Merge git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-for-linus
[wrt350n-kernel.git] / drivers / net / igb / e1000_82575.c
blobcda3ec87909037dbf08839bc4426237ba1731e95
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 /* e1000_82575
29 * e1000_82576
32 #include <linux/types.h>
33 #include <linux/slab.h>
35 #include "e1000_mac.h"
36 #include "e1000_82575.h"
38 static s32 igb_get_invariants_82575(struct e1000_hw *);
39 static s32 igb_acquire_phy_82575(struct e1000_hw *);
40 static void igb_release_phy_82575(struct e1000_hw *);
41 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
42 static void igb_release_nvm_82575(struct e1000_hw *);
43 static s32 igb_check_for_link_82575(struct e1000_hw *);
44 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
45 static s32 igb_init_hw_82575(struct e1000_hw *);
46 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
48 static void igb_rar_set_82575(struct e1000_hw *, u8 *, u32);
49 static s32 igb_reset_hw_82575(struct e1000_hw *);
50 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
51 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
52 static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *);
53 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
54 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
55 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
56 static s32 igb_configure_pcs_link_82575(struct e1000_hw *);
57 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
58 u16 *);
59 static s32 igb_get_phy_id_82575(struct e1000_hw *);
60 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
61 static bool igb_sgmii_active_82575(struct e1000_hw *);
62 static s32 igb_reset_init_script_82575(struct e1000_hw *);
63 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
66 struct e1000_dev_spec_82575 {
67 bool sgmii_active;
70 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
72 struct e1000_phy_info *phy = &hw->phy;
73 struct e1000_nvm_info *nvm = &hw->nvm;
74 struct e1000_mac_info *mac = &hw->mac;
75 struct e1000_dev_spec_82575 *dev_spec;
76 u32 eecd;
77 s32 ret_val;
78 u16 size;
79 u32 ctrl_ext = 0;
81 switch (hw->device_id) {
82 case E1000_DEV_ID_82575EB_COPPER:
83 case E1000_DEV_ID_82575EB_FIBER_SERDES:
84 case E1000_DEV_ID_82575GB_QUAD_COPPER:
85 mac->type = e1000_82575;
86 break;
87 default:
88 return -E1000_ERR_MAC_INIT;
89 break;
92 /* MAC initialization */
93 hw->dev_spec_size = sizeof(struct e1000_dev_spec_82575);
95 /* Device-specific structure allocation */
96 hw->dev_spec = kzalloc(hw->dev_spec_size, GFP_KERNEL);
98 if (!hw->dev_spec)
99 return -ENOMEM;
101 dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec;
103 /* Set media type */
105 * The 82575 uses bits 22:23 for link mode. The mode can be changed
106 * based on the EEPROM. We cannot rely upon device ID. There
107 * is no distinguishable difference between fiber and internal
108 * SerDes mode on the 82575. There can be an external PHY attached
109 * on the SGMII interface. For this, we'll set sgmii_active to true.
111 phy->media_type = e1000_media_type_copper;
112 dev_spec->sgmii_active = false;
114 ctrl_ext = rd32(E1000_CTRL_EXT);
115 if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) ==
116 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) {
117 hw->phy.media_type = e1000_media_type_internal_serdes;
118 ctrl_ext |= E1000_CTRL_I2C_ENA;
119 } else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) {
120 dev_spec->sgmii_active = true;
121 ctrl_ext |= E1000_CTRL_I2C_ENA;
122 } else {
123 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
125 wr32(E1000_CTRL_EXT, ctrl_ext);
127 /* Set mta register count */
128 mac->mta_reg_count = 128;
129 /* Set rar entry count */
130 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
131 /* Set if part includes ASF firmware */
132 mac->asf_firmware_present = true;
133 /* Set if manageability features are enabled. */
134 mac->arc_subsystem_valid =
135 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
136 ? true : false;
138 /* physical interface link setup */
139 mac->ops.setup_physical_interface =
140 (hw->phy.media_type == e1000_media_type_copper)
141 ? igb_setup_copper_link_82575
142 : igb_setup_fiber_serdes_link_82575;
144 /* NVM initialization */
145 eecd = rd32(E1000_EECD);
147 nvm->opcode_bits = 8;
148 nvm->delay_usec = 1;
149 switch (nvm->override) {
150 case e1000_nvm_override_spi_large:
151 nvm->page_size = 32;
152 nvm->address_bits = 16;
153 break;
154 case e1000_nvm_override_spi_small:
155 nvm->page_size = 8;
156 nvm->address_bits = 8;
157 break;
158 default:
159 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
160 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
161 break;
164 nvm->type = e1000_nvm_eeprom_spi;
166 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
167 E1000_EECD_SIZE_EX_SHIFT);
170 * Added to a constant, "size" becomes the left-shift value
171 * for setting word_size.
