1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/tcp.h>
35 #include <linux/ipv6.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
48 #define DRV_VERSION "1.0.8-k2"
49 char igb_driver_name
[] = "igb";
50 char igb_driver_version
[] = DRV_VERSION
;
51 static const char igb_driver_string
[] =
52 "Intel(R) Gigabit Ethernet Network Driver";
53 static const char igb_copyright
[] = "Copyright (c) 2007 Intel Corporation.";
56 static const struct e1000_info
*igb_info_tbl
[] = {
57 [board_82575
] = &e1000_82575_info
,
60 static struct pci_device_id igb_pci_tbl
[] = {
61 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_COPPER
), board_82575
},
62 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_FIBER_SERDES
), board_82575
},
63 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575GB_QUAD_COPPER
), board_82575
},
64 /* required last entry */
68 MODULE_DEVICE_TABLE(pci
, igb_pci_tbl
);
70 void igb_reset(struct igb_adapter
*);
71 static int igb_setup_all_tx_resources(struct igb_adapter
*);
72 static int igb_setup_all_rx_resources(struct igb_adapter
*);
73 static void igb_free_all_tx_resources(struct igb_adapter
*);
74 static void igb_free_all_rx_resources(struct igb_adapter
*);
75 static void igb_free_tx_resources(struct igb_adapter
*, struct igb_ring
*);
76 static void igb_free_rx_resources(struct igb_adapter
*, struct igb_ring
*);
77 void igb_update_stats(struct igb_adapter
*);
78 static int igb_probe(struct pci_dev
*, const struct pci_device_id
*);
79 static void __devexit
igb_remove(struct pci_dev
*pdev
);
80 static int igb_sw_init(struct igb_adapter
*);
81 static int igb_open(struct net_device
*);
82 static int igb_close(struct net_device
*);
83 static void igb_configure_tx(struct igb_adapter
*);
84 static void igb_configure_rx(struct igb_adapter
*);
85 static void igb_setup_rctl(struct igb_adapter
*);
86 static void igb_clean_all_tx_rings(struct igb_adapter
*);
87 static void igb_clean_all_rx_rings(struct igb_adapter
*);
88 static void igb_clean_tx_ring(struct igb_adapter
*, struct igb_ring
*);
89 static void igb_clean_rx_ring(struct igb_adapter
*, struct igb_ring
*);
90 static void igb_set_multi(struct net_device
*);
91 static void igb_update_phy_info(unsigned long);
92 static void igb_watchdog(unsigned long);
93 static void igb_watchdog_task(struct work_struct
*);
94 static int igb_xmit_frame_ring_adv(struct sk_buff
*, struct net_device
*,
96 static int igb_xmit_frame_adv(struct sk_buff
*skb
, struct net_device
*);
97 static struct net_device_stats
*igb_get_stats(struct net_device
*);
98 static int igb_change_mtu(struct net_device
*, int);
99 static int igb_set_mac(struct net_device
*, void *);
100 static irqreturn_t
igb_intr(int irq
, void *);
101 static irqreturn_t
igb_intr_msi(int irq
, void *);
102 static irqreturn_t
igb_msix_other(int irq
, void *);
103 static irqreturn_t
igb_msix_rx(int irq
, void *);
104 static irqreturn_t
igb_msix_tx(int irq
, void *);
105 static int igb_clean_rx_ring_msix(struct napi_struct
*, int);
106 static bool igb_clean_tx_irq(struct igb_adapter
*, struct igb_ring
*);
107 static int igb_clean(struct napi_struct
*, int);
108 static bool igb_clean_rx_irq_adv(struct igb_adapter
*,
109 struct igb_ring
*, int *, int);
110 static void igb_alloc_rx_buffers_adv(struct igb_adapter
*,
111 struct igb_ring
*, int);
112 static int igb_ioctl(struct net_device
*, struct ifreq
*, int cmd
);
113 static void igb_tx_timeout(struct net_device
*);
114 static void igb_reset_task(struct work_struct
*);
115 static void igb_vlan_rx_register(struct net_device
*, struct vlan_group
*);
116 static void igb_vlan_rx_add_vid(struct net_device
*, u16
);
117 static void igb_vlan_rx_kill_vid(struct net_device
*, u16
);
118 static void igb_restore_vlan(struct igb_adapter
*);
120 static int igb_suspend(struct pci_dev
*, pm_message_t
);
122 static int igb_resume(struct pci_dev
*);
124 static void igb_shutdown(struct pci_dev
*);
126 #ifdef CONFIG_NET_POLL_CONTROLLER
127 /* for netdump / net console */
128 static void igb_netpoll(struct net_device
*);
131 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*,
132 pci_channel_state_t
);
133 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*);
134 static void igb_io_resume(struct pci_dev
*);
136 static struct pci_error_handlers igb_err_handler
= {
137 .error_detected
= igb_io_error_detected
,
138 .slot_reset
= igb_io_slot_reset
,
139 .resume
= igb_io_resume
,
143 static struct pci_driver igb_driver
= {
144 .name
= igb_driver_name
,
145 .id_table
= igb_pci_tbl
,
147 .remove
= __devexit_p(igb_remove
),
149 /* Power Managment Hooks */
150 .suspend
= igb_suspend
,
151 .resume
= igb_resume
,
153 .shutdown
= igb_shutdown
,
154 .err_handler
= &igb_err_handler
157 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
158 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
159 MODULE_LICENSE("GPL");
160 MODULE_VERSION(DRV_VERSION
);
164 * igb_get_hw_dev_name - return device name string
165 * used by hardware layer to print debugging information
167 char *igb_get_hw_dev_name(struct e1000_hw
*hw
)
169 struct igb_adapter
*adapter
= hw
->back
;
170 return adapter
->netdev
->name
;
175 * igb_init_module - Driver Registration Routine
177 * igb_init_module is the first routine called when the driver is
178 * loaded. All it does is register with the PCI subsystem.
180 static int __init
igb_init_module(void)
183 printk(KERN_INFO
"%s - version %s\n",
184 igb_driver_string
, igb_driver_version
);
186 printk(KERN_INFO
"%s\n", igb_copyright
);
188 ret
= pci_register_driver(&igb_driver
);
192 module_init(igb_init_module
);
195 * igb_exit_module - Driver Exit Cleanup Routine
197 * igb_exit_module is called just before the driver is removed
200 static void __exit
igb_exit_module(void)
202 pci_unregister_driver(&igb_driver
);
205 module_exit(igb_exit_module
);
208 * igb_alloc_queues - Allocate memory for all rings
209 * @adapter: board private structure to initialize
211 * We allocate one ring per queue at run-time since we don't know the
212 * number of queues at compile-time.
214 static int igb_alloc_queues(struct igb_adapter
*adapter
)
218 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
219 sizeof(struct igb_ring
), GFP_KERNEL
);
220 if (!adapter
->tx_ring
)
223 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
224 sizeof(struct igb_ring
), GFP_KERNEL
);
225 if (!adapter
->rx_ring
) {
226 kfree(adapter
->tx_ring
);
230 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
231 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
232 ring
->adapter
= adapter
;
233 ring
->itr_register
= E1000_ITR
;
235 if (!ring
->napi
.poll
)
236 netif_napi_add(adapter
->netdev
, &ring
->napi
, igb_clean
,
237 adapter
->napi
.weight
/
238 adapter
->num_rx_queues
);
243 #define IGB_N0_QUEUE -1
244 static void igb_assign_vector(struct igb_adapter
*adapter
, int rx_queue
,
245 int tx_queue
, int msix_vector
)
248 struct e1000_hw
*hw
= &adapter
->hw
;
249 /* The 82575 assigns vectors using a bitmask, which matches the
250 bitmask for the EICR/EIMS/EIMC registers. To assign one
251 or more queues to a vector, we write the appropriate bits
252 into the MSIXBM register for that vector. */
253 if (rx_queue
> IGB_N0_QUEUE
) {
254 msixbm
= E1000_EICR_RX_QUEUE0
<< rx_queue
;
255 adapter
->rx_ring
[rx_queue
].eims_value
= msixbm
;
257 if (tx_queue
> IGB_N0_QUEUE
) {
258 msixbm
|= E1000_EICR_TX_QUEUE0
<< tx_queue
;
259 adapter
->tx_ring
[tx_queue
].eims_value
=
260 E1000_EICR_TX_QUEUE0
<< tx_queue
;
262 array_wr32(E1000_MSIXBM(0), msix_vector
, msixbm
);
266 * igb_configure_msix - Configure MSI-X hardware
268 * igb_configure_msix sets up the hardware to properly
269 * generate MSI-X interrupts.
271 static void igb_configure_msix(struct igb_adapter
*adapter
)
275 struct e1000_hw
*hw
= &adapter
->hw
;
277 adapter
->eims_enable_mask
= 0;
279 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
280 struct igb_ring
*tx_ring
= &adapter
->tx_ring
[i
];
281 igb_assign_vector(adapter
, IGB_N0_QUEUE
, i
, vector
++);
282 adapter
->eims_enable_mask
|= tx_ring
->eims_value
;
283 if (tx_ring
->itr_val
)
284 writel(1000000000 / (tx_ring
->itr_val
* 256),
285 hw
->hw_addr
+ tx_ring
->itr_register
);
287 writel(1, hw
->hw_addr
+ tx_ring
->itr_register
);
290 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
291 struct igb_ring
*rx_ring
= &adapter
->rx_ring
[i
];
292 igb_assign_vector(adapter
, i
, IGB_N0_QUEUE
, vector
++);
293 adapter
->eims_enable_mask
|= rx_ring
->eims_value
;
294 if (rx_ring
->itr_val
)
295 writel(1000000000 / (rx_ring
->itr_val
* 256),
296 hw
->hw_addr
+ rx_ring
->itr_register
);
298 writel(1, hw
->hw_addr
+ rx_ring
->itr_register
);
302 /* set vector for other causes, i.e. link changes */
303 array_wr32(E1000_MSIXBM(0), vector
++,
306 /* disable IAM for ICR interrupt bits */
309 tmp
= rd32(E1000_CTRL_EXT
);
310 /* enable MSI-X PBA support*/
311 tmp
|= E1000_CTRL_EXT_PBA_CLR
;
313 /* Auto-Mask interrupts upon ICR read. */
314 tmp
|= E1000_CTRL_EXT_EIAME
;
315 tmp
|= E1000_CTRL_EXT_IRCA
;
317 wr32(E1000_CTRL_EXT
, tmp
);
318 adapter
->eims_enable_mask
|= E1000_EIMS_OTHER
;
324 * igb_request_msix - Initialize MSI-X interrupts
326 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
329 static int igb_request_msix(struct igb_adapter
*adapter
)
331 struct net_device
*netdev
= adapter
->netdev
;
332 int i
, err
= 0, vector
= 0;
336 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
337 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
338 sprintf(ring
->name
, "%s-tx%d", netdev
->name
, i
);
339 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
340 &igb_msix_tx
, 0, ring
->name
,
341 &(adapter
->tx_ring
[i
]));
344 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
345 ring
->itr_val
= adapter
->itr
;
348 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
349 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
350 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
351 sprintf(ring
->name
, "%s-rx%d", netdev
->name
, i
);
353 memcpy(ring
->name
, netdev
->name
, IFNAMSIZ
);
354 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
355 &igb_msix_rx
, 0, ring
->name
,
356 &(adapter
->rx_ring
[i
]));
359 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
360 ring
->itr_val
= adapter
->itr
;
364 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
365 &igb_msix_other
, 0, netdev
->name
, netdev
);
369 adapter
->napi
.poll
= igb_clean_rx_ring_msix
;
370 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
371 adapter
->rx_ring
[i
].napi
.poll
= adapter
->napi
.poll
;
372 igb_configure_msix(adapter
);
378 static void igb_reset_interrupt_capability(struct igb_adapter
*adapter
)
380 if (adapter
->msix_entries
) {
381 pci_disable_msix(adapter
->pdev
);
382 kfree(adapter
->msix_entries
);
383 adapter
->msix_entries
= NULL
;
384 } else if (adapter
->msi_enabled
)
385 pci_disable_msi(adapter
->pdev
);
391 * igb_set_interrupt_capability - set MSI or MSI-X if supported
393 * Attempt to configure interrupts using the best available
394 * capabilities of the hardware and kernel.
396 static void igb_set_interrupt_capability(struct igb_adapter
*adapter
)
401 numvecs
= adapter
->num_tx_queues
+ adapter
->num_rx_queues
+ 1;
402 adapter
->msix_entries
= kcalloc(numvecs
, sizeof(struct msix_entry
),
404 if (!adapter
->msix_entries
)
407 for (i
= 0; i
< numvecs
; i
++)
408 adapter
->msix_entries
[i
].entry
= i
;
410 err
= pci_enable_msix(adapter
->pdev
,
411 adapter
->msix_entries
,
416 igb_reset_interrupt_capability(adapter
);
418 /* If we can't do MSI-X, try MSI */
420 adapter
->num_rx_queues
= 1;
421 if (!pci_enable_msi(adapter
->pdev
))
422 adapter
->msi_enabled
= 1;
427 * igb_request_irq - initialize interrupts
429 * Attempts to configure interrupts using the best available
430 * capabilities of the hardware and kernel.
432 static int igb_request_irq(struct igb_adapter
*adapter
)
434 struct net_device
*netdev
= adapter
->netdev
;
435 struct e1000_hw
*hw
= &adapter
->hw
;
438 if (adapter
->msix_entries
) {
439 err
= igb_request_msix(adapter
);
441 /* enable IAM, auto-mask,
442 * DO NOT USE EIAM or IAM in legacy mode */
443 wr32(E1000_IAM
, IMS_ENABLE_MASK
);
446 /* fall back to MSI */
447 igb_reset_interrupt_capability(adapter
);
448 if (!pci_enable_msi(adapter
->pdev
))
449 adapter
->msi_enabled
= 1;
450 igb_free_all_tx_resources(adapter
);
451 igb_free_all_rx_resources(adapter
);
452 adapter
->num_rx_queues
= 1;
453 igb_alloc_queues(adapter
);
455 if (adapter
->msi_enabled
) {
456 err
= request_irq(adapter
->pdev
->irq
, &igb_intr_msi
, 0,
457 netdev
->name
, netdev
);
460 /* fall back to legacy interrupts */
461 igb_reset_interrupt_capability(adapter
);
462 adapter
->msi_enabled
= 0;
465 err
= request_irq(adapter
->pdev
->irq
, &igb_intr
, IRQF_SHARED
,
466 netdev
->name
, netdev
);
469 dev_err(&adapter
->pdev
->dev
, "Error %d getting interrupt\n",
476 static void igb_free_irq(struct igb_adapter
*adapter
)
478 struct net_device
*netdev
= adapter
->netdev
;
480 if (adapter
->msix_entries
) {
483 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
484 free_irq(adapter
->msix_entries
[vector
++].vector
,
485 &(adapter
->tx_ring
[i
]));
486 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
487 free_irq(adapter
->msix_entries
[vector
++].vector
,
488 &(adapter
->rx_ring
[i
]));
490 free_irq(adapter
->msix_entries
[vector
++].vector
, netdev
);
494 free_irq(adapter
->pdev
->irq
, netdev
);
498 * igb_irq_disable - Mask off interrupt generation on the NIC
499 * @adapter: board private structure
501 static void igb_irq_disable(struct igb_adapter
*adapter
)
503 struct e1000_hw
*hw
= &adapter
->hw
;
505 if (adapter
->msix_entries
) {
506 wr32(E1000_EIMC
, ~0);
511 synchronize_irq(adapter
->pdev
->irq
);
515 * igb_irq_enable - Enable default interrupt generation settings
516 * @adapter: board private structure
518 static void igb_irq_enable(struct igb_adapter
*adapter
)
520 struct e1000_hw
*hw
= &adapter
->hw
;
522 if (adapter
->msix_entries
) {
524 adapter
->eims_enable_mask
);
526 adapter
->eims_enable_mask
);
527 wr32(E1000_IMS
, E1000_IMS_LSC
);
529 wr32(E1000_IMS
, IMS_ENABLE_MASK
);
532 static void igb_update_mng_vlan(struct igb_adapter
*adapter
)
534 struct net_device
*netdev
= adapter
->netdev
;
535 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
536 u16 old_vid
= adapter
->mng_vlan_id
;
537 if (adapter
->vlgrp
) {
538 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
539 if (adapter
->hw
.mng_cookie
.status
&
540 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
541 igb_vlan_rx_add_vid(netdev
, vid
);
542 adapter
->mng_vlan_id
= vid
;
544 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
546 if ((old_vid
!= (u16
)IGB_MNG_VLAN_NONE
) &&
548 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
549 igb_vlan_rx_kill_vid(netdev
, old_vid
);
551 adapter
->mng_vlan_id
= vid
;
556 * igb_release_hw_control - release control of the h/w to f/w
557 * @adapter: address of board private structure
559 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
560 * For ASF and Pass Through versions of f/w this means that the
561 * driver is no longer loaded.
