Merge git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-for-linus
[wrt350n-kernel.git] / drivers / net / igb / igb_main.c
blob6a1f23092099b5d3f0d974b7ea370a9a73c63b31
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/tcp.h>
35 #include <linux/ipv6.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
46 #include "igb.h"
48 #define DRV_VERSION "1.0.8-k2"
49 char igb_driver_name[] = "igb";
50 char igb_driver_version[] = DRV_VERSION;
51 static const char igb_driver_string[] =
52 "Intel(R) Gigabit Ethernet Network Driver";
53 static const char igb_copyright[] = "Copyright (c) 2007 Intel Corporation.";
56 static const struct e1000_info *igb_info_tbl[] = {
57 [board_82575] = &e1000_82575_info,
60 static struct pci_device_id igb_pci_tbl[] = {
61 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
62 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
64 /* required last entry */
65 {0, }
68 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
70 void igb_reset(struct igb_adapter *);
71 static int igb_setup_all_tx_resources(struct igb_adapter *);
72 static int igb_setup_all_rx_resources(struct igb_adapter *);
73 static void igb_free_all_tx_resources(struct igb_adapter *);
74 static void igb_free_all_rx_resources(struct igb_adapter *);
75 static void igb_free_tx_resources(struct igb_adapter *, struct igb_ring *);
76 static void igb_free_rx_resources(struct igb_adapter *, struct igb_ring *);
77 void igb_update_stats(struct igb_adapter *);
78 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
79 static void __devexit igb_remove(struct pci_dev *pdev);
80 static int igb_sw_init(struct igb_adapter *);
81 static int igb_open(struct net_device *);
82 static int igb_close(struct net_device *);
83 static void igb_configure_tx(struct igb_adapter *);
84 static void igb_configure_rx(struct igb_adapter *);
85 static void igb_setup_rctl(struct igb_adapter *);
86 static void igb_clean_all_tx_rings(struct igb_adapter *);
87 static void igb_clean_all_rx_rings(struct igb_adapter *);
88 static void igb_clean_tx_ring(struct igb_adapter *, struct igb_ring *);
89 static void igb_clean_rx_ring(struct igb_adapter *, struct igb_ring *);
90 static void igb_set_multi(struct net_device *);
91 static void igb_update_phy_info(unsigned long);
92 static void igb_watchdog(unsigned long);
93 static void igb_watchdog_task(struct work_struct *);
94 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
95 struct igb_ring *);
96 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
97 static struct net_device_stats *igb_get_stats(struct net_device *);
98 static int igb_change_mtu(struct net_device *, int);
99 static int igb_set_mac(struct net_device *, void *);
100 static irqreturn_t igb_intr(int irq, void *);
101 static irqreturn_t igb_intr_msi(int irq, void *);
102 static irqreturn_t igb_msix_other(int irq, void *);
103 static irqreturn_t igb_msix_rx(int irq, void *);
104 static irqreturn_t igb_msix_tx(int irq, void *);
105 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
106 static bool igb_clean_tx_irq(struct igb_adapter *, struct igb_ring *);
107 static int igb_clean(struct napi_struct *, int);
108 static bool igb_clean_rx_irq_adv(struct igb_adapter *,
109 struct igb_ring *, int *, int);
110 static void igb_alloc_rx_buffers_adv(struct igb_adapter *,
111 struct igb_ring *, int);
112 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
113 static void igb_tx_timeout(struct net_device *);
114 static void igb_reset_task(struct work_struct *);
115 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
116 static void igb_vlan_rx_add_vid(struct net_device *, u16);
117 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
118 static void igb_restore_vlan(struct igb_adapter *);
120 static int igb_suspend(struct pci_dev *, pm_message_t);
121 #ifdef CONFIG_PM
122 static int igb_resume(struct pci_dev *);
123 #endif
124 static void igb_shutdown(struct pci_dev *);
126 #ifdef CONFIG_NET_POLL_CONTROLLER
127 /* for netdump / net console */
128 static void igb_netpoll(struct net_device *);
129 #endif
131 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
132 pci_channel_state_t);
133 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
134 static void igb_io_resume(struct pci_dev *);
136 static struct pci_error_handlers igb_err_handler = {
137 .error_detected = igb_io_error_detected,
138 .slot_reset = igb_io_slot_reset,
139 .resume = igb_io_resume,
143 static struct pci_driver igb_driver = {
144 .name = igb_driver_name,
145 .id_table = igb_pci_tbl,
146 .probe = igb_probe,
147 .remove = __devexit_p(igb_remove),
148 #ifdef CONFIG_PM
149 /* Power Managment Hooks */
150 .suspend = igb_suspend,
151 .resume = igb_resume,
152 #endif
153 .shutdown = igb_shutdown,
154 .err_handler = &igb_err_handler
157 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
158 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
159 MODULE_LICENSE("GPL");
160 MODULE_VERSION(DRV_VERSION);
162 #ifdef DEBUG
164 * igb_get_hw_dev_name - return device name string
165 * used by hardware layer to print debugging information
167 char *igb_get_hw_dev_name(struct e1000_hw *hw)
169 struct igb_adapter *adapter = hw->back;
170 return adapter->netdev->name;
172 #endif
175 * igb_init_module - Driver Registration Routine
177 * igb_init_module is the first routine called when the driver is
178 * loaded. All it does is register with the PCI subsystem.
180 static int __init igb_init_module(void)
182 int ret;
183 printk(KERN_INFO "%s - version %s\n",
184 igb_driver_string, igb_driver_version);
186 printk(KERN_INFO "%s\n", igb_copyright);
188 ret = pci_register_driver(&igb_driver);
189 return ret;
192 module_init(igb_init_module);
195 * igb_exit_module - Driver Exit Cleanup Routine
197 * igb_exit_module is called just before the driver is removed
198 * from memory.