173 size += NVM_WORD_SIZE_BASE_SHIFT;
174 nvm->word_size = 1 << size;
176 /* setup PHY parameters */
177 if (phy->media_type != e1000_media_type_copper) {
178 phy->type = e1000_phy_none;
179 return 0;
182 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
183 phy->reset_delay_us = 100;
185 /* PHY function pointers */
186 if (igb_sgmii_active_82575(hw)) {
187 phy->ops.reset_phy = igb_phy_hw_reset_sgmii_82575;
188 phy->ops.read_phy_reg = igb_read_phy_reg_sgmii_82575;
189 phy->ops.write_phy_reg = igb_write_phy_reg_sgmii_82575;
190 } else {
191 phy->ops.reset_phy = igb_phy_hw_reset;
192 phy->ops.read_phy_reg = igb_read_phy_reg_igp;
193 phy->ops.write_phy_reg = igb_write_phy_reg_igp;
196 /* Set phy->phy_addr and phy->id. */
197 ret_val = igb_get_phy_id_82575(hw);
198 if (ret_val)
199 return ret_val;
201 /* Verify phy id and set remaining function pointers */
202 switch (phy->id) {
203 case M88E1111_I_PHY_ID:
204 phy->type = e1000_phy_m88;
205 phy->ops.get_phy_info = igb_get_phy_info_m88;
206 phy->ops.get_cable_length = igb_get_cable_length_m88;
207 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
208 break;
209 case IGP03E1000_E_PHY_ID:
210 phy->type = e1000_phy_igp_3;
211 phy->ops.get_phy_info = igb_get_phy_info_igp;
212 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
213 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
214 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
215 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
216 break;
217 default:
218 return -E1000_ERR_PHY;
221 return 0;
225 * e1000_acquire_phy_82575 - Acquire rights to access PHY
226 * @hw: pointer to the HW structure
228 * Acquire access rights to the correct PHY. This is a
229 * function pointer entry point called by the api module.
231 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
233 u16 mask;
235 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
237 return igb_acquire_swfw_sync_82575(hw, mask);
241 * e1000_release_phy_82575 - Release rights to access PHY
242 * @hw: pointer to the HW structure
244 * A wrapper to release access rights to the correct PHY. This is a
245 * function pointer entry point called by the api module.
247 static void igb_release_phy_82575(struct e1000_hw *hw)
249 u16 mask;
251 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
252 igb_release_swfw_sync_82575(hw, mask);
256 * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
257 * @hw: pointer to the HW structure
258 * @offset: register offset to be read
259 * @data: pointer to the read data
261 * Reads the PHY register at offset using the serial gigabit media independent
262 * interface and stores the retrieved information in data.
264 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
265 u16 *data)
267 struct e1000_phy_info *phy = &hw->phy;
268 u32 i, i2ccmd = 0;
270 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
271 hw_dbg(hw, "PHY Address %u is out of range\n", offset);
272 return -E1000_ERR_PARAM;
276 * Set up Op-code, Phy Address, and register address in the I2CCMD
277 * register. The MAC will take care of interfacing with the
278 * PHY to retrieve the desired data.
280 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
281 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
282 (E1000_I2CCMD_OPCODE_READ));
284 wr32(E1000_I2CCMD, i2ccmd);
286 /* Poll the ready bit to see if the I2C read completed */
287 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
288 udelay(50);
289 i2ccmd = rd32(E1000_I2CCMD);
290 if (i2ccmd & E1000_I2CCMD_READY)
291 break;
293 if (!(i2ccmd & E1000_I2CCMD_READY)) {
294 hw_dbg(hw, "I2CCMD Read did not complete\n");
295 return -E1000_ERR_PHY;
297 if (i2ccmd & E1000_I2CCMD_ERROR) {
298 hw_dbg(hw, "I2CCMD Error bit set\n");
299 return -E1000_ERR_PHY;
302 /* Need to byte-swap the 16-bit value. */
303 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
305 return 0;
309 * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
310 * @hw: pointer to the HW structure
311 * @offset: register offset to write to
312 * @data: data to write at register offset
314 * Writes the data to PHY register at the offset using the serial gigabit
315 * media independent interface.
