_iso_context = ohci_free_iso_context,
2042 .queue_iso = ohci_queue_iso,
2043 .start_iso = ohci_start_iso,
2044 .stop_iso = ohci_stop_iso,
2047 static int __devinit
2048 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
2050 struct fw_ohci *ohci;
2051 u32 bus_options, max_receive, link_speed;
2052 u64 guid;
2053 int err;
2054 size_t size;
2056 #ifdef CONFIG_PPC_PMAC
2057 /* Necessary on some machines if fw-ohci was loaded/ unloaded before */
2058 if (machine_is(powermac)) {
2059 struct device_node *ofn = pci_device_to_OF_node(dev);
2061 if (ofn) {
2062 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2063 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2066 #endif /* CONFIG_PPC_PMAC */
2068 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2069 if (ohci == NULL) {
2070 fw_error("Could not malloc fw_ohci data.\n");
2071 return -ENOMEM;
2074 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2076 err = pci_enable_device(dev);
2077 if (err) {
2078 fw_error("Failed to enable OHCI hardware.\n");
2079 goto fail_put_card;
2082 pci_set_master(dev);
2083 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2084 pci_set_drvdata(dev, ohci);
2086 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2087 ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2088 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2089 #endif
2090 spin_lock_init(&ohci->lock);
2092 tasklet_init(&ohci->bus_reset_tasklet,
2093 bus_reset_tasklet, (unsigned long)ohci);
2095 err = pci_request_region(dev, 0, ohci_driver_name);
2096 if (err) {
2097 fw_error("MMIO resource unavailable\n");
2098 goto fail_disable;
2101 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2102 if (ohci->registers == NULL) {
2103 fw_error("Failed to remap registers\n");
2104 err = -ENXIO;
2105 goto fail_iomem;
2108 ar_context_init(&ohci->ar_request_ctx, ohci,
2109 OHCI1394_AsReqRcvContextControlSet);
2111 ar_context_init(&ohci->ar_response_ctx, ohci,
2112 OHCI1394_AsRspRcvContextControlSet);
2114 context_init(&ohci->at_request_ctx, ohci,
2115 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2117 context_init(&ohci->at_response_ctx, ohci,
2118 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2120 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2121 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2122 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2123 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2124 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2126 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2127 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2128 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2129 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2130 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2132 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2133 fw_error("Out of memory for it/ir contexts.\n");
2134 err = -ENOMEM;
2135 goto fail_registers;
2138 /* self-id dma buffer allocation */
2139 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2140 SELF_ID_BUF_SIZE,
2141 &ohci->self_id_bus,
2142 GFP_KERNEL);
2143 if (ohci->self_id_cpu == NULL) {
2144 fw_error("Out of memory for self ID buffer.\n");
2145 err = -ENOMEM;
2146 goto fail_registers;
2149 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2150 max_receive = (bus_options >> 12) & 0xf;
2151 link_speed = bus_options & 0x7;
2152 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2153 reg_read(ohci, OHCI1394_GUIDLo);
2155 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2156 if (err < 0)
2157 goto fail_self_id;
2159 ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2160 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2161 dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2162 return 0;
2164 fail_self_id:
2165 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2166 ohci->self_id_cpu, ohci->self_id_bus);
2167 fail_registers:
2168 kfree(ohci->it_context_list);
2169 kfree(ohci->ir_context_list);
2170 pci_iounmap(dev, ohci->registers);
2171 fail_iomem:
2172 pci_release_region(dev, 0);
2173 fail_disable:
2174 pci_disable_device(dev);
2175 fail_put_card:
2176 fw_card_put(&ohci->card);
2178 return err;
2181 static void pci_remove(struct pci_dev *dev)
2183 struct fw_ohci *ohci;
2185 ohci = pci_get_drvdata(dev);
2186 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2187 flush_writes(ohci);
2188 fw_core_remove_card(&ohci->card);
2191 * FIXME: Fail all pending packets here, now that the upper
2192 * layers can't queue any more.
2195 software_reset(ohci);
2196 free_irq(dev->irq, ohci);
2197 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2198 ohci->self_id_cpu, ohci->self_id_bus);
2199 kfree(ohci->it_context_list);
2200 kfree(ohci->ir_context_list);
2201 pci_iounmap(dev, ohci->registers);
2202 pci_release_region(dev, 0);
2203 pci_disable_device(dev);
2204 fw_card_put(&ohci->card);
2206 #ifdef CONFIG_PPC_PMAC
2207 /* On UniNorth, power down the cable and turn off the chip clock
2208 * to save power on laptops */
2209 if (machine_is(powermac)) {
2210 struct device_node *ofn = pci_device_to_OF_node(dev);
2212 if (ofn) {
2213 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2214 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2217 #endif /* CONFIG_PPC_PMAC */
2219 fw_notify("Removed fw-ohci device.\n");
2222 #ifdef CONFIG_PM
2223 static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
2225 struct fw_ohci *ohci = pci_get_drvdata(pdev);
2226 int err;
2228 software_reset(ohci);
2229 free_irq(pdev->irq, ohci);
2230 err = pci_save_state(pdev);
2231 if (err) {
2232 fw_error("pci_save_state failed\n");
2233 return err;
2235 err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
2236 if (err)
2237 fw_error("pci_set_power_state failed with %d\n", err);
2239 /* PowerMac suspend code comes last */
2240 #ifdef CONFIG_PPC_PMAC
2241 if (machine_is(powermac)) {
2242 struct device_node *ofn = pci_device_to_OF_node(pdev);
2244 if (ofn)
2245 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2247 #endif /* CONFIG_PPC_PMAC */
2249 return 0;
2252 static int pci_resume(struct pci_dev *pdev)
2254 struct fw_ohci *ohci = pci_get_drvdata(pdev);
2255 int err;
2257 /* PowerMac resume code comes first */
2258 #ifdef CONFIG_PPC_PMAC
2259 if (machine_is(powermac)) {
2260 struct device_node *ofn = pci_device_to_OF_node(pdev);
2262 if (ofn)
2263 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2265 #endif /* CONFIG_PPC_PMAC */
2267 pci_set_power_state(pdev, PCI_D0);
2268 pci_restore_state(pdev);
2269 err = pci_enable_device(pdev);
2270 if (err) {
2271 fw_error("pci_enable_device failed\n");
2272 return err;
2275 return ohci_enable(&ohci->card, NULL, 0);
2277 #endif
2279 static struct pci_device_id pci_table[] = {
2280 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2284 MODULE_DEVICE_TABLE(pci, pci_table);
2286 static struct pci_driver fw_ohci_pci_driver = {
2287 .name = ohci_driver_name,
2288 .id_table = pci_table,
2289 .probe = pci_probe,
2290 .remove = pci_remove,
2291 #ifdef CONFIG_PM
2292 .resume = pci_resume,
2293 .suspend = pci_suspend,
2294 #endif
2297 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2298 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2299 MODULE_LICENSE("GPL");
2301 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2302 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2303 MODULE_ALIAS("ohci1394");
2304 #endif
2306 static int __init fw_ohci_init(void)
2308 return pci_register_driver(&fw_ohci_pci_driver);
2311 static void __exit fw_ohci_cleanup(void)
2313 pci_unregister_driver(&fw_ohci_pci_driver);
2316 module_init(fw_ohci_init);
2317 module_exit(fw_ohci_cleanup);