564 static void igb_release_hw_control(struct igb_adapter
*adapter
)
566 struct e1000_hw
*hw
= &adapter
->hw
;
569 /* Let firmware take over control of h/w */
570 ctrl_ext
= rd32(E1000_CTRL_EXT
);
572 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
577 * igb_get_hw_control - get control of the h/w from f/w
578 * @adapter: address of board private structure
580 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
581 * For ASF and Pass Through versions of f/w this means that
582 * the driver is loaded.
585 static void igb_get_hw_control(struct igb_adapter
*adapter
)
587 struct e1000_hw
*hw
= &adapter
->hw
;
590 /* Let firmware know the driver has taken over */
591 ctrl_ext
= rd32(E1000_CTRL_EXT
);
593 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
596 static void igb_init_manageability(struct igb_adapter
*adapter
)
598 struct e1000_hw
*hw
= &adapter
->hw
;
600 if (adapter
->en_mng_pt
) {
601 u32 manc2h
= rd32(E1000_MANC2H
);
602 u32 manc
= rd32(E1000_MANC
);
604 /* enable receiving management packets to the host */
605 /* this will probably generate destination unreachable messages
606 * from the host OS, but the packets will be handled on SMBUS */
607 manc
|= E1000_MANC_EN_MNG2HOST
;
608 #define E1000_MNG2HOST_PORT_623 (1 << 5)
609 #define E1000_MNG2HOST_PORT_664 (1 << 6)
610 manc2h
|= E1000_MNG2HOST_PORT_623
;
611 manc2h
|= E1000_MNG2HOST_PORT_664
;
612 wr32(E1000_MANC2H
, manc2h
);
614 wr32(E1000_MANC
, manc
);
619 * igb_configure - configure the hardware for RX and TX
620 * @adapter: private board structure
622 static void igb_configure(struct igb_adapter
*adapter
)
624 struct net_device
*netdev
= adapter
->netdev
;
627 igb_get_hw_control(adapter
);
628 igb_set_multi(netdev
);
630 igb_restore_vlan(adapter
);
631 igb_init_manageability(adapter
);
633 igb_configure_tx(adapter
);
634 igb_setup_rctl(adapter
);
635 igb_configure_rx(adapter
);
636 /* call IGB_DESC_UNUSED which always leaves
637 * at least 1 descriptor unused to make sure
638 * next_to_use != next_to_clean */
639 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
640 struct igb_ring
*ring
= &adapter
->rx_ring
[i
];
641 igb_alloc_rx_buffers_adv(adapter
, ring
, IGB_DESC_UNUSED(ring
));
645 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
650 * igb_up - Open the interface and prepare it to handle traffic
651 * @adapter: board private structure
654 int igb_up(struct igb_adapter
*adapter
)
656 struct e1000_hw
*hw
= &adapter
->hw
;
659 /* hardware has been reset, we need to reload some things */
660 igb_configure(adapter
);
662 clear_bit(__IGB_DOWN
, &adapter
->state
);
664 napi_enable(&adapter
->napi
);
666 if (adapter
->msix_entries
) {
667 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
668 napi_enable(&adapter
->rx_ring
[i
].napi
);
669 igb_configure_msix(adapter
);
672 /* Clear any pending interrupts. */
674 igb_irq_enable(adapter
);
676 /* Fire a link change interrupt to start the watchdog. */
677 wr32(E1000_ICS
, E1000_ICS_LSC
);
681 void igb_down(struct igb_adapter
*adapter
)
683 struct e1000_hw
*hw
= &adapter
->hw
;
684 struct net_device
*netdev
= adapter
->netdev
;
688 /* signal that we're down so the interrupt handler does not
689 * reschedule our watchdog timer */
690 set_bit(__IGB_DOWN
, &adapter
->state
);
692 /* disable receives in the hardware */
693 rctl
= rd32(E1000_RCTL
);
694 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
695 /* flush and sleep below */
697 netif_stop_queue(netdev
);
699 /* disable transmits in the hardware */
700 tctl
= rd32(E1000_TCTL
);
701 tctl
&= ~E1000_TCTL_EN
;
702 wr32(E1000_TCTL
, tctl
);
703 /* flush both disables and wait for them to finish */
707 napi_disable(&adapter
->napi
);
709 if (adapter
->msix_entries
)
710 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
711 napi_disable(&adapter
->rx_ring
[i
].napi
);
712 igb_irq_disable(adapter
);
714 del_timer_sync(&adapter
->watchdog_timer
);
715 del_timer_sync(&adapter
->phy_info_timer
);
717 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
718 netif_carrier_off(netdev
);
719 adapter
->link_speed
= 0;
720 adapter
->link_duplex
= 0;
723 igb_clean_all_tx_rings(adapter
);
724 igb_clean_all_rx_rings(adapter
);
727 void igb_reinit_locked(struct igb_adapter
*adapter
)
729 WARN_ON(in_interrupt());
730 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
734 clear_bit(__IGB_RESETTING
, &adapter
->state
);
737 void igb_reset(struct igb_adapter
*adapter
)
739 struct e1000_hw
*hw
= &adapter
->hw
;
740 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
741 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
744 /* Repartition Pba for greater than 9k mtu
745 * To take effect CTRL.RST is required.
749 if (adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
750 /* adjust PBA for jumbo frames */
751 wr32(E1000_PBA
, pba
);
753 /* To maintain wire speed transmits, the Tx FIFO should be
754 * large enough to accommodate two full transmit packets,
755 * rounded up to the next 1KB and expressed in KB. Likewise,
756 * the Rx FIFO should be large enough to accommodate at least
757 * one full receive packet and is similarly rounded up and
758 * expressed in KB. */
759 pba
= rd32(E1000_PBA
);
760 /* upper 16 bits has Tx packet buffer allocation size in KB */
761 tx_space
= pba
>> 16;
762 /* lower 16 bits has Rx packet buffer allocation size in KB */
764 /* the tx fifo also stores 16 bytes of information about the tx
765 * but don't include ethernet FCS because hardware appends it */
766 min_tx_space
= (adapter
->max_frame_size
+
767 sizeof(struct e1000_tx_desc
) -
769 min_tx_space
= ALIGN(min_tx_space
, 1024);
771 /* software strips receive CRC, so leave room for it */
772 min_rx_space
= adapter
->max_frame_size
;
773 min_rx_space
= ALIGN(min_rx_space
, 1024);
776 /* If current Tx allocation is less than the min Tx FIFO size,
777 * and the min Tx FIFO size is less than the current Rx FIFO
778 * allocation, take space away from current Rx allocation */
779 if (tx_space
< min_tx_space
&&
780 ((min_tx_space
- tx_space
) < pba
)) {
781 pba
= pba
- (min_tx_space
- tx_space
);
783 /* if short on rx space, rx wins and must trump tx
785 if (pba
< min_rx_space
)
789 wr32(E1000_PBA
, pba
);
791 /* flow control settings */
792 /* The high water mark must be low enough to fit one full frame
793 * (or the size used for early receive) above it in the Rx FIFO.
794 * Set it to the lower of:
795 * - 90% of the Rx FIFO size, or
796 * - the full Rx FIFO size minus one full frame */
797 hwm
= min(((pba
<< 10) * 9 / 10),
798 ((pba
<< 10) - adapter
->max_frame_size
));
800 fc
->high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
801 fc
->low_water
= fc
->high_water
- 8;
802 fc
->pause_time
= 0xFFFF;
804 fc
->type
= fc
->original_type
;
806 /* Allow time for pending master requests to run */
807 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
810 if (adapter
->hw
.mac
.ops
.init_hw(&adapter
->hw
))
811 dev_err(&adapter
->pdev
->dev
, "Hardware Error\n");
813 igb_update_mng_vlan(adapter
);
815 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
816 wr32(E1000_VET
, ETHERNET_IEEE_VLAN_TYPE
);
818 igb_reset_adaptive(&adapter
->hw
);
819 if (adapter
->hw
.phy
.ops
.get_phy_info
)
820 adapter
->hw
.phy
.ops
.get_phy_info(&adapter
->hw
);
824 * igb_probe - Device Initialization Routine
825 * @pdev: PCI device information struct
826 * @ent: entry in igb_pci_tbl
828 * Returns 0 on success, negative on failure
830 * igb_probe initializes an adapter identified by a pci_dev structure.
831 * The OS initialization, configuring of the adapter private structure,
832 * and a hardware reset occur.
834 static int __devinit
igb_probe(struct pci_dev
*pdev
,
835 const struct pci_device_id
*ent
)
837 struct net_device
*netdev
;
838 struct igb_adapter
*adapter
;
840 const struct e1000_info
*ei
= igb_info_tbl
[ent
->driver_data
];
841 unsigned long mmio_start
, mmio_len
;
842 static int cards_found
;
843 int i
, err
, pci_using_dac
;
845 u16 eeprom_apme_mask
= IGB_EEPROM_APME
;
848 err
= pci_enable_device(pdev
);
853 err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
);
855 err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
859 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
861 err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
863 dev_err(&pdev
->dev
, "No usable DMA "
864 "configuration, aborting\n");
870 err
= pci_request_regions(pdev
, igb_driver_name
);
874 pci_set_master(pdev
);
877 netdev
= alloc_etherdev(sizeof(struct igb_adapter
));
879 goto err_alloc_etherdev
;
881 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
883 pci_set_drvdata(pdev
, netdev
);
884 adapter
= netdev_priv(netdev
);
885 adapter
->netdev
= netdev
;
886 adapter
->pdev
= pdev
;
889 adapter
->msg_enable
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
891 mmio_start
= pci_resource_start(pdev
, 0);
892 mmio_len
= pci_resource_len(pdev
, 0);
895 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
896 if (!adapter
->hw
.hw_addr
)
899 netdev
->open
= &igb_open
;
900 netdev
->stop
= &igb_close
;
901 netdev
->get_stats
= &igb_get_stats
;
902 netdev
->set_multicast_list
= &igb_set_multi
;
903 netdev
->set_mac_address
= &igb_set_mac
;
904 netdev
->change_mtu
= &igb_change_mtu
;
905 netdev
->do_ioctl
= &igb_ioctl
;
906 igb_set_ethtool_ops(netdev
);
907 netdev
->tx_timeout
= &igb_tx_timeout
;
908 netdev
->watchdog_timeo
= 5 * HZ
;
909 netif_napi_add(netdev
, &adapter
->napi
, igb_clean
, 64);
910 netdev
->vlan_rx_register
= igb_vlan_rx_register
;
911 netdev
->vlan_rx_add_vid
= igb_vlan_rx_add_vid
;
912 netdev
->vlan_rx_kill_vid
= igb_vlan_rx_kill_vid
;
913 #ifdef CONFIG_NET_POLL_CONTROLLER
914 netdev
->poll_controller
= igb_netpoll
;
916 netdev
->hard_start_xmit
= &igb_xmit_frame_adv
;
918 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
920 netdev
->mem_start
= mmio_start
;
921 netdev
->mem_end
= mmio_start
+ mmio_len
;
923 adapter
->bd_number
= cards_found
;
925 /* PCI config space info */
926 hw
->vendor_id
= pdev
->vendor
;
927 hw
->device_id
= pdev
->device
;
928 hw
->revision_id
= pdev
->revision
;
929 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
930 hw
->subsystem_device_id
= pdev
->subsystem_device
;
932 /* setup the private structure */
934 /* Copy the default MAC, PHY and NVM function pointers */
935 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
936 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
937 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
938 /* Initialize skew-specific constants */
939 err
= ei
->get_invariants(hw
);
943 err
= igb_sw_init(adapter
);
947 igb_get_bus_info_pcie(hw
);
949 hw
->phy
.autoneg_wait_to_complete
= false;
950 hw
->mac
.adaptive_ifs
= true;
953 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
954 hw
->phy
.mdix
= AUTO_ALL_MODES
;
955 hw
->phy
.disable_polarity_correction
= false;
956 hw
->phy
.ms_type
= e1000_ms_hw_default
;
959 if (igb_check_reset_block(hw
))
961 "PHY reset is blocked due to SOL/IDER session.\n");
963 netdev
->features
= NETIF_F_SG
|
967 NETIF_F_HW_VLAN_FILTER
;
969 netdev
->features
|= NETIF_F_TSO
;
971 netdev
->features
|= NETIF_F_TSO6
;
973 netdev
->features
|= NETIF_F_HIGHDMA
;
975 netdev
->features
|= NETIF_F_LLTX
;
976 adapter
->en_mng_pt
= igb_enable_mng_pass_thru(&adapter
->hw
);
978 /* before reading the NVM, reset the controller to put the device in a
979 * known good starting state */
980 hw
->mac
.ops
.reset_hw(hw
);
982 /* make sure the NVM is good */
983 if (igb_validate_nvm_checksum(hw
) < 0) {
984 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
989 /* copy the MAC address out of the NVM */
990 if (hw
->mac
.ops
.read_mac_addr(hw
))
991 dev_err(&pdev
->dev
, "NVM Read Error\n");
993 memcpy(netdev
->dev_addr
, hw
->mac
.addr
, netdev
->addr_len
);
994 memcpy(netdev
->perm_addr
, hw
->mac
.addr
, netdev
->addr_len
);
996 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
997 dev_err(&pdev
->dev
, "Invalid MAC Address\n");
1002 init_timer(&adapter
->watchdog_timer
);
1003 adapter
->watchdog_timer
.function
= &igb_watchdog
;
1004 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
1006 init_timer(&adapter
->phy_info_timer
);
1007 adapter
->phy_info_timer
.function
= &igb_update_phy_info
;
1008 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
1010 INIT_WORK(&adapter
->reset_task
, igb_reset_task
);
1011 INIT_WORK(&adapter
->watchdog_task
, igb_watchdog_task
);
1013 /* Initialize link & ring properties that are user-changeable */
1014 adapter
->tx_ring
->count
= 256;
1015 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1016 adapter
->tx_ring
[i
].count
= adapter
->tx_ring
->count
;
1017 adapter
->rx_ring
->count
= 256;
1018 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1019 adapter
->rx_ring
[i
].count
= adapter
->rx_ring
->count
;
1021 adapter
->fc_autoneg
= true;
1022 hw
->mac
.autoneg
= true;
1023 hw
->phy
.autoneg_advertised
= 0x2f;
1025 hw
->fc
.original_type
= e1000_fc_default
;
1026 hw
->fc
.type
= e1000_fc_default
;
1028 adapter
->itr_setting
= 3;
1029 adapter
->itr
= IGB_START_ITR
;
1031 igb_validate_mdi_setting(hw
);
1033 adapter
->rx_csum
= 1;
1035 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1036 * enable the ACPI Magic Packet filter
1039 if (hw
->bus
.func
== 0 ||
1040 hw
->device_id
== E1000_DEV_ID_82575EB_COPPER
)
1041 hw
->nvm
.ops
.read_nvm(hw
, NVM_INIT_CONTROL3_PORT_A
, 1,
1044 if (eeprom_data
& eeprom_apme_mask
)
1045 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1047 /* now that we have the eeprom settings, apply the special cases where
1048 * the eeprom may be wrong or the board simply won't support wake on
1049 * lan on a particular port */
1050 switch (pdev
->device
) {
1051 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
1052 adapter
->eeprom_wol
= 0;
1054 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
1055 /* Wake events only supported on port A for dual fiber
1056 * regardless of eeprom setting */
1057 if (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_1
)
1058 adapter
->eeprom_wol
= 0;
1062 /* initialize the wol settings based on the eeprom settings */
1063 adapter
->wol
= adapter
->eeprom_wol
;
1065 /* reset the hardware with the new settings */
1068 /* let the f/w know that the h/w is now under the control of the
1070 igb_get_hw_control(adapter
);
1072 /* tell the stack to leave us alone until igb_open() is called */
1073 netif_carrier_off(netdev
);
1074 netif_stop_queue(netdev
);
1076 strcpy(netdev
->name
, "eth%d");
1077 err
= register_netdev(netdev
);
1081 dev_info(&pdev
->dev
, "Intel(R) Gigabit Ethernet Network Connection\n");