317 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
318 u16 data)
320 struct e1000_phy_info *phy = &hw->phy;
321 u32 i, i2ccmd = 0;
322 u16 phy_data_swapped;
324 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
325 hw_dbg(hw, "PHY Address %d is out of range\n", offset);
326 return -E1000_ERR_PARAM;
329 /* Swap the data bytes for the I2C interface */
330 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
333 * Set up Op-code, Phy Address, and register address in the I2CCMD
334 * register. The MAC will take care of interfacing with the
335 * PHY to retrieve the desired data.
337 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
338 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
339 E1000_I2CCMD_OPCODE_WRITE |
340 phy_data_swapped);
342 wr32(E1000_I2CCMD, i2ccmd);
344 /* Poll the ready bit to see if the I2C read completed */
345 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
346 udelay(50);
347 i2ccmd = rd32(E1000_I2CCMD);
348 if (i2ccmd & E1000_I2CCMD_READY)
349 break;
351 if (!(i2ccmd & E1000_I2CCMD_READY)) {
352 hw_dbg(hw, "I2CCMD Write did not complete\n");
353 return -E1000_ERR_PHY;
355 if (i2ccmd & E1000_I2CCMD_ERROR) {
356 hw_dbg(hw, "I2CCMD Error bit set\n");
357 return -E1000_ERR_PHY;
360 return 0;
364 * e1000_get_phy_id_82575 - Retreive PHY addr and id
365 * @hw: pointer to the HW structure
367 * Retreives the PHY address and ID for both PHY's which do and do not use
368 * sgmi interface.
370 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
372 struct e1000_phy_info *phy = &hw->phy;
373 s32 ret_val = 0;
374 u16 phy_id;
377 * For SGMII PHYs, we try the list of possible addresses until
378 * we find one that works. For non-SGMII PHYs
379 * (e.g. integrated copper PHYs), an address of 1 should
380 * work. The result of this function should mean phy->phy_addr
381 * and phy->id are set correctly.
383 if (!(igb_sgmii_active_82575(hw))) {
384 phy->addr = 1;
385 ret_val = igb_get_phy_id(hw);
386 goto out;
390 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
391 * Therefore, we need to test 1-7
393 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
394 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
395 if (ret_val == 0) {
396 hw_dbg(hw, "Vendor ID 0x%08X read at address %u\n",
397 phy_id,
398 phy->addr);
400 * At the time of this writing, The M88 part is
401 * the only supported SGMII PHY product.
403 if (phy_id == M88_VENDOR)
404 break;
405 } else {
406 hw_dbg(hw, "PHY address %u was unreadable\n",
407 phy->addr);
411 /* A valid PHY type couldn't be found. */
412 if (phy->addr == 8) {
413 phy->addr = 0;
414 ret_val = -E1000_ERR_PHY;
415 goto out;
418 ret_val = igb_get_phy_id(hw);
420 out:
421 return ret_val;
425 * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
426 * @hw: pointer to the HW structure
428 * Resets the PHY using the serial gigabit media independent interface.
430 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
432 s32 ret_val;
435 * This isn't a true "hard" reset, but is the only reset
436 * available to us at this time.
439 hw_dbg(hw, "Soft resetting SGMII attached PHY...\n");
442 * SFP documentation requires the following to configure the SPF module
443 * to work on SGMII. No further documentation is given.
445 ret_val = hw->phy.ops.write_phy_reg(hw, 0x1B, 0x8084);
446 if (ret_val)
447 goto out;
449 ret_val = igb_phy_sw_reset(hw);
451 out:
452 return ret_val;
456 * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
457 * @hw: pointer to the HW structure
458 * @active: true to enable LPLU, false to disable
460 * Sets the LPLU D0 state according to the active flag. When
461 * activating LPLU this function also disables smart speed
462 * and vice versa. LPLU will not be activated unless the
463 * device autonegotiation advertisement meets standards of
464 * either 10 or 10/100 or 10/100/1000 at all duplexes.
465 * This is a function pointer entry point only called by
466 * PHY setup routines.