1082 /* print bus type/speed/width info */
1083 dev_info(&pdev
->dev
,
1084 "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1086 ((hw
->bus
.speed
== e1000_bus_speed_2500
)
1087 ? "2.5Gb/s" : "unknown"),
1088 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
)
1089 ? "Width x4" : (hw
->bus
.width
== e1000_bus_width_pcie_x1
)
1090 ? "Width x1" : "unknown"),
1091 netdev
->dev_addr
[0], netdev
->dev_addr
[1], netdev
->dev_addr
[2],
1092 netdev
->dev_addr
[3], netdev
->dev_addr
[4], netdev
->dev_addr
[5]);
1094 igb_read_part_num(hw
, &part_num
);
1095 dev_info(&pdev
->dev
, "%s: PBA No: %06x-%03x\n", netdev
->name
,
1096 (part_num
>> 8), (part_num
& 0xff));
1098 dev_info(&pdev
->dev
,
1099 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1100 adapter
->msix_entries
? "MSI-X" :
1101 adapter
->msi_enabled
? "MSI" : "legacy",
1102 adapter
->num_rx_queues
, adapter
->num_tx_queues
);
1108 igb_release_hw_control(adapter
);
1110 if (!igb_check_reset_block(hw
))
1111 hw
->phy
.ops
.reset_phy(hw
);
1113 if (hw
->flash_address
)
1114 iounmap(hw
->flash_address
);
1116 igb_remove_device(hw
);
1117 kfree(adapter
->tx_ring
);
1118 kfree(adapter
->rx_ring
);
1121 iounmap(hw
->hw_addr
);
1123 free_netdev(netdev
);
1125 pci_release_regions(pdev
);
1128 pci_disable_device(pdev
);
1133 * igb_remove - Device Removal Routine
1134 * @pdev: PCI device information struct
1136 * igb_remove is called by the PCI subsystem to alert the driver
1137 * that it should release a PCI device. The could be caused by a
1138 * Hot-Plug event, or because the driver is going to be removed from
1141 static void __devexit
igb_remove(struct pci_dev
*pdev
)
1143 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1144 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1146 /* flush_scheduled work may reschedule our watchdog task, so
1147 * explicitly disable watchdog tasks from being rescheduled */
1148 set_bit(__IGB_DOWN
, &adapter
->state
);
1149 del_timer_sync(&adapter
->watchdog_timer
);
1150 del_timer_sync(&adapter
->phy_info_timer
);
1152 flush_scheduled_work();
1154 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1155 * would have already happened in close and is redundant. */
1156 igb_release_hw_control(adapter
);
1158 unregister_netdev(netdev
);
1160 if (!igb_check_reset_block(&adapter
->hw
))
1161 adapter
->hw
.phy
.ops
.reset_phy(&adapter
->hw
);
1163 igb_remove_device(&adapter
->hw
);
1164 igb_reset_interrupt_capability(adapter
);
1166 kfree(adapter
->tx_ring
);
1167 kfree(adapter
->rx_ring
);
1169 iounmap(adapter
->hw
.hw_addr
);
1170 if (adapter
->hw
.flash_address
)
1171 iounmap(adapter
->hw
.flash_address
);
1172 pci_release_regions(pdev
);
1174 free_netdev(netdev
);
1176 pci_disable_device(pdev
);
1180 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1181 * @adapter: board private structure to initialize
1183 * igb_sw_init initializes the Adapter private data structure.
1184 * Fields are initialized based on PCI device information and
1185 * OS network device settings (MTU size).
1187 static int __devinit
igb_sw_init(struct igb_adapter
*adapter
)
1189 struct e1000_hw
*hw
= &adapter
->hw
;
1190 struct net_device
*netdev
= adapter
->netdev
;
1191 struct pci_dev
*pdev
= adapter
->pdev
;
1193 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->bus
.pci_cmd_word
);
1195 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1196 adapter
->rx_ps_hdr_size
= 0; /* disable packet split */
1197 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
1198 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
1200 /* Number of supported queues. */
1201 /* Having more queues than CPUs doesn't make sense. */
1202 adapter
->num_tx_queues
= 1;
1203 adapter
->num_rx_queues
= min(IGB_MAX_RX_QUEUES
, num_online_cpus());
1205 igb_set_interrupt_capability(adapter
);
1207 if (igb_alloc_queues(adapter
)) {
1208 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
1212 /* Explicitly disable IRQ since the NIC can be in any state. */
1213 igb_irq_disable(adapter
);
1215 set_bit(__IGB_DOWN
, &adapter
->state
);
1220 * igb_open - Called when a network interface is made active
1221 * @netdev: network interface device structure
1223 * Returns 0 on success, negative value on failure
1225 * The open entry point is called when a network interface is made
1226 * active by the system (IFF_UP). At this point all resources needed
1227 * for transmit and receive operations are allocated, the interrupt
1228 * handler is registered with the OS, the watchdog timer is started,
1229 * and the stack is notified that the interface is ready.
1231 static int igb_open(struct net_device
*netdev
)
1233 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1234 struct e1000_hw
*hw
= &adapter
->hw
;
1238 /* disallow open during test */
1239 if (test_bit(__IGB_TESTING
, &adapter
->state
))
1242 /* allocate transmit descriptors */
1243 err
= igb_setup_all_tx_resources(adapter
);
1247 /* allocate receive descriptors */
1248 err
= igb_setup_all_rx_resources(adapter
);
1252 /* e1000_power_up_phy(adapter); */
1254 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
1255 if ((adapter
->hw
.mng_cookie
.status
&
1256 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
1257 igb_update_mng_vlan(adapter
);
1259 /* before we allocate an interrupt, we must be ready to handle it.
1260 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1261 * as soon as we call pci_request_irq, so we have to setup our
1262 * clean_rx handler before we do so. */
1263 igb_configure(adapter
);
1265 err
= igb_request_irq(adapter
);
1269 /* From here on the code is the same as igb_up() */
1270 clear_bit(__IGB_DOWN
, &adapter
->state
);
1272 napi_enable(&adapter
->napi
);
1273 if (adapter
->msix_entries
)
1274 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1275 napi_enable(&adapter
->rx_ring
[i
].napi
);
1277 igb_irq_enable(adapter
);
1279 /* Clear any pending interrupts. */
1281 /* Fire a link status change interrupt to start the watchdog. */
1282 wr32(E1000_ICS
, E1000_ICS_LSC
);
1287 igb_release_hw_control(adapter
);
1288 /* e1000_power_down_phy(adapter); */
1289 igb_free_all_rx_resources(adapter
);
1291 igb_free_all_tx_resources(adapter
);
1299 * igb_close - Disables a network interface
1300 * @netdev: network interface device structure
1302 * Returns 0, this is not allowed to fail
1304 * The close entry point is called when an interface is de-activated
1305 * by the OS. The hardware is still under the driver's control, but
1306 * needs to be disabled. A global MAC reset is issued to stop the
1307 * hardware, and all transmit and receive resources are freed.
1309 static int igb_close(struct net_device
*netdev
)
1311 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1313 WARN_ON(test_bit(__IGB_RESETTING
, &adapter
->state
));
1316 igb_free_irq(adapter
);
1318 igb_free_all_tx_resources(adapter
);
1319 igb_free_all_rx_resources(adapter
);
1321 /* kill manageability vlan ID if supported, but not if a vlan with
1322 * the same ID is registered on the host OS (let 8021q kill it) */
1323 if ((adapter
->hw
.mng_cookie
.status
&
1324 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
1326 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
1327 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1333 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1334 * @adapter: board private structure
1335 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1337 * Return 0 on success, negative on failure
1340 int igb_setup_tx_resources(struct igb_adapter
*adapter
,
1341 struct igb_ring
*tx_ring
)
1343 struct pci_dev
*pdev
= adapter
->pdev
;
1346 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
1347 tx_ring
->buffer_info
= vmalloc(size
);
1348 if (!tx_ring
->buffer_info
)
1350 memset(tx_ring
->buffer_info
, 0, size
);
1352 /* round up to nearest 4K */
1353 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
)
1355 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1357 tx_ring
->desc
= pci_alloc_consistent(pdev
, tx_ring
->size
,
1363 tx_ring
->adapter
= adapter
;
1364 tx_ring
->next_to_use
= 0;
1365 tx_ring
->next_to_clean
= 0;
1366 spin_lock_init(&tx_ring
->tx_clean_lock
);
1367 spin_lock_init(&tx_ring
->tx_lock
);
1371 vfree(tx_ring
->buffer_info
);
1372 dev_err(&adapter
->pdev
->dev
,
1373 "Unable to allocate memory for the transmit descriptor ring\n");
1378 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1379 * (Descriptors) for all queues
1380 * @adapter: board private structure
1382 * Return 0 on success, negative on failure
1384 static int igb_setup_all_tx_resources(struct igb_adapter
*adapter
)
1388 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1389 err
= igb_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1391 dev_err(&adapter
->pdev
->dev
,
1392 "Allocation for Tx Queue %u failed\n", i
);
1393 for (i
--; i
>= 0; i
--)
1394 igb_free_tx_resources(adapter
,
1395 &adapter
->tx_ring
[i
]);
1404 * igb_configure_tx - Configure transmit Unit after Reset
1405 * @adapter: board private structure
1407 * Configure the Tx unit of the MAC after a reset.
1409 static void igb_configure_tx(struct igb_adapter
*adapter
)
1412 struct e1000_hw
*hw
= &adapter
->hw
;
1417 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1418 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
1420 wr32(E1000_TDLEN(i
),
1421 ring
->count
* sizeof(struct e1000_tx_desc
));
1423 wr32(E1000_TDBAL(i
),
1424 tdba
& 0x00000000ffffffffULL
);
1425 wr32(E1000_TDBAH(i
), tdba
>> 32);
1427 tdwba
= ring
->dma
+ ring
->count
* sizeof(struct e1000_tx_desc
);
1428 tdwba
|= 1; /* enable head wb */
1429 wr32(E1000_TDWBAL(i
),
1430 tdwba
& 0x00000000ffffffffULL
);
1431 wr32(E1000_TDWBAH(i
), tdwba
>> 32);
1433 ring
->head
= E1000_TDH(i
);
1434 ring
->tail
= E1000_TDT(i
);
1435 writel(0, hw
->hw_addr
+ ring
->tail
);
1436 writel(0, hw
->hw_addr
+ ring
->head
);
1437 txdctl
= rd32(E1000_TXDCTL(i
));
1438 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
1439 wr32(E1000_TXDCTL(i
), txdctl
);
1441 /* Turn off Relaxed Ordering on head write-backs. The
1442 * writebacks MUST be delivered in order or it will
1443 * completely screw up our bookeeping.
1445 txctrl
= rd32(E1000_DCA_TXCTRL(i
));
1446 txctrl
&= ~E1000_DCA_TXCTRL_TX_WB_RO_EN
;
1447 wr32(E1000_DCA_TXCTRL(i
), txctrl
);
1452 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1454 /* Program the Transmit Control Register */
1456 tctl
= rd32(E1000_TCTL
);
1457 tctl
&= ~E1000_TCTL_CT
;
1458 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1459 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1461 igb_config_collision_dist(hw
);
1463 /* Setup Transmit Descriptor Settings for eop descriptor */
1464 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_RS
;
1466 /* Enable transmits */
1467 tctl
|= E1000_TCTL_EN
;
1469 wr32(E1000_TCTL
, tctl
);
1473 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1474 * @adapter: board private structure
1475 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1477 * Returns 0 on success, negative on failure
1480 int igb_setup_rx_resources(struct igb_adapter
*adapter
,
1481 struct igb_ring
*rx_ring
)
1483 struct pci_dev
*pdev
= adapter
->pdev
;
1486 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
1487 rx_ring
->buffer_info
= vmalloc(size
);
1488 if (!rx_ring
->buffer_info
)
1490 memset(rx_ring
->buffer_info
, 0, size
);
1492 desc_len
= sizeof(union e1000_adv_rx_desc
);
1494 /* Round up to nearest 4K */
1495 rx_ring
->size
= rx_ring
->count
* desc_len
;
1496 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
1498 rx_ring
->desc
= pci_alloc_consistent(pdev
, rx_ring
->size
,
1504 rx_ring
->next_to_clean
= 0;
1505 rx_ring
->next_to_use
= 0;
1506 rx_ring
->pending_skb
= NULL
;
1508 rx_ring
->adapter
= adapter
;
1509 /* FIXME: do we want to setup ring->napi->poll here? */
1510 rx_ring
->napi
.poll
= adapter
->napi
.poll
;
1515 vfree(rx_ring
->buffer_info
);
1516 dev_err(&adapter
->pdev
->dev
, "Unable to allocate memory for "
1517 "the receive descriptor ring\n");
1522 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1523 * (Descriptors) for all queues
1524 * @adapter: board private structure
1526 * Return 0 on success, negative on failure
1528 static int igb_setup_all_rx_resources(struct igb_adapter
*adapter
)
1532 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1533 err
= igb_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1535 dev_err(&adapter
->pdev
->dev
,
1536 "Allocation for Rx Queue %u failed\n", i
);
1537 for (i
--; i
>= 0; i
--)
1538 igb_free_rx_resources(adapter
,
1539 &adapter
->rx_ring
[i
]);
1548 * igb_setup_rctl - configure the receive control registers
1549 * @adapter: Board private structure
1551 static void igb_setup_rctl(struct igb_adapter
*adapter
)
1553 struct e1000_hw
*hw
= &adapter
->hw
;
1558 rctl
= rd32(E1000_RCTL
);
1560 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1562 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1563 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1564 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1566 /* disable the stripping of CRC because it breaks
1567 * BMC firmware connected over SMBUS
1568 rctl |= E1000_RCTL_SECRC;
1571 rctl
&= ~E1000_RCTL_SBP
;
1573 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1574 rctl
&= ~E1000_RCTL_LPE
;
1576 rctl
|= E1000_RCTL_LPE
;
1577 if (adapter
->rx_buffer_len
<= IGB_RXBUFFER_2048
) {
1578 /* Setup buffer sizes */
1579 rctl
&= ~E1000_RCTL_SZ_4096
;
1580 rctl
|= E1000_RCTL_BSEX
;
1581 switch (adapter
->rx_buffer_len
) {
1582 case IGB_RXBUFFER_256
:
1583 rctl
|= E1000_RCTL_SZ_256
;
1584 rctl
&= ~E1000_RCTL_BSEX
;
1586 case IGB_RXBUFFER_512
:
1587 rctl
|= E1000_RCTL_SZ_512
;
1588 rctl
&= ~E1000_RCTL_BSEX
;
1590 case IGB_RXBUFFER_1024
:
1591 rctl
|= E1000_RCTL_SZ_1024
;
1592 rctl
&= ~E1000_RCTL_BSEX
;
1594 case IGB_RXBUFFER_2048
:
1596 rctl
|= E1000_RCTL_SZ_2048
;
1597 rctl
&= ~E1000_RCTL_BSEX
;
1599 case IGB_RXBUFFER_4096
:
1600 rctl
|= E1000_RCTL_SZ_4096
;
1602 case IGB_RXBUFFER_8192
:
1603 rctl
|= E1000_RCTL_SZ_8192
;
1605 case IGB_RXBUFFER_16384
:
1606 rctl
|= E1000_RCTL_SZ_16384
;
1610 rctl
&= ~E1000_RCTL_BSEX
;
1611 srrctl
= adapter
->rx_buffer_len
>> E1000_SRRCTL_BSIZEPKT_SHIFT
;
1614 /* 82575 and greater support packet-split where the protocol
1615 * header is placed in skb->data and the packet data is
1616 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1617 * In the case of a non-split, skb->data is linearly filled,
1618 * followed by the page buffers. Therefore, skb->data is
1619 * sized to hold the largest protocol header.
1621 /* allocations using alloc_page take too long for regular MTU
1622 * so only enable packet split for jumbo frames */
1623 if (rctl
& E1000_RCTL_LPE
) {
1624 adapter
->rx_ps_hdr_size
= IGB_RXBUFFER_128
;
1625 srrctl
= adapter
->rx_ps_hdr_size
<<
1626 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
1627 /* buffer size is ALWAYS one page */
1628 srrctl
|= PAGE_SIZE
>> E1000_SRRCTL_BSIZEPKT_SHIFT
;
1629 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
1631 adapter
->rx_ps_hdr_size
= 0;
1632 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
1635 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1636 wr32(E1000_SRRCTL(i
), srrctl
);
1638 wr32(E1000_RCTL
, rctl
);
1642 * igb_configure_rx - Configure receive Unit after Reset
1643 * @adapter: board private structure
1645 * Configure the Rx unit of the MAC after a reset.
1647 static void igb_configure_rx(struct igb_adapter
*adapter
)
1650 struct e1000_hw
*hw
= &adapter
->hw
;
1655 /* disable receives while setting up the descriptors */
1656 rctl
= rd32(E1000_RCTL
);
1657 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
1661 if (adapter
->itr_setting
> 3)
1663 1000000000 / (adapter
->itr
* 256));
1665 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1666 * the Base and Length of the Rx Descriptor Ring */
1667 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1668 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
1670 wr32(E1000_RDBAL(i
),
1671 rdba
& 0x00000000ffffffffULL
);
1672 wr32(E1000_RDBAH(i
), rdba
>> 32);
1673 wr32(E1000_RDLEN(i
),
1674 ring
->count
* sizeof(union e1000_adv_rx_desc
));
1676 ring
->head
= E1000_RDH(i
);
1677 ring
->tail
= E1000_RDT(i
);
1678 writel(0, hw
->hw_addr
+ ring
->tail
);
1679 writel(0, hw
->hw_addr
+ ring
->head
);
1681 rxdctl
= rd32(E1000_RXDCTL(i
));
1682 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
1683 rxdctl
&= 0xFFF00000;
1684 rxdctl
|= IGB_RX_PTHRESH
;
1685 rxdctl
|= IGB_RX_HTHRESH
<< 8;
1686 rxdctl
|= IGB_RX_WTHRESH
<< 16;
1687 wr32(E1000_RXDCTL(i
), rxdctl
);
1690 if (adapter
->num_rx_queues
> 1) {
1699 get_random_bytes(&random
[0], 40);
1702 for (j
= 0; j
< (32 * 4); j
++) {
1704 (j
% adapter
->num_rx_queues
) << shift
;
1707 hw
->hw_addr
+ E1000_RETA(0) + (j
& ~3));
1709 mrqc
= E1000_MRQC_ENABLE_RSS_4Q
;
1711 /* Fill out hash function seeds */
1712 for (j
= 0; j
< 10; j
++)
1713 array_wr32(E1000_RSSRK(0), j
, random
[j
]);
1715 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4
|
1716 E1000_MRQC_RSS_FIELD_IPV4_TCP
);
1717 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6
|
1718 E1000_MRQC_RSS_FIELD_IPV6_TCP
);
1719 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4_UDP
|
1720 E1000_MRQC_RSS_FIELD_IPV6_UDP
);
1721 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX
|
1722 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
);
1725 wr32(E1000_MRQC
, mrqc
);
1727 /* Multiqueue and raw packet checksumming are mutually
1728 * exclusive. Note that this not the same as TCP/IP
1729 * checksumming, which works fine. */
1730 rxcsum
= rd32(E1000_RXCSUM
);
1731 rxcsum
|= E1000_RXCSUM_PCSD
;
1732 wr32(E1000_RXCSUM
, rxcsum
);
1734 /* Enable Receive Checksum Offload for TCP and UDP */
1735 rxcsum
= rd32(E1000_RXCSUM
);
1736 if (adapter
->rx_csum
) {
1737 rxcsum
|= E1000_RXCSUM_TUOFL
;
1739 /* Enable IPv4 payload checksum for UDP fragments
1740 * Must be used in conjunction with packet-split. */
1741 if (adapter
->rx_ps_hdr_size
)
1742 rxcsum
|= E1000_RXCSUM_IPPCSE
;
1744 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1745 /* don't need to clear IPPCSE as it defaults to 0 */
1747 wr32(E1000_RXCSUM
, rxcsum
);
1752 adapter
->max_frame_size
+ VLAN_TAG_SIZE
);
1754 wr32(E1000_RLPML
, adapter
->max_frame_size
);
1756 /* Enable Receives */
1757 wr32(E1000_RCTL
, rctl
);
1761 * igb_free_tx_resources - Free Tx Resources per Queue
1762 * @adapter: board private structure
1763 * @tx_ring: Tx descriptor ring for a specific queue
1765 * Free all transmit software resources
1767 static void igb_free_tx_resources(struct igb_adapter
*adapter
,
1768 struct igb_ring
*tx_ring
)
1770 struct pci_dev
*pdev
= adapter
->pdev
;
1772 igb_clean_tx_ring(adapter
, tx_ring
);
1774 vfree(tx_ring
->buffer_info
);
1775 tx_ring
->buffer_info
= NULL
;
1777 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
1779 tx_ring
->desc
= NULL
;
1783 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1784 * @adapter: board private structure
1786 * Free all transmit software resources
1788 static void igb_free_all_tx_resources(struct igb_adapter
*adapter
)
1792 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1793 igb_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1796 static void igb_unmap_and_free_tx_resource(struct igb_adapter
*adapter
,
1797 struct igb_buffer
*buffer_info
)
1799 if (buffer_info
->dma
) {
1800 pci_unmap_page(adapter
->pdev
,
1802 buffer_info
->length
,
1804 buffer_info
->dma
= 0;
1806 if (buffer_info
->skb
) {
1807 dev_kfree_skb_any(buffer_info
->skb
);
1808 buffer_info
->skb
= NULL
;
1810 buffer_info
->time_stamp
= 0;
1811 /* buffer_info must be completely set up in the transmit path */
1815 * igb_clean_tx_ring - Free Tx Buffers
1816 * @adapter: board private structure
1817 * @tx_ring: ring to be cleaned
1819 static void igb_clean_tx_ring(struct igb_adapter
*adapter
,
1820 struct igb_ring
*tx_ring
)
1822 struct igb_buffer
*buffer_info
;
1826 if (!tx_ring
->buffer_info
)
1828 /* Free all the Tx ring sk_buffs */
1830 for (i
= 0; i
< tx_ring
->count
; i
++) {
1831 buffer_info
= &tx_ring
->buffer_info
[i
];
1832 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
1835 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
1836 memset(tx_ring
->buffer_info
, 0, size
);
1838 /* Zero out the descriptor ring */
1840 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1842 tx_ring
->next_to_use
= 0;
1843 tx_ring
->next_to_clean
= 0;
1845 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
1846 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
1850 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
1851 * @adapter: board private structure
1853 static void igb_clean_all_tx_rings(struct igb_adapter
*adapter
)
1857 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1858 igb_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
1862 * igb_free_rx_resources - Free Rx Resources
1863 * @adapter: board private structure
1864 * @rx_ring: ring to clean the resources from
1866 * Free all receive software resources
1868 static void igb_free_rx_resources(struct igb_adapter
*adapter
,
1869 struct igb_ring
*rx_ring
)
1871 struct pci_dev
*pdev
= adapter
->pdev
;
1873 igb_clean_rx_ring(adapter
, rx_ring
);
1875 vfree(rx_ring
->buffer_info
);
1876 rx_ring
->buffer_info
= NULL
;
1878 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
1880 rx_ring
->desc
= NULL
;
1884 * igb_free_all_rx_resources - Free Rx Resources for All Queues
1885 * @adapter: board private structure
1887 * Free all receive software resources
1889 static void igb_free_all_rx_resources(struct igb_adapter
*adapter
)
1893 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1894 igb_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1898 * igb_clean_rx_ring - Free Rx Buffers per Queue
1899 * @adapter: board private structure
1900 * @rx_ring: ring to free buffers from
1902 static void igb_clean_rx_ring(struct igb_adapter
*adapter
,
1903 struct igb_ring
*rx_ring
)
1905 struct igb_buffer
*buffer_info
;
1906 struct pci_dev
*pdev
= adapter
->pdev
;
1910 if (!rx_ring
->buffer_info
)
1912 /* Free all the Rx ring sk_buffs */
1913 for (i
= 0; i
< rx_ring
->count
; i
++) {
1914 buffer_info
= &rx_ring
->buffer_info
[i
];
1915 if (buffer_info
->dma
) {
1916 if (adapter
->rx_ps_hdr_size
)
1917 pci_unmap_single(pdev
, buffer_info
->dma
,
1918 adapter
->rx_ps_hdr_size
,
1919 PCI_DMA_FROMDEVICE
);
1921 pci_unmap_single(pdev
, buffer_info
->dma
,
1922 adapter
->rx_buffer_len
,
1923 PCI_DMA_FROMDEVICE
);
1924 buffer_info
->dma
= 0;
1927 if (buffer_info
->skb
) {
1928 dev_kfree_skb(buffer_info
->skb
);
1929 buffer_info
->skb
= NULL
;
1931 if (buffer_info
->page
) {
1932 pci_unmap_page(pdev
, buffer_info
->page_dma
,
1933 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
1934 put_page(buffer_info
->page
);
1935 buffer_info
->page
= NULL
;
1936 buffer_info
->page_dma
= 0;
1940 /* there also may be some cached data from a chained receive */
1941 if (rx_ring
->pending_skb
) {
1942 dev_kfree_skb(rx_ring
->pending_skb
);
1943 rx_ring
->pending_skb
= NULL
;
1946 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
1947 memset(rx_ring
->buffer_info
, 0, size
);
1949 /* Zero out the descriptor ring */
1950 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1952 rx_ring
->next_to_clean
= 0;
1953 rx_ring
->next_to_use
= 0;
1955 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
1956 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
1960 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
1961 * @adapter: board private structure
1963 static void igb_clean_all_rx_rings(struct igb_adapter
*adapter
)
1967 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1968 igb_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
1972 * igb_set_mac - Change the Ethernet Address of the NIC
1973 * @netdev: network interface device structure
1974 * @p: pointer to an address structure
1976 * Returns 0 on success, negative on failure
1978 static int igb_set_mac(struct net_device
*netdev
, void *p
)
1980 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1981 struct sockaddr
*addr
= p
;
1983 if (!is_valid_ether_addr(addr
->sa_data
))
1984 return -EADDRNOTAVAIL
;
1986 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
1987 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
1989 adapter
->hw
.mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
1995 * igb_set_multi - Multicast and Promiscuous mode set
1996 * @netdev: network interface device structure
1998 * The set_multi entry point is called whenever the multicast address
1999 * list or the network interface flags are updated. This routine is
2000 * responsible for configuring the hardware for proper multicast,
2001 * promiscuous mode, and all-multi behavior.
2003 static void igb_set_multi(struct net_device
*netdev
)
2005 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2006 struct e1000_hw
*hw
= &adapter
->hw
;
2007 struct e1000_mac_info
*mac
= &hw
->mac
;
2008 struct dev_mc_list
*mc_ptr
;
2013 /* Check for Promiscuous and All Multicast modes */
2015 rctl
= rd32(E1000_RCTL
);
2017 if (netdev
->flags
& IFF_PROMISC
)
2018 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2019 else if (netdev
->flags
& IFF_ALLMULTI
) {
2020 rctl
|= E1000_RCTL_MPE
;
2021 rctl
&= ~E1000_RCTL_UPE
;
2023 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2025 wr32(E1000_RCTL
, rctl
);
2027 if (!netdev
->mc_count
) {
2028 /* nothing to program, so clear mc list */
2029 igb_update_mc_addr_list(hw
, NULL
, 0, 1,
2030 mac
->rar_entry_count
);
2034 mta_list
= kzalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
2038 /* The shared function expects a packed array of only addresses. */
2039 mc_ptr
= netdev
->mc_list
;
2041 for (i
= 0; i
< netdev
->mc_count
; i
++) {
2044 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
, ETH_ALEN
);
2045 mc_ptr
= mc_ptr
->next
;
2047 igb_update_mc_addr_list(hw
, mta_list
, i
, 1, mac
->rar_entry_count
);
2051 /* Need to wait a few seconds after link up to get diagnostic information from
2053 static void igb_update_phy_info(unsigned long data
)
2055 struct igb_adapter
*adapter
= (struct igb_adapter
*) data
;
2056 if (adapter
->hw
.phy
.ops
.get_phy_info
)
2057 adapter
->hw
.phy
.ops
.get_phy_info(&adapter
->hw
);
2061 * igb_watchdog - Timer Call-back
2062 * @data: pointer to adapter cast into an unsigned long
2064 static void igb_watchdog(unsigned long data
)
2066 struct igb_adapter
*adapter
= (struct igb_adapter
*)data
;
2067 /* Do the rest outside of interrupt context */
2068 schedule_work(&adapter
->watchdog_task
);
2071 static void igb_watchdog_task(struct work_struct
*work
)
2073 struct igb_adapter
*adapter
= container_of(work
,
2074 struct igb_adapter
, watchdog_task
);
2075 struct e1000_hw
*hw
= &adapter
->hw
;
2077 struct net_device
*netdev
= adapter
->netdev
;
2078 struct igb_ring
*tx_ring
= adapter
->tx_ring
;
2079 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
2083 if ((netif_carrier_ok(netdev
)) &&
2084 (rd32(E1000_STATUS
) & E1000_STATUS_LU
))
2087 ret_val
= hw
->mac
.ops
.check_for_link(&adapter
->hw
);
2088 if ((ret_val
== E1000_ERR_PHY
) &&
2089 (hw
->phy
.type
== e1000_phy_igp_3
) &&
2091 E1000_PHY_CTRL_GBE_DISABLE
))
2092 dev_info(&adapter
->pdev
->dev
,
2093 "Gigabit has been disabled, downgrading speed\n");
2095 if ((hw
->phy
.media_type
== e1000_media_type_internal_serdes
) &&
2096 !(rd32(E1000_TXCW
) & E1000_TXCW_ANE
))
2097 link
= mac
->serdes_has_link
;
2099 link
= rd32(E1000_STATUS
) &
2103 if (!netif_carrier_ok(netdev
)) {
2105 hw
->mac
.ops
.get_speed_and_duplex(&adapter
->hw
,
2106 &adapter
->link_speed
,
2107 &adapter
->link_duplex
);
2109 ctrl
= rd32(E1000_CTRL
);
2110 dev_info(&adapter
->pdev
->dev
,
2111 "NIC Link is Up %d Mbps %s, "
2112 "Flow Control: %s\n",
2113 adapter
->link_speed
,
2114 adapter
->link_duplex
== FULL_DUPLEX
?