468 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
470 struct e1000_phy_info *phy = &hw->phy;
471 s32 ret_val;
472 u16 data;
474 ret_val = hw->phy.ops.read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
475 &data);
476 if (ret_val)
477 goto out;
479 if (active) {
480 data |= IGP02E1000_PM_D0_LPLU;
481 ret_val = hw->phy.ops.write_phy_reg(hw,
482 IGP02E1000_PHY_POWER_MGMT,
483 data);
484 if (ret_val)
485 goto out;
487 /* When LPLU is enabled, we should disable SmartSpeed */
488 ret_val = hw->phy.ops.read_phy_reg(hw,
489 IGP01E1000_PHY_PORT_CONFIG,
490 &data);
491 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
492 ret_val = hw->phy.ops.write_phy_reg(hw,
493 IGP01E1000_PHY_PORT_CONFIG,
494 data);
495 if (ret_val)
496 goto out;
497 } else {
498 data &= ~IGP02E1000_PM_D0_LPLU;
499 ret_val = hw->phy.ops.write_phy_reg(hw,
500 IGP02E1000_PHY_POWER_MGMT,
501 data);
503 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
504 * during Dx states where the power conservation is most
505 * important. During driver activity we should enable
506 * SmartSpeed, so performance is maintained.
508 if (phy->smart_speed == e1000_smart_speed_on) {
509 ret_val = hw->phy.ops.read_phy_reg(hw,
510 IGP01E1000_PHY_PORT_CONFIG,
511 &data);
512 if (ret_val)
513 goto out;
515 data |= IGP01E1000_PSCFR_SMART_SPEED;
516 ret_val = hw->phy.ops.write_phy_reg(hw,
517 IGP01E1000_PHY_PORT_CONFIG,
518 data);
519 if (ret_val)
520 goto out;
521 } else if (phy->smart_speed == e1000_smart_speed_off) {
522 ret_val = hw->phy.ops.read_phy_reg(hw,
523 IGP01E1000_PHY_PORT_CONFIG,
524 &data);
525 if (ret_val)
526 goto out;
528 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
529 ret_val = hw->phy.ops.write_phy_reg(hw,
530 IGP01E1000_PHY_PORT_CONFIG,
531 data);
532 if (ret_val)
533 goto out;
537 out:
538 return ret_val;
542 * e1000_acquire_nvm_82575 - Request for access to EEPROM
543 * @hw: pointer to the HW structure
545 * Acquire the necessary semaphores for exclussive access to the EEPROM.
546 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
547 * Return successful if access grant bit set, else clear the request for
548 * EEPROM access and return -E1000_ERR_NVM (-1).
550 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
552 s32 ret_val;
554 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
555 if (ret_val)
556 goto out;
558 ret_val = igb_acquire_nvm(hw);
560 if (ret_val)
561 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
563 out:
564 return ret_val;
568 * e1000_release_nvm_82575 - Release exclusive access to EEPROM
569 * @hw: pointer to the HW structure
571 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
572 * then release the semaphores acquired.
574 static void igb_release_nvm_82575(struct e1000_hw *hw)
576 igb_release_nvm(hw);
577 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
581 * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
582 * @hw: pointer to the HW structure
583 * @mask: specifies which semaphore to acquire
585 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
586 * will also specify which port we're acquiring the lock for.
588 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
590 u32 swfw_sync;
591 u32 swmask = mask;
592 u32 fwmask = mask << 16;
593 s32 ret_val = 0;
594 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
596 while (i < timeout) {
597 if (igb_get_hw_semaphore(hw)) {
598 ret_val = -E1000_ERR_SWFW_SYNC;
599 goto out;
602 swfw_sync = rd32(E1000_SW_FW_SYNC);
603 if (!(swfw_sync & (fwmask | swmask)))
604 break;
607 * Firmware currently using resource (fwmask)
608 * or other software thread using resource (swmask)
610 igb_put_hw_semaphore(hw);
611 mdelay(5);
612 i++;
615 if (i == timeout) {
616 hw_dbg(hw, "Can't access resource, SW_FW_SYNC timeout.\n");
617 ret_val = -E1000_ERR_SWFW_SYNC;
618 goto out;
621 swfw_sync |= swmask;
622 wr32(E1000_SW_FW_SYNC, swfw_sync);
624 igb_put_hw_semaphore(hw);
626 out:
627 return ret_val;
631 * e1000_release_swfw_sync_82575 - Release SW/FW semaphore
632 * @hw: pointer to the HW structure
633 * @mask: specifies which semaphore to acquire
635 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
636 * will also specify which port we're releasing the lock for.
638 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
640 u32 swfw_sync;
642 while (igb_get_hw_semaphore(hw) != 0);
643 /* Empty */
645 swfw_sync = rd32(E1000_SW_FW_SYNC);
646 swfw_sync &= ~mask;
647 wr32(E1000_SW_FW_SYNC, swfw_sync);
649 igb_put_hw_semaphore(hw);
653 * e1000_get_cfg_done_82575 - Read config done bit
654 * @hw: pointer to the HW structure
656 * Read the management control register for the config done bit for
657 * completion status. NOTE: silicon which is EEPROM-less will fail trying
658 * to read the config done bit, so an error is *ONLY* logged and returns
659 * 0. If we were to return with error, EEPROM-less silicon
660 * would not be able to be reset or change link.