2115 "Full Duplex" : "Half Duplex",
2116 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2117 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2118 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2119 E1000_CTRL_TFCE
) ? "TX" : "None")));
2121 /* tweak tx_queue_len according to speed/duplex and
2122 * adjust the timeout factor */
2123 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2124 adapter
->tx_timeout_factor
= 1;
2125 switch (adapter
->link_speed
) {
2127 netdev
->tx_queue_len
= 10;
2128 adapter
->tx_timeout_factor
= 14;
2131 netdev
->tx_queue_len
= 100;
2132 /* maybe add some timeout factor ? */
2136 netif_carrier_on(netdev
);
2137 netif_wake_queue(netdev
);
2139 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2140 mod_timer(&adapter
->phy_info_timer
,
2141 round_jiffies(jiffies
+ 2 * HZ
));
2144 if (netif_carrier_ok(netdev
)) {
2145 adapter
->link_speed
= 0;
2146 adapter
->link_duplex
= 0;
2147 dev_info(&adapter
->pdev
->dev
, "NIC Link is Down\n");
2148 netif_carrier_off(netdev
);
2149 netif_stop_queue(netdev
);
2150 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2151 mod_timer(&adapter
->phy_info_timer
,
2152 round_jiffies(jiffies
+ 2 * HZ
));
2157 igb_update_stats(adapter
);
2159 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2160 adapter
->tpt_old
= adapter
->stats
.tpt
;
2161 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2162 adapter
->colc_old
= adapter
->stats
.colc
;
2164 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
2165 adapter
->gorc_old
= adapter
->stats
.gorc
;
2166 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
2167 adapter
->gotc_old
= adapter
->stats
.gotc
;
2169 igb_update_adaptive(&adapter
->hw
);
2171 if (!netif_carrier_ok(netdev
)) {
2172 if (IGB_DESC_UNUSED(tx_ring
) + 1 < tx_ring
->count
) {
2173 /* We've lost link, so the controller stops DMA,
2174 * but we've got queued Tx work that's never going
2175 * to get done, so reset controller to flush Tx.
2176 * (Do the reset outside of interrupt context). */
2177 adapter
->tx_timeout_count
++;
2178 schedule_work(&adapter
->reset_task
);
2182 /* Cause software interrupt to ensure rx ring is cleaned */
2183 wr32(E1000_ICS
, E1000_ICS_RXDMT0
);
2185 /* Force detection of hung controller every watchdog period */
2186 tx_ring
->detect_tx_hung
= true;
2188 /* Reset the timer */
2189 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2190 mod_timer(&adapter
->watchdog_timer
,
2191 round_jiffies(jiffies
+ 2 * HZ
));
2194 enum latency_range
{
2198 latency_invalid
= 255
2202 static void igb_lower_rx_eitr(struct igb_adapter
*adapter
,
2203 struct igb_ring
*rx_ring
)
2205 struct e1000_hw
*hw
= &adapter
->hw
;
2208 new_val
= rx_ring
->itr_val
/ 2;
2209 if (new_val
< IGB_MIN_DYN_ITR
)
2210 new_val
= IGB_MIN_DYN_ITR
;
2212 if (new_val
!= rx_ring
->itr_val
) {
2213 rx_ring
->itr_val
= new_val
;
2214 wr32(rx_ring
->itr_register
,
2215 1000000000 / (new_val
* 256));
2219 static void igb_raise_rx_eitr(struct igb_adapter
*adapter
,
2220 struct igb_ring
*rx_ring
)
2222 struct e1000_hw
*hw
= &adapter
->hw
;
2225 new_val
= rx_ring
->itr_val
* 2;
2226 if (new_val
> IGB_MAX_DYN_ITR
)
2227 new_val
= IGB_MAX_DYN_ITR
;
2229 if (new_val
!= rx_ring
->itr_val
) {
2230 rx_ring
->itr_val
= new_val
;
2231 wr32(rx_ring
->itr_register
,
2232 1000000000 / (new_val
* 256));
2237 * igb_update_itr - update the dynamic ITR value based on statistics
2238 * Stores a new ITR value based on packets and byte
2239 * counts during the last interrupt. The advantage of per interrupt
2240 * computation is faster updates and more accurate ITR for the current
2241 * traffic pattern. Constants in this function were computed
2242 * based on theoretical maximum wire speed and thresholds were set based
2243 * on testing data as well as attempting to minimize response time
2244 * while increasing bulk throughput.
2245 * this functionality is controlled by the InterruptThrottleRate module
2246 * parameter (see igb_param.c)
2247 * NOTE: These calculations are only valid when operating in a single-
2248 * queue environment.
2249 * @adapter: pointer to adapter
2250 * @itr_setting: current adapter->itr
2251 * @packets: the number of packets during this measurement interval
2252 * @bytes: the number of bytes during this measurement interval
2254 static unsigned int igb_update_itr(struct igb_adapter
*adapter
, u16 itr_setting
,
2255 int packets
, int bytes
)
2257 unsigned int retval
= itr_setting
;
2260 goto update_itr_done
;
2262 switch (itr_setting
) {
2263 case lowest_latency
:
2264 /* handle TSO and jumbo frames */
2265 if (bytes
/packets
> 8000)
2266 retval
= bulk_latency
;
2267 else if ((packets
< 5) && (bytes
> 512))
2268 retval
= low_latency
;
2270 case low_latency
: /* 50 usec aka 20000 ints/s */
2271 if (bytes
> 10000) {
2272 /* this if handles the TSO accounting */
2273 if (bytes
/packets
> 8000) {
2274 retval
= bulk_latency
;
2275 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
2276 retval
= bulk_latency
;
2277 } else if ((packets
> 35)) {
2278 retval
= lowest_latency
;
2280 } else if (bytes
/packets
> 2000) {
2281 retval
= bulk_latency
;
2282 } else if (packets
<= 2 && bytes
< 512) {
2283 retval
= lowest_latency
;
2286 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2287 if (bytes
> 25000) {
2289 retval
= low_latency
;
2290 } else if (bytes
< 6000) {
2291 retval
= low_latency
;
2300 static void igb_set_itr(struct igb_adapter
*adapter
, u16 itr_register
,
2304 u32 new_itr
= adapter
->itr
;
2306 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2307 if (adapter
->link_speed
!= SPEED_1000
) {
2313 adapter
->rx_itr
= igb_update_itr(adapter
,
2315 adapter
->rx_ring
->total_packets
,
2316 adapter
->rx_ring
->total_bytes
);
2317 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2318 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2319 adapter
->rx_itr
= low_latency
;
2322 adapter
->tx_itr
= igb_update_itr(adapter
,
2324 adapter
->tx_ring
->total_packets
,
2325 adapter
->tx_ring
->total_bytes
);
2326 /* conservative mode (itr 3) eliminates the
2327 * lowest_latency setting */
2328 if (adapter
->itr_setting
== 3 &&
2329 adapter
->tx_itr
== lowest_latency
)
2330 adapter
->tx_itr
= low_latency
;
2332 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2334 current_itr
= adapter
->rx_itr
;
2337 switch (current_itr
) {
2338 /* counts and packets in update_itr are dependent on these numbers */
2339 case lowest_latency
:
2343 new_itr
= 20000; /* aka hwitr = ~200 */
2353 if (new_itr
!= adapter
->itr
) {
2354 /* this attempts to bias the interrupt rate towards Bulk
2355 * by adding intermediate steps when interrupt rate is
2357 new_itr
= new_itr
> adapter
->itr
?
2358 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2360 /* Don't write the value here; it resets the adapter's
2361 * internal timer, and causes us to delay far longer than
2362 * we should between interrupts. Instead, we write the ITR
2363 * value at the beginning of the next interrupt so the timing
2364 * ends up being correct.
2366 adapter
->itr
= new_itr
;
2367 adapter
->set_itr
= 1;
2374 #define IGB_TX_FLAGS_CSUM 0x00000001
2375 #define IGB_TX_FLAGS_VLAN 0x00000002
2376 #define IGB_TX_FLAGS_TSO 0x00000004
2377 #define IGB_TX_FLAGS_IPV4 0x00000008
2378 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2379 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2381 static inline int igb_tso_adv(struct igb_adapter
*adapter
,
2382 struct igb_ring
*tx_ring
,
2383 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
2385 struct e1000_adv_tx_context_desc
*context_desc
;
2388 struct igb_buffer
*buffer_info
;
2389 u32 info
= 0, tu_cmd
= 0;
2390 u32 mss_l4len_idx
, l4len
;
2393 if (skb_header_cloned(skb
)) {
2394 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2399 l4len
= tcp_hdrlen(skb
);
2402 if (skb
->protocol
== htons(ETH_P_IP
)) {
2403 struct iphdr
*iph
= ip_hdr(skb
);
2406 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2410 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
2411 ipv6_hdr(skb
)->payload_len
= 0;
2412 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2413 &ipv6_hdr(skb
)->daddr
,
2417 i
= tx_ring
->next_to_use
;
2419 buffer_info
= &tx_ring
->buffer_info
[i
];
2420 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
2421 /* VLAN MACLEN IPLEN */
2422 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2423 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
2424 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
2425 *hdr_len
+= skb_network_offset(skb
);
2426 info
|= skb_network_header_len(skb
);
2427 *hdr_len
+= skb_network_header_len(skb
);
2428 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
2430 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2431 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
2433 if (skb
->protocol
== htons(ETH_P_IP
))
2434 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2435 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2437 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2440 mss_l4len_idx
= (skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
);
2441 mss_l4len_idx
|= (l4len
<< E1000_ADVTXD_L4LEN_SHIFT
);
2443 /* Context index must be unique per ring. Luckily, so is the interrupt
2445 mss_l4len_idx
|= tx_ring
->eims_value
>> 4;
2447 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
2448 context_desc
->seqnum_seed
= 0;
2450 buffer_info
->time_stamp
= jiffies
;
2451 buffer_info
->dma
= 0;
2453 if (i
== tx_ring
->count
)
2456 tx_ring
->next_to_use
= i
;
2461 static inline bool igb_tx_csum_adv(struct igb_adapter
*adapter
,
2462 struct igb_ring
*tx_ring
,
2463 struct sk_buff
*skb
, u32 tx_flags
)
2465 struct e1000_adv_tx_context_desc
*context_desc
;
2467 struct igb_buffer
*buffer_info
;
2468 u32 info
= 0, tu_cmd
= 0;
2470 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
2471 (tx_flags
& IGB_TX_FLAGS_VLAN
)) {
2472 i
= tx_ring
->next_to_use
;
2473 buffer_info
= &tx_ring
->buffer_info
[i
];
2474 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
2476 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2477 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
2478 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
2479 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2480 info
|= skb_network_header_len(skb
);
2482 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
2484 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
2486 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2487 if (skb
->protocol
== htons(ETH_P_IP
))
2488 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2489 if (skb
->sk
&& (skb
->sk
->sk_protocol
== IPPROTO_TCP
))
2490 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2493 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2494 context_desc
->seqnum_seed
= 0;
2495 context_desc
->mss_l4len_idx
=
2496 cpu_to_le32(tx_ring
->eims_value
>> 4);
2498 buffer_info
->time_stamp
= jiffies
;
2499 buffer_info
->dma
= 0;
2502 if (i
== tx_ring
->count
)
2504 tx_ring
->next_to_use
= i
;
2513 #define IGB_MAX_TXD_PWR 16
2514 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2516 static inline int igb_tx_map_adv(struct igb_adapter
*adapter
,
2517 struct igb_ring
*tx_ring
,
2518 struct sk_buff
*skb
)
2520 struct igb_buffer
*buffer_info
;
2521 unsigned int len
= skb_headlen(skb
);
2522 unsigned int count
= 0, i
;
2525 i
= tx_ring
->next_to_use
;
2527 buffer_info
= &tx_ring
->buffer_info
[i
];
2528 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
2529 buffer_info
->length
= len
;
2530 /* set time_stamp *before* dma to help avoid a possible race */
2531 buffer_info
->time_stamp
= jiffies
;
2532 buffer_info
->dma
= pci_map_single(adapter
->pdev
, skb
->data
, len
,
2536 if (i
== tx_ring
->count
)
2539 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
2540 struct skb_frag_struct
*frag
;
2542 frag
= &skb_shinfo(skb
)->frags
[f
];
2545 buffer_info
= &tx_ring
->buffer_info
[i
];
2546 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
2547 buffer_info
->length
= len
;
2548 buffer_info
->time_stamp
= jiffies
;
2549 buffer_info
->dma
= pci_map_page(adapter
->pdev
,
2557 if (i
== tx_ring
->count
)
2561 i
= (i
== 0) ? tx_ring
->count
- 1 : i
- 1;
2562 tx_ring
->buffer_info
[i
].skb
= skb
;
2567 static inline void igb_tx_queue_adv(struct igb_adapter
*adapter
,
2568 struct igb_ring
*tx_ring
,
2569 int tx_flags
, int count
, u32 paylen
,
2572 union e1000_adv_tx_desc
*tx_desc
= NULL
;
2573 struct igb_buffer
*buffer_info
;
2574 u32 olinfo_status
= 0, cmd_type_len
;
2577 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
2578 E1000_ADVTXD_DCMD_DEXT
);
2580 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2581 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
2583 if (tx_flags
& IGB_TX_FLAGS_TSO
) {
2584 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
2586 /* insert tcp checksum */
2587 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2589 /* insert ip checksum */
2590 if (tx_flags
& IGB_TX_FLAGS_IPV4
)
2591 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
2593 } else if (tx_flags
& IGB_TX_FLAGS_CSUM
) {
2594 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2597 if (tx_flags
& (IGB_TX_FLAGS_CSUM
| IGB_TX_FLAGS_TSO
|
2599 olinfo_status
|= tx_ring
->eims_value
>> 4;
2601 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
2603 i
= tx_ring
->next_to_use
;
2605 buffer_info
= &tx_ring
->buffer_info
[i
];
2606 tx_desc
= E1000_TX_DESC_ADV(*tx_ring
, i
);
2607 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2608 tx_desc
->read
.cmd_type_len
=
2609 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
2610 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
2612 if (i
== tx_ring
->count
)
2616 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(adapter
->txd_cmd
);
2617 /* Force memory writes to complete before letting h/w
2618 * know there are new descriptors to fetch. (Only
2619 * applicable for weak-ordered memory model archs,
2620 * such as IA-64). */
2623 tx_ring
->next_to_use
= i
;
2624 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2625 /* we need this if more than one processor can write to our tail
2626 * at a time, it syncronizes IO on IA64/Altix systems */
2630 static int __igb_maybe_stop_tx(struct net_device
*netdev
,
2631 struct igb_ring
*tx_ring
, int size
)