662 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
664 s32 timeout = PHY_CFG_TIMEOUT;
665 s32 ret_val = 0;
666 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
668 if (hw->bus.func == 1)
669 mask = E1000_NVM_CFG_DONE_PORT_1;
671 while (timeout) {
672 if (rd32(E1000_EEMNGCTL) & mask)
673 break;
674 msleep(1);
675 timeout--;
677 if (!timeout)
678 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
680 /* If EEPROM is not marked present, init the PHY manually */
681 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
682 (hw->phy.type == e1000_phy_igp_3))
683 igb_phy_init_script_igp3(hw);
685 return ret_val;
689 * e1000_check_for_link_82575 - Check for link
690 * @hw: pointer to the HW structure
692 * If sgmii is enabled, then use the pcs register to determine link, otherwise
693 * use the generic interface for determining link.
695 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
697 s32 ret_val;
698 u16 speed, duplex;
700 /* SGMII link check is done through the PCS register. */
701 if ((hw->phy.media_type != e1000_media_type_copper) ||
702 (igb_sgmii_active_82575(hw)))
703 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
704 &duplex);
705 else
706 ret_val = igb_check_for_copper_link(hw);
708 return ret_val;
712 * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
713 * @hw: pointer to the HW structure
714 * @speed: stores the current speed
715 * @duplex: stores the current duplex
717 * Using the physical coding sub-layer (PCS), retreive the current speed and
718 * duplex, then store the values in the pointers provided.
720 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
721 u16 *duplex)
723 struct e1000_mac_info *mac = &hw->mac;
724 u32 pcs;
726 /* Set up defaults for the return values of this function */
727 mac->serdes_has_link = false;
728 *speed = 0;
729 *duplex = 0;
732 * Read the PCS Status register for link state. For non-copper mode,
733 * the status register is not accurate. The PCS status register is
734 * used instead.
736 pcs = rd32(E1000_PCS_LSTAT);
739 * The link up bit determines when link is up on autoneg. The sync ok
740 * gets set once both sides sync up and agree upon link. Stable link
741 * can be determined by checking for both link up and link sync ok
743 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
744 mac->serdes_has_link = true;
746 /* Detect and store PCS speed */
747 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
748 *speed = SPEED_1000;
749 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
750 *speed = SPEED_100;
751 } else {
752 *speed = SPEED_10;
755 /* Detect and store PCS duplex */
756 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
757 *duplex = FULL_DUPLEX;
758 } else {
759 *duplex = HALF_DUPLEX;
763 return 0;
767 * e1000_rar_set_82575 - Set receive address register
768 * @hw: pointer to the HW structure
769 * @addr: pointer to the receive address
770 * @index: receive address array register
772 * Sets the receive address array register at index to the address passed
773 * in by addr.
775 static void igb_rar_set_82575(struct e1000_hw *hw, u8 *addr, u32 index)
777 if (index < E1000_RAR_ENTRIES_82575)
778 igb_rar_set(hw, addr, index);
780 return;
784 * e1000_reset_hw_82575 - Reset hardware
785 * @hw: pointer to the HW structure
787 * This resets the hardware into a known state. This is a
788 * function pointer entry point called by the api module.
790 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
792 u32 ctrl, icr;
793 s32 ret_val;
796 * Prevent the PCI-E bus from sticking if there is no TLP connection
797 * on the last TLP read/write transaction when MAC is reset.
799 ret_val = igb_disable_pcie_master(hw);
800 if (ret_val)
801 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
803 hw_dbg(hw, "Masking off all interrupts\n");
804 wr32(E1000_IMC, 0xffffffff);
806 wr32(E1000_RCTL, 0);
807 wr32(E1000_TCTL, E1000_TCTL_PSP);
808 wrfl();
810 msleep(10);
812 ctrl = rd32(E1000_CTRL);
814 hw_dbg(hw, "Issuing a global reset to MAC\n");
815 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
817 ret_val = igb_get_auto_rd_done(hw);
818 if (ret_val) {
820 * When auto config read does not complete, do not
821 * return with an error. This can happen in situations
822 * where there is no eeprom and prevents getting link.
824 hw_dbg(hw, "Auto Read Done did not complete\n");
827 /* If EEPROM is not present, run manual init scripts */
828 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
829 igb_reset_init_script_82575(hw);
831 /* Clear any pending interrupt events. */
832 wr32(E1000_IMC, 0xffffffff);
833 icr = rd32(E1000_ICR);
835 igb_check_alt_mac_addr(hw);
837 return ret_val;
841 * e1000_init_hw_82575 - Initialize hardware
842 * @hw: pointer to the HW structure
844 * This inits the hardware readying it for operation.
846 static s32 igb_init_hw_82575(struct e1000_hw *hw)
848 struct e1000_mac_info *mac = &hw->mac;
849 s32 ret_val;
850 u16 i, rar_count = mac->rar_entry_count;
852 /* Initialize identification LED */
853 ret_val = igb_id_led_init(hw);
854 if (ret_val) {
855 hw_dbg(hw, "Error initializing identification LED\n");
856 /* This is not fatal and we should not stop init due to this */
859 /* Disabling VLAN filtering */
860 hw_dbg(hw, "Initializing the IEEE VLAN\n");
861 igb_clear_vfta(hw);
863 /* Setup the receive address */
864 igb_init_rx_addrs(hw, rar_count);
865 /* Zero out the Multicast HASH table */
866 hw_dbg(hw, "Zeroing the MTA\n");
867 for (i = 0; i < mac->mta_reg_count; i++)
868 array_wr32(E1000_MTA, i, 0);
870 /* Setup link and flow control */
871 ret_val = igb_setup_link(hw);
874 * Clear all of the statistics registers (clear on read). It is
875 * important that we do this after we have tried to establish link
876 * because the symbol error count will increment wildly if there
877 * is no link.
879 igb_clear_hw_cntrs_82575(hw);
881 return ret_val;
885 * e1000_setup_copper_link_82575 - Configure copper link settings
886 * @hw: pointer to the HW structure
888 * Configures the link for auto-neg or forced speed and duplex. Then we check
889 * for link, once link is established calls to configure collision distance
890 * and flow control are called.
892 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
894 u32 ctrl, led_ctrl;
895 s32 ret_val;
896 bool link;
898 ctrl = rd32(E1000_CTRL);
899 ctrl |= E1000_CTRL_SLU;
900 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
901 wr32(E1000_CTRL, ctrl);
903 switch (hw->phy.type) {
904 case e1000_phy_m88:
905 ret_val = igb_copper_link_setup_m88(hw);
906 break;
907 case e1000_phy_igp_3:
908 ret_val = igb_copper_link_setup_igp(hw);
909 /* Setup activity LED */
910 led_ctrl = rd32(E1000_LEDCTL);
911 led_ctrl &= IGP_ACTIVITY_LED_MASK;
912 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
913 wr32(E1000_LEDCTL, led_ctrl);
914 break;
915 default:
916 ret_val = -E1000_ERR_PHY;
917 break;
920 if (ret_val)
921 goto out;
923 if (hw->mac.autoneg) {
925 * Setup autoneg and flow control advertisement
926 * and perform autonegotiation.
928 ret_val = igb_copper_link_autoneg(hw);
929 if (ret_val)
930 goto out;
931 } else {
933 * PHY will be set to 10H, 10F, 100H or 100F
934 * depending on user settings.
936 hw_dbg(hw, "Forcing Speed and Duplex\n");
937 ret_val = igb_phy_force_speed_duplex(hw);
938 if (ret_val) {
939 hw_dbg(hw, "Error Forcing Speed and Duplex\n");
940 goto out;
944 ret_val = igb_configure_pcs_link_82575(hw);
945 if (ret_val)
946 goto out;
949 * Check link status. Wait up to 100 microseconds for link to become
950 * valid.
952 ret_val = igb_phy_has_link(hw,
953 COPPER_LINK_UP_LIMIT,
955 &link);
956 if (ret_val)
957 goto out;
959 if (link) {
960 hw_dbg(hw, "Valid link established!!!\n");
961 /* Config the MAC and PHY after link is up */
962 igb_config_collision_dist(hw);
963 ret_val = igb_config_fc_after_link_up(hw);
964 } else {
965 hw_dbg(hw, "Unable to establish link!!!\n");
968 out:
969 return ret_val;
973 * e1000_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes
974 * @hw: pointer to the HW structure
976 * Configures speed and duplex for fiber and serdes links.
978 static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *hw)
980 u32 reg;
983 * On the 82575, SerDes loopback mode persists until it is
984 * explicitly turned off or a power cycle is performed. A read to
985 * the register does not indicate its status. Therefore, we ensure
986 * loopback mode is disabled during initialization.