2633 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2635 netif_stop_queue(netdev
);
2636 /* Herbert's original patch had:
2637 * smp_mb__after_netif_stop_queue();
2638 * but since that doesn't exist yet, just open code it. */
2641 /* We need to check again in a case another CPU has just
2642 * made room available. */
2643 if (IGB_DESC_UNUSED(tx_ring
) < size
)
2647 netif_start_queue(netdev
);
2648 ++adapter
->restart_queue
;
2652 static int igb_maybe_stop_tx(struct net_device
*netdev
,
2653 struct igb_ring
*tx_ring
, int size
)
2655 if (IGB_DESC_UNUSED(tx_ring
) >= size
)
2657 return __igb_maybe_stop_tx(netdev
, tx_ring
, size
);
2660 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2662 static int igb_xmit_frame_ring_adv(struct sk_buff
*skb
,
2663 struct net_device
*netdev
,
2664 struct igb_ring
*tx_ring
)
2666 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2667 unsigned int tx_flags
= 0;
2669 unsigned long irq_flags
;
2673 len
= skb_headlen(skb
);
2675 if (test_bit(__IGB_DOWN
, &adapter
->state
)) {
2676 dev_kfree_skb_any(skb
);
2677 return NETDEV_TX_OK
;
2680 if (skb
->len
<= 0) {
2681 dev_kfree_skb_any(skb
);
2682 return NETDEV_TX_OK
;
2685 if (!spin_trylock_irqsave(&tx_ring
->tx_lock
, irq_flags
))
2686 /* Collision - tell upper layer to requeue */
2687 return NETDEV_TX_LOCKED
;
2689 /* need: 1 descriptor per page,
2690 * + 2 desc gap to keep tail from touching head,
2691 * + 1 desc for skb->data,
2692 * + 1 desc for context descriptor,
2693 * otherwise try next time */
2694 if (igb_maybe_stop_tx(netdev
, tx_ring
, skb_shinfo(skb
)->nr_frags
+ 4)) {
2695 /* this is a hard error */
2696 spin_unlock_irqrestore(&tx_ring
->tx_lock
, irq_flags
);
2697 return NETDEV_TX_BUSY
;
2700 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
2701 tx_flags
|= IGB_TX_FLAGS_VLAN
;
2702 tx_flags
|= (vlan_tx_tag_get(skb
) << IGB_TX_FLAGS_VLAN_SHIFT
);
2705 tso
= skb_is_gso(skb
) ? igb_tso_adv(adapter
, tx_ring
, skb
, tx_flags
,
2709 dev_kfree_skb_any(skb
);
2710 spin_unlock_irqrestore(&tx_ring
->tx_lock
, irq_flags
);
2711 return NETDEV_TX_OK
;
2715 tx_flags
|= IGB_TX_FLAGS_TSO
;
2716 else if (igb_tx_csum_adv(adapter
, tx_ring
, skb
, tx_flags
))
2717 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2718 tx_flags
|= IGB_TX_FLAGS_CSUM
;
2720 if (skb
->protocol
== htons(ETH_P_IP
))
2721 tx_flags
|= IGB_TX_FLAGS_IPV4
;
2723 igb_tx_queue_adv(adapter
, tx_ring
, tx_flags
,
2724 igb_tx_map_adv(adapter
, tx_ring
, skb
),
2727 netdev
->trans_start
= jiffies
;
2729 /* Make sure there is space in the ring for the next send. */
2730 igb_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 4);
2732 spin_unlock_irqrestore(&tx_ring
->tx_lock
, irq_flags
);
2733 return NETDEV_TX_OK
;
2736 static int igb_xmit_frame_adv(struct sk_buff
*skb
, struct net_device
*netdev
)
2738 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2739 struct igb_ring
*tx_ring
= &adapter
->tx_ring
[0];
2741 /* This goes back to the question of how to logically map a tx queue
2742 * to a flow. Right now, performance is impacted slightly negatively
2743 * if using multiple tx queues. If the stack breaks away from a
2744 * single qdisc implementation, we can look at this again. */
2745 return (igb_xmit_frame_ring_adv(skb
, netdev
, tx_ring
));
2749 * igb_tx_timeout - Respond to a Tx Hang
2750 * @netdev: network interface device structure
2752 static void igb_tx_timeout(struct net_device
*netdev
)
2754 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2755 struct e1000_hw
*hw
= &adapter
->hw
;
2757 /* Do the reset outside of interrupt context */
2758 adapter
->tx_timeout_count
++;
2759 schedule_work(&adapter
->reset_task
);
2760 wr32(E1000_EICS
, adapter
->eims_enable_mask
&
2761 ~(E1000_EIMS_TCP_TIMER
| E1000_EIMS_OTHER
));
2764 static void igb_reset_task(struct work_struct
*work
)
2766 struct igb_adapter
*adapter
;
2767 adapter
= container_of(work
, struct igb_adapter
, reset_task
);
2769 igb_reinit_locked(adapter
);
2773 * igb_get_stats - Get System Network Statistics
2774 * @netdev: network interface device structure
2776 * Returns the address of the device statistics structure.
2777 * The statistics are actually updated from the timer callback.
2779 static struct net_device_stats
*
2780 igb_get_stats(struct net_device
*netdev
)
2782 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2784 /* only return the current stats */
2785 return &adapter
->net_stats
;
2789 * igb_change_mtu - Change the Maximum Transfer Unit
2790 * @netdev: network interface device structure
2791 * @new_mtu: new value for maximum frame size
2793 * Returns 0 on success, negative on failure
2795 static int igb_change_mtu(struct net_device
*netdev
, int new_mtu
)
2797 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2798 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2800 if ((max_frame
< ETH_ZLEN
+ ETH_FCS_LEN
) ||
2801 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
2802 dev_err(&adapter
->pdev
->dev
, "Invalid MTU setting\n");
2806 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2807 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
2808 dev_err(&adapter
->pdev
->dev
, "MTU > 9216 not supported.\n");
2812 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
2814 /* igb_down has a dependency on max_frame_size */
2815 adapter
->max_frame_size
= max_frame
;
2816 if (netif_running(netdev
))
2819 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2820 * means we reserve 2 more, this pushes us to allocate from the next
2822 * i.e. RXBUFFER_2048 --> size-4096 slab
2825 if (max_frame
<= IGB_RXBUFFER_256
)
2826 adapter
->rx_buffer_len
= IGB_RXBUFFER_256
;
2827 else if (max_frame
<= IGB_RXBUFFER_512
)
2828 adapter
->rx_buffer_len
= IGB_RXBUFFER_512
;
2829 else if (max_frame
<= IGB_RXBUFFER_1024
)
2830 adapter
->rx_buffer_len
= IGB_RXBUFFER_1024
;
2831 else if (max_frame
<= IGB_RXBUFFER_2048
)
2832 adapter
->rx_buffer_len
= IGB_RXBUFFER_2048
;
2834 adapter
->rx_buffer_len
= IGB_RXBUFFER_4096
;
2835 /* adjust allocation if LPE protects us, and we aren't using SBP */
2836 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
2837 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
))
2838 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
2840 dev_info(&adapter
->pdev
->dev
, "changing MTU from %d to %d\n",
2841 netdev
->mtu
, new_mtu
);
2842 netdev
->mtu
= new_mtu
;
2844 if (netif_running(netdev
))
2849 clear_bit(__IGB_RESETTING
, &adapter
->state
);
2855 * igb_update_stats - Update the board statistics counters
2856 * @adapter: board private structure
2859 void igb_update_stats(struct igb_adapter
*adapter
)
2861 struct e1000_hw
*hw
= &adapter
->hw
;
2862 struct pci_dev
*pdev
= adapter
->pdev
;
2865 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2868 * Prevent stats update while adapter is being reset, or if the pci
2869 * connection is down.
2871 if (adapter
->link_speed
== 0)
2873 if (pci_channel_offline(pdev
))
2876 adapter
->stats
.crcerrs
+= rd32(E1000_CRCERRS
);
2877 adapter
->stats
.gprc
+= rd32(E1000_GPRC
);
2878 adapter
->stats
.gorc
+= rd32(E1000_GORCL
);
2879 rd32(E1000_GORCH
); /* clear GORCL */
2880 adapter
->stats
.bprc
+= rd32(E1000_BPRC
);
2881 adapter
->stats
.mprc
+= rd32(E1000_MPRC
);
2882 adapter
->stats
.roc
+= rd32(E1000_ROC
);
2884 adapter
->stats
.prc64
+= rd32(E1000_PRC64
);
2885 adapter
->stats
.prc127
+= rd32(E1000_PRC127
);
2886 adapter
->stats
.prc255
+= rd32(E1000_PRC255
);
2887 adapter
->stats
.prc511
+= rd32(E1000_PRC511
);
2888 adapter
->stats
.prc1023
+= rd32(E1000_PRC1023
);
2889 adapter
->stats
.prc1522
+= rd32(E1000_PRC1522
);
2890 adapter
->stats
.symerrs
+= rd32(E1000_SYMERRS
);
2891 adapter
->stats
.sec
+= rd32(E1000_SEC
);
2893 adapter
->stats
.mpc
+= rd32(E1000_MPC
);
2894 adapter
->stats
.scc
+= rd32(E1000_SCC
);
2895 adapter
->stats
.ecol
+= rd32(E1000_ECOL
);
2896 adapter
->stats
.mcc
+= rd32(E1000_MCC
);
2897 adapter
->stats
.latecol
+= rd32(E1000_LATECOL
);
2898 adapter
->stats
.dc
+= rd32(E1000_DC
);
2899 adapter
->stats
.rlec
+= rd32(E1000_RLEC
);
2900 adapter
->stats
.xonrxc
+= rd32(E1000_XONRXC
);
2901 adapter
->stats
.xontxc
+= rd32(E1000_XONTXC
);
2902 adapter
->stats
.xoffrxc
+= rd32(E1000_XOFFRXC
);
2903 adapter
->stats
.xofftxc
+= rd32(E1000_XOFFTXC
);
2904 adapter
->stats
.fcruc
+= rd32(E1000_FCRUC
);
2905 adapter
->stats
.gptc
+= rd32(E1000_GPTC
);
2906 adapter
->stats
.gotc
+= rd32(E1000_GOTCL
);
2907 rd32(E1000_GOTCH
); /* clear GOTCL */
2908 adapter
->stats
.rnbc
+= rd32(E1000_RNBC
);
2909 adapter
->stats
.ruc
+= rd32(E1000_RUC
);
2910 adapter
->stats
.rfc
+= rd32(E1000_RFC
);
2911 adapter
->stats
.rjc
+= rd32(E1000_RJC
);
2912 adapter
->stats
.tor
+= rd32(E1000_TORH
);
2913 adapter
->stats
.tot
+= rd32(E1000_TOTH
);
2914 adapter
->stats
.tpr
+= rd32(E1000_TPR
);
2916 adapter
->stats
.ptc64
+= rd32(E1000_PTC64
);
2917 adapter
->stats
.ptc127
+= rd32(E1000_PTC127
);
2918 adapter
->stats
.ptc255
+= rd32(E1000_PTC255
);
2919 adapter
->stats
.ptc511
+= rd32(E1000_PTC511
);
2920 adapter
->stats
.ptc1023
+= rd32(E1000_PTC1023
);
2921 adapter
->stats
.ptc1522
+= rd32(E1000_PTC1522
);
2923 adapter
->stats
.mptc
+= rd32(E1000_MPTC
);
2924 adapter
->stats
.bptc
+= rd32(E1000_BPTC
);
2926 /* used for adaptive IFS */
2928 hw
->mac
.tx_packet_delta
= rd32(E1000_TPT
);
2929 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
2930 hw
->mac
.collision_delta
= rd32(E1000_COLC
);
2931 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
2933 adapter
->stats
.algnerrc
+= rd32(E1000_ALGNERRC
);
2934 adapter
->stats
.rxerrc
+= rd32(E1000_RXERRC
);
2935 adapter
->stats
.tncrs
+= rd32(E1000_TNCRS
);
2936 adapter
->stats
.tsctc
+= rd32(E1000_TSCTC
);
2937 adapter
->stats
.tsctfc
+= rd32(E1000_TSCTFC
);
2939 adapter
->stats
.iac
+= rd32(E1000_IAC
);
2940 adapter
->stats
.icrxoc
+= rd32(E1000_ICRXOC
);
2941 adapter
->stats
.icrxptc
+= rd32(E1000_ICRXPTC
);
2942 adapter
->stats
.icrxatc
+= rd32(E1000_ICRXATC
);
2943 adapter
->stats
.ictxptc
+= rd32(E1000_ICTXPTC
);
2944 adapter
->stats
.ictxatc
+= rd32(E1000_ICTXATC
);
2945 adapter
->stats
.ictxqec
+= rd32(E1000_ICTXQEC
);
2946 adapter
->stats
.ictxqmtc
+= rd32(E1000_ICTXQMTC
);
2947 adapter
->stats
.icrxdmtc
+= rd32(E1000_ICRXDMTC
);
2949 /* Fill out the OS statistics structure */
2950 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
2951 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
2955 /* RLEC on some newer hardware can be incorrect so build
2956 * our own version based on RUC and ROC */
2957 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
2958 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
2959 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
2960 adapter
->stats
.cexterr
;
2961 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.ruc
+
2963 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
2964 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
2965 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
2968 adapter
->net_stats
.tx_errors
= adapter
->stats
.ecol
+
2969 adapter
->stats
.latecol
;
2970 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
2971 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
2972 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
2974 /* Tx Dropped needs to be maintained elsewhere */
2977 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
2978 if ((adapter
->link_speed
== SPEED_1000
) &&
2979 (!hw
->phy
.ops
.read_phy_reg(hw
, PHY_1000T_STATUS
,
2981 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
2982 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
2986 /* Management Stats */
2987 adapter
->stats
.mgptc
+= rd32(E1000_MGTPTC
);
2988 adapter
->stats
.mgprc
+= rd32(E1000_MGTPRC
);
2989 adapter
->stats
.mgpdc
+= rd32(E1000_MGTPDC
);
2993 static irqreturn_t
igb_msix_other(int irq
, void *data
)
2995 struct net_device
*netdev
= data
;
2996 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2997 struct e1000_hw
*hw
= &adapter
->hw
;
2999 /* disable interrupts from the "other" bit, avoid re-entry */
3000 wr32(E1000_EIMC
, E1000_EIMS_OTHER
);
3002 eicr
= rd32(E1000_EICR
);
3004 if (eicr
& E1000_EIMS_OTHER
) {
3005 u32 icr
= rd32(E1000_ICR
);
3006 /* reading ICR causes bit 31 of EICR to be cleared */
3007 if (!(icr
& E1000_ICR_LSC
))
3008 goto no_link_interrupt
;
3009 hw
->mac
.get_link_status
= 1;
3010 /* guard against interrupt when we're going down */
3011 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3012 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3016 wr32(E1000_IMS
, E1000_IMS_LSC
);
3017 wr32(E1000_EIMS
, E1000_EIMS_OTHER
);
3022 static irqreturn_t
igb_msix_tx(int irq
, void *data
)
3024 struct igb_ring
*tx_ring
= data
;
3025 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3026 struct e1000_hw
*hw
= &adapter
->hw
;
3028 if (!tx_ring
->itr_val
)
3029 wr32(E1000_EIMC
, tx_ring
->eims_value
);
3031 tx_ring
->total_bytes
= 0;
3032 tx_ring
->total_packets
= 0;
3033 if (!igb_clean_tx_irq(adapter
, tx_ring
))
3034 /* Ring was not completely cleaned, so fire another interrupt */
3035 wr32(E1000_EICS
, tx_ring
->eims_value
);
3037 if (!tx_ring
->itr_val
)
3038 wr32(E1000_EIMS
, tx_ring
->eims_value
);
3042 static irqreturn_t
igb_msix_rx(int irq
, void *data
)
3044 struct igb_ring
*rx_ring
= data
;
3045 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3046 struct e1000_hw
*hw
= &adapter
->hw
;
3048 if (!rx_ring
->itr_val
)
3049 wr32(E1000_EIMC
, rx_ring
->eims_value
);
3051 if (netif_rx_schedule_prep(adapter
->netdev
, &rx_ring
->napi
)) {
3052 rx_ring
->total_bytes
= 0;
3053 rx_ring
->total_packets
= 0;
3054 rx_ring
->no_itr_adjust
= 0;
3055 __netif_rx_schedule(adapter
->netdev
, &rx_ring
->napi
);
3057 if (!rx_ring
->no_itr_adjust
) {
3058 igb_lower_rx_eitr(adapter
, rx_ring
);
3059 rx_ring
->no_itr_adjust
= 1;
3068 * igb_intr_msi - Interrupt Handler
3069 * @irq: interrupt number
3070 * @data: pointer to a network interface device structure
3072 static irqreturn_t
igb_intr_msi(int irq
, void *data
)
3074 struct net_device
*netdev
= data
;
3075 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3076 struct napi_struct
*napi
= &adapter
->napi
;
3077 struct e1000_hw
*hw
= &adapter
->hw
;
3078 /* read ICR disables interrupts using IAM */
3079 u32 icr
= rd32(E1000_ICR
);
3081 /* Write the ITR value calculated at the end of the
3082 * previous interrupt.
3084 if (adapter
->set_itr
) {
3086 1000000000 / (adapter
->itr
* 256));
3087 adapter
->set_itr
= 0;
3090 /* read ICR disables interrupts using IAM */
3091 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3092 hw
->mac
.get_link_status
= 1;
3093 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3094 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3097 if (netif_rx_schedule_prep(netdev
, napi
)) {
3098 adapter
->tx_ring
->total_bytes
= 0;
3099 adapter
->tx_ring
->total_packets
= 0;
3100 adapter
->rx_ring
->total_bytes
= 0;
3101 adapter
->rx_ring
->total_packets
= 0;
3102 __netif_rx_schedule(netdev
, napi
);
3109 * igb_intr - Interrupt Handler
3110 * @irq: interrupt number
3111 * @data: pointer to a network interface device structure
3113 static irqreturn_t
igb_intr(int irq
, void *data
)
3115 struct net_device
*netdev
= data
;
3116 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3117 struct napi_struct
*napi
= &adapter
->napi
;
3118 struct e1000_hw
*hw
= &adapter
->hw
;
3119 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3120 * need for the IMC write */
3121 u32 icr
= rd32(E1000_ICR
);
3124 return IRQ_NONE
; /* Not our interrupt */
3126 /* Write the ITR value calculated at the end of the
3127 * previous interrupt.
3129 if (adapter
->set_itr
) {
3131 1000000000 / (adapter
->itr
* 256));
3132 adapter
->set_itr
= 0;
3135 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3136 * not set, then the adapter didn't send an interrupt */
3137 if (!(icr
& E1000_ICR_INT_ASSERTED
))
3140 eicr
= rd32(E1000_EICR
);
3142 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3143 hw
->mac
.get_link_status
= 1;
3144 /* guard against interrupt when we're going down */
3145 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3146 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3149 if (netif_rx_schedule_prep(netdev
, napi
)) {
3150 adapter
->tx_ring
->total_bytes
= 0;
3151 adapter
->rx_ring
->total_bytes
= 0;
3152 adapter
->tx_ring
->total_packets
= 0;
3153 adapter
->rx_ring
->total_packets
= 0;
3154 __netif_rx_schedule(netdev
, napi
);
3161 * igb_clean - NAPI Rx polling callback
3162 * @adapter: board private structure
3164 static int igb_clean(struct napi_struct
*napi
, int budget
)
3166 struct igb_adapter
*adapter
= container_of(napi
, struct igb_adapter
,
3168 struct net_device
*netdev
= adapter
->netdev
;
3169 int tx_clean_complete
= 1, work_done
= 0;
3172 /* Must NOT use netdev_priv macro here. */
3173 adapter
= netdev
->priv
;
3175 /* Keep link state information with original netdev */
3176 if (!netif_carrier_ok(netdev
))
3179 /* igb_clean is called per-cpu. This lock protects tx_ring[i] from
3180 * being cleaned by multiple cpus simultaneously. A failure obtaining
3181 * the lock means tx_ring[i] is currently being cleaned anyway. */
3182 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
3183 if (spin_trylock(&adapter
->tx_ring
[i
].tx_clean_lock
)) {
3184 tx_clean_complete
&= igb_clean_tx_irq(adapter
,
3185 &adapter
->tx_ring
[i
]);
3186 spin_unlock(&adapter
->tx_ring
[i
].tx_clean_lock
);
3190 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
3191 igb_clean_rx_irq_adv(adapter
, &adapter
->rx_ring
[i
], &work_done
,
3192 adapter
->rx_ring
[i
].napi
.weight
);
3194 /* If no Tx and not enough Rx work done, exit the polling mode */
3195 if ((tx_clean_complete
&& (work_done
< budget
)) ||
3196 !netif_running(netdev
)) {
3198 if (adapter
->itr_setting
& 3)
3199 igb_set_itr(adapter
, E1000_ITR
, false);
3200 netif_rx_complete(netdev
, napi
);
3201 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3202 igb_irq_enable(adapter
);
3209 static int igb_clean_rx_ring_msix(struct napi_struct
*napi
, int budget
)
3211 struct igb_ring
*rx_ring
= container_of(napi
, struct igb_ring
, napi
);
3212 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3213 struct e1000_hw
*hw
= &adapter
->hw
;
3214 struct net_device
*netdev
= adapter
->netdev
;
3217 /* Keep link state information with original netdev */
3218 if (!netif_carrier_ok(netdev
))
3221 igb_clean_rx_irq_adv(adapter
, rx_ring
, &work_done
, budget
);
3224 /* If not enough Rx work done, exit the polling mode */
3225 if ((work_done
== 0) || !netif_running(netdev
)) {
3227 netif_rx_complete(netdev
, napi
);
3229 wr32(E1000_EIMS
, rx_ring
->eims_value
);
3230 if ((adapter
->itr_setting
& 3) && !rx_ring
->no_itr_adjust
&&
3231 (rx_ring
->total_packets
> IGB_DYN_ITR_PACKET_THRESHOLD
)) {
3232 int mean_size
= rx_ring
->total_bytes
/
3233 rx_ring
->total_packets
;
3234 if (mean_size
< IGB_DYN_ITR_LENGTH_LOW
)
3235 igb_raise_rx_eitr(adapter
, rx_ring
);
3236 else if (mean_size
> IGB_DYN_ITR_LENGTH_HIGH
)
3237 igb_lower_rx_eitr(adapter
, rx_ring
);
3245 * igb_clean_tx_irq - Reclaim resources after transmit completes
3246 * @adapter: board private structure
3247 * returns true if ring is completely cleaned
3249 static bool igb_clean_tx_irq(struct igb_adapter
*adapter
,
3250 struct igb_ring
*tx_ring
)
3252 struct net_device
*netdev
= adapter
->netdev
;
3253 struct e1000_hw
*hw
= &adapter
->hw
;
3254 struct e1000_tx_desc
*tx_desc
;
3255 struct igb_buffer
*buffer_info
;
3256 struct sk_buff
*skb
;
3259 unsigned int count
= 0;
3260 bool cleaned
= false;
3262 unsigned int total_bytes
= 0, total_packets
= 0;
3265 head
= *(volatile u32
*)((struct e1000_tx_desc
*)tx_ring
->desc
3267 head
= le32_to_cpu(head
);
3268 i
= tx_ring
->next_to_clean
;
3272 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3273 buffer_info
= &tx_ring
->buffer_info
[i
];
3274 skb
= buffer_info
->skb
;
3277 unsigned int segs
, bytecount
;
3278 /* gso_segs is currently only valid for tcp */
3279 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
3280 /* multiply data chunks by size of headers */
3281 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
3283 total_packets
+= segs
;
3284 total_bytes
+= bytecount
;
3287 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
3288 tx_desc
->upper
.data
= 0;
3291 if (i
== tx_ring
->count
)
3295 if (count
== IGB_MAX_TX_CLEAN
) {
3302 head
= *(volatile u32
*)((struct e1000_tx_desc
*)tx_ring
->desc
3304 head
= le32_to_cpu(head
);
3305 if (head
== oldhead
)
3310 tx_ring
->next_to_clean
= i
;
3312 if (unlikely(cleaned
&&
3313 netif_carrier_ok(netdev
) &&
3314 IGB_DESC_UNUSED(tx_ring
) >= IGB_TX_QUEUE_WAKE
)) {
3315 /* Make sure that anybody stopping the queue after this
3316 * sees the new next_to_clean.
3319 if (netif_queue_stopped(netdev
) &&
3320 !(test_bit(__IGB_DOWN
, &adapter
->state
))) {
3321 netif_wake_queue(netdev
);
3322 ++adapter
->restart_queue
;
3326 if (tx_ring
->detect_tx_hung
) {
3327 /* Detect a transmit hang in hardware, this serializes the
3328 * check with the clearing of time_stamp and movement of i */
3329 tx_ring
->detect_tx_hung
= false;
3330 if (tx_ring
->buffer_info
[i
].time_stamp
&&
3331 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
+
3332 (adapter
->tx_timeout_factor
* HZ
))
3333 && !(rd32(E1000_STATUS
) &
3334 E1000_STATUS_TXOFF
)) {
3336 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3337 /* detected Tx unit hang */
3338 dev_err(&adapter
->pdev
->dev
,
3339 "Detected Tx Unit Hang\n"
3343 " next_to_use <%x>\n"
3344 " next_to_clean <%x>\n"
3346 "buffer_info[next_to_clean]\n"
3347 " time_stamp <%lx>\n"
3349 " desc.status <%x>\n",
3350 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
3351 sizeof(struct igb_ring
)),
3352 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
3353 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
3354 tx_ring
->next_to_use
,
3355 tx_ring
->next_to_clean
,
3357 tx_ring
->buffer_info
[i
].time_stamp
,
3359 tx_desc
->upper
.fields
.status
);
3360 netif_stop_queue(netdev
);
3363 tx_ring
->total_bytes
+= total_bytes
;
3364 tx_ring
->total_packets
+= total_packets
;
3365 adapter
->net_stats
.tx_bytes
+= total_bytes
;
3366 adapter
->net_stats
.tx_packets
+= total_packets
;
3372 * igb_receive_skb - helper function to handle rx indications
3373 * @adapter: board private structure
3374 * @status: descriptor status field as written by hardware
3375 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3376 * @skb: pointer to sk_buff to be indicated to stack
3378 static void igb_receive_skb(struct igb_adapter
*adapter
, u8 status
, u16 vlan
,
3379 struct sk_buff
*skb
)
3381 if (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))
3382 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
3384 E1000_RXD_SPC_VLAN_MASK
);
3386 netif_receive_skb(skb
);
3390 static inline void igb_rx_checksum_adv(struct igb_adapter
*adapter
,
3391 u32 status_err
, struct sk_buff
*skb
)
3393 skb
->ip_summed
= CHECKSUM_NONE
;
3395 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3396 if ((status_err
& E1000_RXD_STAT_IXSM
) || !adapter
->rx_csum
)
3398 /* TCP/UDP checksum error bit is set */
3400 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
3401 /* let the stack verify checksum errors */
3402 adapter
->hw_csum_err
++;
3405 /* It must be a TCP or UDP packet with a valid checksum */
3406 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
3407 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3409 adapter
->hw_csum_good
++;
3412 static bool igb_clean_rx_irq_adv(struct igb_adapter
*adapter
,
3413 struct igb_ring
*rx_ring
,
3414 int *work_done
, int budget
)
3416 struct net_device
*netdev
= adapter
->netdev
;
3417 struct pci_dev
*pdev
= adapter
->pdev
;
3418 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
3419 struct igb_buffer
*buffer_info
, *next_buffer
;
3420 struct sk_buff
*skb
;
3422 u32 length
, hlen
, staterr
;
3423 bool cleaned
= false;
3424 int cleaned_count
= 0;
3425 unsigned int total_bytes
= 0, total_packets
= 0;
3427 i
= rx_ring
->next_to_clean
;
3428 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3429 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3431 while (staterr
& E1000_RXD_STAT_DD
) {
3432 if (*work_done
>= budget
)
3435 buffer_info
= &rx_ring
->buffer_info
[i
];
3437 /* HW will not DMA in data larger than the given buffer, even
3438 * if it parses the (NFS, of course) header to be larger. In
3439 * that case, it fills the header buffer and spills the rest
3442 hlen
= le16_to_cpu((rx_desc
->wb
.lower
.lo_dword
.hdr_info
&
3443 E1000_RXDADV_HDRBUFLEN_MASK
) >> E1000_RXDADV_HDRBUFLEN_SHIFT
);
3444 if (hlen
> adapter
->rx_ps_hdr_size
)
3445 hlen
= adapter
->rx_ps_hdr_size
;
3447 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
3451 if (rx_ring
->pending_skb
!= NULL
) {
3452 skb
= rx_ring
->pending_skb
;
3453 rx_ring
->pending_skb
= NULL
;
3454 j
= rx_ring
->pending_skb_page
;
3456 skb
= buffer_info
->skb
;
3457 prefetch(skb
->data
- NET_IP_ALIGN
);
3458 buffer_info
->skb
= NULL
;
3460 pci_unmap_single(pdev
, buffer_info
->dma
,
3461 adapter
->rx_ps_hdr_size
+
3463 PCI_DMA_FROMDEVICE
);
3466 pci_unmap_single(pdev
, buffer_info
->dma
,
3467 adapter
->rx_buffer_len
+
3469 PCI_DMA_FROMDEVICE
);
3470 skb_put(skb
, length
);
3477 pci_unmap_page(pdev
, buffer_info
->page_dma
,
3478 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3479 buffer_info
->page_dma
= 0;
3480 skb_fill_page_desc(skb
, j
, buffer_info
->page
,
3482 buffer_info
->page
= NULL
;
3485 skb
->data_len
+= length
;
3486 skb
->truesize
+= length
;
3487 rx_desc
->wb
.upper
.status_error
= 0;
3488 if (staterr
& E1000_RXD_STAT_EOP
)
3494 if (i
== rx_ring
->count
)
3497 buffer_info
= &rx_ring
->buffer_info
[i
];
3498 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3499 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3500 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
3501 if (!(staterr
& E1000_RXD_STAT_DD
)) {
3502 rx_ring
->pending_skb
= skb
;
3503 rx_ring
->pending_skb_page
= j
;
3508 pskb_trim(skb
, skb
->len
- 4);
3510 if (i
== rx_ring
->count
)
3512 next_rxd
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3514 next_buffer
= &rx_ring
->buffer_info
[i
];
3516 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
3517 dev_kfree_skb_irq(skb
);
3520 rx_ring
->no_itr_adjust
|= (staterr
& E1000_RXD_STAT_DYNINT
);
3522 total_bytes
+= skb
->len
;
3525 igb_rx_checksum_adv(adapter
, staterr
, skb
);
3527 skb
->protocol
= eth_type_trans(skb
, netdev
);
3529 igb_receive_skb(adapter
, staterr
, rx_desc
->wb
.upper
.vlan
, skb
);
3531 netdev
->last_rx
= jiffies
;
3534 rx_desc
->wb
.upper
.status_error
= 0;
3536 /* return some buffers to hardware, one at a time is too slow */
3537 if (cleaned_count
>= IGB_RX_BUFFER_WRITE
) {
3538 igb_alloc_rx_buffers_adv(adapter
, rx_ring
,
3543 /* use prefetched values */
3545 buffer_info
= next_buffer
;
3547 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3550 rx_ring
->next_to_clean
= i
;
3551 cleaned_count
= IGB_DESC_UNUSED(rx_ring
);
3554 igb_alloc_rx_buffers_adv(adapter
, rx_ring
, cleaned_count
);
3556 rx_ring
->total_packets
+= total_packets
;
3557 rx_ring
->total_bytes
+= total_bytes
;
3558 rx_ring
->rx_stats
.packets
+= total_packets
;
3559 rx_ring
->rx_stats
.bytes