988 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
990 /* Force link up, set 1gb, set both sw defined pins */
991 reg = rd32(E1000_CTRL);
992 reg |= E1000_CTRL_SLU |
993 E1000_CTRL_SPD_1000 |
994 E1000_CTRL_FRCSPD |
995 E1000_CTRL_SWDPIN0 |
996 E1000_CTRL_SWDPIN1;
997 wr32(E1000_CTRL, reg);
999 /* Set switch control to serdes energy detect */
1000 reg = rd32(E1000_CONNSW);
1001 reg |= E1000_CONNSW_ENRGSRC;
1002 wr32(E1000_CONNSW, reg);
1005 * New SerDes mode allows for forcing speed or autonegotiating speed
1006 * at 1gb. Autoneg should be default set by most drivers. This is the
1007 * mode that will be compatible with older link partners and switches.
1008 * However, both are supported by the hardware and some drivers/tools.
1010 reg = rd32(E1000_PCS_LCTL);
1012 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1013 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1015 if (hw->mac.autoneg) {
1016 /* Set PCS register for autoneg */
1017 reg |= E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1018 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1019 E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1020 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1021 hw_dbg(hw, "Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
1022 } else {
1023 /* Set PCS register for forced speed */
1024 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1025 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1026 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1027 E1000_PCS_LCTL_FSD | /* Force Speed */
1028 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1029 hw_dbg(hw, "Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg);
1031 wr32(E1000_PCS_LCTL, reg);
1033 return 0;
1037 * e1000_configure_pcs_link_82575 - Configure PCS link
1038 * @hw: pointer to the HW structure
1040 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1041 * only used on copper connections where the serialized gigabit media
1042 * independent interface (sgmii) is being used. Configures the link
1043 * for auto-negotiation or forces speed/duplex.
1045 static s32 igb_configure_pcs_link_82575(struct e1000_hw *hw)
1047 struct e1000_mac_info *mac = &hw->mac;
1048 u32 reg = 0;
1050 if (hw->phy.media_type != e1000_media_type_copper ||
1051 !(igb_sgmii_active_82575(hw)))
1052 goto out;
1054 /* For SGMII, we need to issue a PCS autoneg restart */
1055 reg = rd32(E1000_PCS_LCTL);
1057 /* AN time out should be disabled for SGMII mode */
1058 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1060 if (mac->autoneg) {
1061 /* Make sure forced speed and force link are not set */
1062 reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1065 * The PHY should be setup prior to calling this function.
1066 * All we need to do is restart autoneg and enable autoneg.
1068 reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE;
1069 } else {
1070 /* Set PCS regiseter for forced speed */
1072 /* Turn off bits for full duplex, speed, and autoneg */
1073 reg &= ~(E1000_PCS_LCTL_FSV_1000 |
1074 E1000_PCS_LCTL_FSV_100 |
1075 E1000_PCS_LCTL_FDV_FULL |
1076 E1000_PCS_LCTL_AN_ENABLE);
1078 /* Check for duplex first */
1079 if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX)
1080 reg |= E1000_PCS_LCTL_FDV_FULL;
1082 /* Now set speed */
1083 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED)
1084 reg |= E1000_PCS_LCTL_FSV_100;
1086 /* Force speed and force link */
1087 reg |= E1000_PCS_LCTL_FSD |
1088 E1000_PCS_LCTL_FORCE_LINK |
1089 E1000_PCS_LCTL_FLV_LINK_UP;
1091 hw_dbg(hw,
1092 "Wrote 0x%08X to PCS_LCTL to configure forced link\n",
1093 reg);
1095 wr32(E1000_PCS_LCTL, reg);
1097 out:
1098 return 0;
1102 * e1000_sgmii_active_82575 - Return sgmii state
1103 * @hw: pointer to the HW structure
1105 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1106 * which can be enabled for use in the embedded applications. Simply
1107 * return the current state of the sgmii interface.
1109 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1111 struct e1000_dev_spec_82575 *dev_spec;
1112 bool ret_val;
1114 if (hw->mac.type != e1000_82575) {
1115 ret_val = false;
1116 goto out;
1119 dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec;
1121 ret_val = dev_spec->sgmii_active;
1123 out:
1124 return ret_val;
1128 * e1000_reset_init_script_82575 - Inits HW defaults after reset
1129 * @hw: pointer to the HW structure
1131 * Inits recommended HW defaults after a reset when there is no EEPROM
1132 * detected. This is only for the 82575.