+= total_bytes
;
3560 adapter
->net_stats
.rx_bytes
+= total_bytes
;
3561 adapter
->net_stats
.rx_packets
+= total_packets
;
3567 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3568 * @adapter: address of board private structure
3570 static void igb_alloc_rx_buffers_adv(struct igb_adapter
*adapter
,
3571 struct igb_ring
*rx_ring
,
3574 struct net_device
*netdev
= adapter
->netdev
;
3575 struct pci_dev
*pdev
= adapter
->pdev
;
3576 union e1000_adv_rx_desc
*rx_desc
;
3577 struct igb_buffer
*buffer_info
;
3578 struct sk_buff
*skb
;
3581 i
= rx_ring
->next_to_use
;
3582 buffer_info
= &rx_ring
->buffer_info
[i
];
3584 while (cleaned_count
--) {
3585 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3587 if (adapter
->rx_ps_hdr_size
&& !buffer_info
->page
) {
3588 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
3589 if (!buffer_info
->page
) {
3590 adapter
->alloc_rx_buff_failed
++;
3593 buffer_info
->page_dma
=
3597 PCI_DMA_FROMDEVICE
);
3600 if (!buffer_info
->skb
) {
3603 if (adapter
->rx_ps_hdr_size
)
3604 bufsz
= adapter
->rx_ps_hdr_size
;
3606 bufsz
= adapter
->rx_buffer_len
;
3607 bufsz
+= NET_IP_ALIGN
;
3608 skb
= netdev_alloc_skb(netdev
, bufsz
);
3611 adapter
->alloc_rx_buff_failed
++;
3615 /* Make buffer alignment 2 beyond a 16 byte boundary
3616 * this will result in a 16 byte aligned IP header after
3617 * the 14 byte MAC header is removed
3619 skb_reserve(skb
, NET_IP_ALIGN
);
3621 buffer_info
->skb
= skb
;
3622 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
3624 PCI_DMA_FROMDEVICE
);
3627 /* Refresh the desc even if buffer_addrs didn't change because
3628 * each write-back erases this info. */
3629 if (adapter
->rx_ps_hdr_size
) {
3630 rx_desc
->read
.pkt_addr
=
3631 cpu_to_le64(buffer_info
->page_dma
);
3632 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
3634 rx_desc
->read
.pkt_addr
=
3635 cpu_to_le64(buffer_info
->dma
);
3636 rx_desc
->read
.hdr_addr
= 0;
3640 if (i
== rx_ring
->count
)
3642 buffer_info
= &rx_ring
->buffer_info
[i
];
3646 if (rx_ring
->next_to_use
!= i
) {
3647 rx_ring
->next_to_use
= i
;
3649 i
= (rx_ring
->count
- 1);
3653 /* Force memory writes to complete before letting h/w
3654 * know there are new descriptors to fetch. (Only
3655 * applicable for weak-ordered memory model archs,
3656 * such as IA-64). */
3658 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
3668 static int igb_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
3670 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3671 struct mii_ioctl_data
*data
= if_mii(ifr
);
3673 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
3678 data
->phy_id
= adapter
->hw
.phy
.addr
;
3681 if (!capable(CAP_NET_ADMIN
))
3683 if (adapter
->hw
.phy
.ops
.read_phy_reg(&adapter
->hw
,
3685 & 0x1F, &data
->val_out
))
3701 static int igb_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
3707 return igb_mii_ioctl(netdev
, ifr
, cmd
);
3713 static void igb_vlan_rx_register(struct net_device
*netdev
,
3714 struct vlan_group
*grp
)
3716 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3717 struct e1000_hw
*hw
= &adapter
->hw
;
3720 igb_irq_disable(adapter
);
3721 adapter
->vlgrp
= grp
;
3724 /* enable VLAN tag insert/strip */
3725 ctrl
= rd32(E1000_CTRL
);
3726 ctrl
|= E1000_CTRL_VME
;
3727 wr32(E1000_CTRL
, ctrl
);
3729 /* enable VLAN receive filtering */
3730 rctl
= rd32(E1000_RCTL
);
3731 rctl
|= E1000_RCTL_VFE
;
3732 rctl
&= ~E1000_RCTL_CFIEN
;
3733 wr32(E1000_RCTL
, rctl
);
3734 igb_update_mng_vlan(adapter
);
3736 adapter
->max_frame_size
+ VLAN_TAG_SIZE
);
3738 /* disable VLAN tag insert/strip */
3739 ctrl
= rd32(E1000_CTRL
);
3740 ctrl
&= ~E1000_CTRL_VME
;
3741 wr32(E1000_CTRL
, ctrl
);
3743 /* disable VLAN filtering */
3744 rctl
= rd32(E1000_RCTL
);
3745 rctl
&= ~E1000_RCTL_VFE
;
3746 wr32(E1000_RCTL
, rctl
);
3747 if (adapter
->mng_vlan_id
!= (u16
)IGB_MNG_VLAN_NONE
) {
3748 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
3749 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
3752 adapter
->max_frame_size
);
3755 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3756 igb_irq_enable(adapter
);
3759 static void igb_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
3761 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3762 struct e1000_hw
*hw
= &adapter
->hw
;
3765 if ((adapter
->hw
.mng_cookie
.status
&
3766 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
3767 (vid
== adapter
->mng_vlan_id
))
3769 /* add VID to filter table */
3770 index
= (vid
>> 5) & 0x7F;
3771 vfta
= array_rd32(E1000_VFTA
, index
);
3772 vfta
|= (1 << (vid
& 0x1F));
3773 igb_write_vfta(&adapter
->hw
, index
, vfta
);
3776 static void igb_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
3778 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3779 struct e1000_hw
*hw
= &adapter
->hw
;
3782 igb_irq_disable(adapter
);
3783 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
3785 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3786 igb_irq_enable(adapter
);
3788 if ((adapter
->hw
.mng_cookie
.status
&
3789 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
3790 (vid
== adapter
->mng_vlan_id
)) {
3791 /* release control to f/w */
3792 igb_release_hw_control(adapter
);
3796 /* remove VID from filter table */
3797 index
= (vid
>> 5) & 0x7F;
3798 vfta
= array_rd32(E1000_VFTA
, index
);
3799 vfta
&= ~(1 << (vid
& 0x1F));
3800 igb_write_vfta(&adapter
->hw
, index
, vfta
);
3803 static void igb_restore_vlan(struct igb_adapter
*adapter
)
3805 igb_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
3807 if (adapter
->vlgrp
) {
3809 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
3810 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
3812 igb_vlan_rx_add_vid(adapter
->netdev
, vid
);
3817 int igb_set_spd_dplx(struct igb_adapter
*adapter
, u16 spddplx
)
3819 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3823 /* Fiber NICs only allow 1000 gbps Full duplex */
3824 if ((adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
) &&
3825 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
3826 dev_err(&adapter
->pdev
->dev
,
3827 "Unsupported Speed/Duplex configuration\n");
3832 case SPEED_10
+ DUPLEX_HALF
:
3833 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
3835 case SPEED_10
+ DUPLEX_FULL
:
3836 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
3838 case SPEED_100
+ DUPLEX_HALF
:
3839 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
3841 case SPEED_100
+ DUPLEX_FULL
:
3842 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
3844 case SPEED_1000
+ DUPLEX_FULL
:
3846 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
3848 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
3850 dev_err(&adapter
->pdev
->dev
,
3851 "Unsupported Speed/Duplex configuration\n");
3858 static int igb_suspend(struct pci_dev
*pdev
, pm_message_t state
)
3860 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3861 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3862 struct e1000_hw
*hw
= &adapter
->hw
;
3863 u32 ctrl
, ctrl_ext
, rctl
, status
;
3864 u32 wufc
= adapter
->wol
;
3869 netif_device_detach(netdev
);
3871 if (netif_running(netdev
)) {
3872 WARN_ON(test_bit(__IGB_RESETTING
, &adapter
->state
));
3874 igb_free_irq(adapter
);
3878 retval
= pci_save_state(pdev
);
3883 status
= rd32(E1000_STATUS
);
3884 if (status
& E1000_STATUS_LU
)
3885 wufc
&= ~E1000_WUFC_LNKC
;
3888 igb_setup_rctl(adapter
);
3889 igb_set_multi(netdev
);
3891 /* turn on all-multi mode if wake on multicast is enabled */
3892 if (wufc
& E1000_WUFC_MC
) {
3893 rctl
= rd32(E1000_RCTL
);
3894 rctl
|= E1000_RCTL_MPE
;
3895 wr32(E1000_RCTL
, rctl
);
3898 ctrl
= rd32(E1000_CTRL
);
3899 /* advertise wake from D3Cold */
3900 #define E1000_CTRL_ADVD3WUC 0x00100000
3901 /* phy power management enable */
3902 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3903 ctrl
|= E1000_CTRL_ADVD3WUC
;
3904 wr32(E1000_CTRL
, ctrl
);
3906 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
3907 adapter
->hw
.phy
.media_type
==
3908 e1000_media_type_internal_serdes
) {
3909 /* keep the laser running in D3 */
3910 ctrl_ext
= rd32(E1000_CTRL_EXT
);
3911 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
3912 wr32(E1000_CTRL_EXT
, ctrl_ext
);
3915 /* Allow time for pending master requests to run */
3916 igb_disable_pcie_master(&adapter
->hw
);
3918 wr32(E1000_WUC
, E1000_WUC_PME_EN
);
3919 wr32(E1000_WUFC
, wufc
);
3920 pci_enable_wake(pdev
, PCI_D3hot
, 1);
3921 pci_enable_wake(pdev
, PCI_D3cold
, 1);
3924 wr32(E1000_WUFC
, 0);
3925 pci_enable_wake(pdev
, PCI_D3hot
, 0);
3926 pci_enable_wake(pdev
, PCI_D3cold
, 0);
3929 /* make sure adapter isn't asleep if manageability is enabled */
3930 if (adapter
->en_mng_pt
) {
3931 pci_enable_wake(pdev
, PCI_D3hot
, 1);
3932 pci_enable_wake(pdev
, PCI_D3cold
, 1);
3935 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3936 * would have already happened in close and is redundant. */
3937 igb_release_hw_control(adapter
);
3939 pci_disable_device(pdev
);
3941 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
3947 static int igb_resume(struct pci_dev
*pdev
)
3949 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3950 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3951 struct e1000_hw
*hw
= &adapter
->hw
;
3954 pci_set_power_state(pdev
, PCI_D0
);
3955 pci_restore_state(pdev
);
3956 err
= pci_enable_device(pdev
);
3959 "igb: Cannot enable PCI device from suspend\n");
3962 pci_set_master(pdev
);
3964 pci_enable_wake(pdev
, PCI_D3hot
, 0);
3965 pci_enable_wake(pdev
, PCI_D3cold
, 0);
3967 if (netif_running(netdev
)) {
3968 err
= igb_request_irq(adapter
);
3973 /* e1000_power_up_phy(adapter); */
3976 wr32(E1000_WUS
, ~0);
3978 igb_init_manageability(adapter
);
3980 if (netif_running(netdev
))
3983 netif_device_attach(netdev
);
3985 /* let the f/w know that the h/w is now under the control of the
3987 igb_get_hw_control(adapter
);
3993 static void igb_shutdown(struct pci_dev
*pdev
)
3995 igb_suspend(pdev
, PMSG_SUSPEND
);
3998 #ifdef CONFIG_NET_POLL_CONTROLLER
4000 * Polling 'interrupt' - used by things like netconsole to send skbs
4001 * without having to re-enable interrupts. It's not called while
4002 * the interrupt routine is executing.
4004 static void igb_netpoll(struct net_device
*netdev
)
4006 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4010 igb_irq_disable(adapter
);
4011 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
4012 igb_clean_tx_irq(adapter
, &adapter
->tx_ring
[i
]);
4014 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
4015 igb_clean_rx_irq_adv(adapter
, &adapter
->rx_ring
[i
],
4017 adapter
->rx_ring
[i
].napi
.weight
);
4019 igb_irq_enable(adapter
);
4021 #endif /* CONFIG_NET_POLL_CONTROLLER */
4024 * igb_io_error_detected - called when PCI error is detected
4025 * @pdev: Pointer to PCI device
4026 * @state: The current pci connection state
4028 * This function is called after a PCI bus error affecting
4029 * this device has been detected.
4031 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*pdev
,
4032 pci_channel_state_t state
)
4034 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4035 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4037 netif_device_detach(netdev
);
4039 if (netif_running(netdev
))
4041 pci_disable_device(pdev
);
4043 /* Request a slot slot reset. */
4044 return PCI_ERS_RESULT_NEED_RESET
;
4048 * igb_io_slot_reset - called after the pci bus has been reset.
4049 * @pdev: Pointer to PCI device
4051 * Restart the card from scratch, as if from a cold-boot. Implementation
4052 * resembles the first-half of the igb_resume routine.
4054 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*pdev
)
4056 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4057 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4058 struct e1000_hw
*hw
= &adapter
->hw
;
4060 if (pci_enable_device(pdev
)) {
4062 "Cannot re-enable PCI device after reset.\n");
4063 return PCI_ERS_RESULT_DISCONNECT
;
4065 pci_set_master(pdev
);
4067 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4068 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4071 wr32(E1000_WUS
, ~0);
4073 return PCI_ERS_RESULT_RECOVERED
;
4077 * igb_io_resume - called when traffic can start flowing again.
4078 * @pdev: Pointer to PCI device
4080 * This callback is called when the error recovery driver tells us that
4081 * its OK to resume normal operation. Implementation resembles the
4082 * second-half of the igb_resume routine.
4084 static void igb_io_resume(struct pci_dev
*pdev
)
4086 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4087 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4089 igb_init_manageability(adapter
);
4091 if (netif_running(netdev
)) {
4092 if (igb_up(adapter
)) {
4093 dev_err(&pdev
->dev
, "igb_up failed after reset\n");
4098 netif_device_attach(netdev
);
4100 /* let the f/w know that the h/w is now under the control of the
4102 igb_get_hw_control(adapter
);