1134 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1136 if (hw->mac.type == e1000_82575) {
1137 hw_dbg(hw, "Running reset init script for 82575\n");
1138 /* SerDes configuration via SERDESCTRL */
1139 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1140 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1141 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1142 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1144 /* CCM configuration via CCMCTL register */
1145 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1146 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1148 /* PCIe lanes configuration */
1149 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1150 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1151 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1152 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1154 /* PCIe PLL Configuration */
1155 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1156 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1157 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1160 return 0;
1164 * e1000_read_mac_addr_82575 - Read device MAC address
1165 * @hw: pointer to the HW structure
1167 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1169 s32 ret_val = 0;
1171 if (igb_check_alt_mac_addr(hw))
1172 ret_val = igb_read_mac_addr(hw);
1174 return ret_val;
1178 * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
1179 * @hw: pointer to the HW structure
1181 * Clears the hardware counters by reading the counter registers.
1183 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1185 u32 temp;
1187 igb_clear_hw_cntrs_base(hw);
1189 temp = rd32(E1000_PRC64);
1190 temp = rd32(E1000_PRC127);
1191 temp = rd32(E1000_PRC255);
1192 temp = rd32(E1000_PRC511);
1193 temp = rd32(E1000_PRC1023);
1194 temp = rd32(E1000_PRC1522);
1195 temp = rd32(E1000_PTC64);
1196 temp = rd32(E1000_PTC127);
1197 temp = rd32(E1000_PTC255);
1198 temp = rd32(E1000_PTC511);
1199 temp = rd32(E1000_PTC1023);
1200 temp = rd32(E1000_PTC1522);
1202 temp = rd32(E1000_ALGNERRC);
1203 temp = rd32(E1000_RXERRC);
1204 temp = rd32(E1000_TNCRS);
1205 temp = rd32(E1000_CEXTERR);
1206 temp = rd32(E1000_TSCTC);
1207 temp = rd32(E1000_TSCTFC);
1209 temp = rd32(E1000_MGTPRC);
1210 temp = rd32(E1000_MGTPDC);
1211 temp = rd32(E1000_MGTPTC);
1213 temp = rd32(E1000_IAC);
1214 temp = rd32(E1000_ICRXOC);
1216 temp = rd32(E1000_ICRXPTC);
1217 temp = rd32(E1000_ICRXATC);
1218 temp = rd32(E1000_ICTXPTC);
1219 temp = rd32(E1000_ICTXATC);
1220 temp = rd32(E1000_ICTXQEC);
1221 temp = rd32(E1000_ICTXQMTC);
1222 temp = rd32(E1000_ICRXDMTC);
1224 temp = rd32(E1000_CBTMPC);
1225 temp = rd32(E1000_HTDPMC);
1226 temp = rd32(E1000_CBRMPC);
1227 temp = rd32(E1000_RPTHC);
1228 temp = rd32(E1000_HGPTC);
1229 temp = rd32(E1000_HTCBDPC);
1230 temp = rd32(E1000_HGORCL);
1231 temp = rd32(E1000_HGORCH);
1232 temp = rd32(E1000_HGOTCL);
1233 temp = rd32(E1000_HGOTCH);
1234 temp = rd32(E1000_LENERRS);
1236 /* This register should not be read in copper configurations */
1237 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1238 temp = rd32(E1000_SCVPC);
1241 static struct e1000_mac_operations e1000_mac_ops_82575 = {
1242 .reset_hw = igb_reset_hw_82575,
1243 .init_hw = igb_init_hw_82575,
1244 .check_for_link = igb_check_for_link_82575,
1245 .rar_set = igb_rar_set_82575,
1246 .read_mac_addr = igb_read_mac_addr_82575,
1247 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
1250 static struct e1000_phy_operations e1000_phy_ops_82575 = {
1251 .acquire_phy = igb_acquire_phy_82575,
1252 .get_cfg_done = igb_get_cfg_done_82575,
1253 .release_phy = igb_release_phy_82575,
1256 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
1257 .acquire_nvm = igb_acquire_nvm_82575,
1258 .read_nvm = igb_read_nvm_eerd,
1259 .release_nvm = igb_release_nvm_82575,
1260 .write_nvm = igb_write_nvm_spi,
1263 const struct e1000_info e1000_82575_info = {
1264 .get_invariants = igb_get_invariants_82575,
1265 .mac_ops = &e1000_mac_ops_82575,
1266 .phy_ops = &e1000_phy_ops_82575,
1267 .nvm_ops = &e1000_nvm_ops_82575,