200 static void __exit igb_exit_module(void)
202 pci_unregister_driver(&igb_driver);
205 module_exit(igb_exit_module);
208 * igb_alloc_queues - Allocate memory for all rings
209 * @adapter: board private structure to initialize
211 * We allocate one ring per queue at run-time since we don't know the
212 * number of queues at compile-time.
214 static int igb_alloc_queues(struct igb_adapter *adapter)
216 int i;
218 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
219 sizeof(struct igb_ring), GFP_KERNEL);
220 if (!adapter->tx_ring)
221 return -ENOMEM;
223 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
224 sizeof(struct igb_ring), GFP_KERNEL);
225 if (!adapter->rx_ring) {
226 kfree(adapter->tx_ring);
227 return -ENOMEM;
230 for (i = 0; i < adapter->num_rx_queues; i++) {
231 struct igb_ring *ring = &(adapter->rx_ring[i]);
232 ring->adapter = adapter;
233 ring->itr_register = E1000_ITR;
235 if (!ring->napi.poll)
236 netif_napi_add(adapter->netdev, &ring->napi, igb_clean,
237 adapter->napi.weight /
238 adapter->num_rx_queues);
240 return 0;
243 #define IGB_N0_QUEUE -1
244 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
245 int tx_queue, int msix_vector)
247 u32 msixbm = 0;
248 struct e1000_hw *hw = &adapter->hw;
249 /* The 82575 assigns vectors using a bitmask, which matches the
250 bitmask for the EICR/EIMS/EIMC registers. To assign one
251 or more queues to a vector, we write the appropriate bits
252 into the MSIXBM register for that vector. */
253 if (rx_queue > IGB_N0_QUEUE) {
254 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
255 adapter->rx_ring[rx_queue].eims_value = msixbm;
257 if (tx_queue > IGB_N0_QUEUE) {
258 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
259 adapter->tx_ring[tx_queue].eims_value =
260 E1000_EICR_TX_QUEUE0 << tx_queue;
262 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
266 * igb_configure_msix - Configure MSI-X hardware
268 * igb_configure_msix sets up the hardware to properly
269 * generate MSI-X interrupts.
271 static void igb_configure_msix(struct igb_adapter *adapter)
273 u32 tmp;
274 int i, vector = 0;
275 struct e1000_hw *hw = &adapter->hw;
277 adapter->eims_enable_mask = 0;
279 for (i = 0; i < adapter->num_tx_queues; i++) {
280 struct igb_ring *tx_ring = &adapter->tx_ring[i];
281 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
282 adapter->eims_enable_mask |= tx_ring->eims_value;
283 if (tx_ring->itr_val)
284 writel(1000000000 / (tx_ring->itr_val * 256),
285 hw->hw_addr + tx_ring->itr_register);
286 else
287 writel(1, hw->hw_addr + tx_ring->itr_register);
290 for (i = 0; i < adapter->num_rx_queues; i++) {
291 struct igb_ring *rx_ring = &adapter->rx_ring[i];
292 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
293 adapter->eims_enable_mask |= rx_ring->eims_value;
294 if (rx_ring->itr_val)
295 writel(1000000000 / (rx_ring->itr_val * 256),
296 hw->hw_addr + rx_ring->itr_register);
297 else
298 writel(1, hw->hw_addr + rx_ring->itr_register);
302 /* set vector for other causes, i.e. link changes */
303 array_wr32(E1000_MSIXBM(0), vector++,
304 E1000_EIMS_OTHER);
306 /* disable IAM for ICR interrupt bits */
307 wr32(E1000_IAM, 0);
309 tmp = rd32(E1000_CTRL_EXT);
310 /* enable MSI-X PBA support*/
311 tmp |= E1000_CTRL_EXT_PBA_CLR;
313 /* Auto-Mask interrupts upon ICR read. */
314 tmp |= E1000_CTRL_EXT_EIAME;
315 tmp |= E1000_CTRL_EXT_IRCA;
317 wr32(E1000_CTRL_EXT, tmp);
318 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
320 wrfl();
324 * igb_request_msix - Initialize MSI-X interrupts
326 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
327 * kernel.
329 static int igb_request_msix(struct igb_adapter *adapter)
331 struct net_device *netdev = adapter->netdev;
332 int i, err = 0, vector = 0;
334 vector = 0;
336 for (i = 0; i < adapter->num_tx_queues; i++) {
337 struct igb_ring *ring = &(adapter->tx_ring[i]);
338 sprintf(ring->name, "%s-tx%d", netdev->name, i);
339 err = request_irq(adapter->msix_entries[vector].vector,
340 &igb_msix_tx, 0, ring->name,
341 &(adapter->tx_ring[i]));
342 if (err)
343 goto out;
344 ring->itr_register = E1000_EITR(0) + (vector << 2);
345 ring->itr_val = adapter->itr;
346 vector++;
348 for (i = 0; i < adapter->num_rx_queues; i++) {
349 struct igb_ring *ring = &(adapter->rx_ring[i]);
350 if (strlen(netdev->name) < (IFNAMSIZ - 5))
351 sprintf(ring->name, "%s-rx%d", netdev->name, i);
352 else
353 memcpy(ring->name, netdev->name, IFNAMSIZ);
354 err = request_irq(adapter->msix_entries[vector].vector,
355 &igb_msix_rx, 0, ring->name,
356 &(adapter->rx_ring[i]));
357 if (err)
358 goto out;
359 ring->itr_register = E1000_EITR(0) + (vector << 2);
360 ring->itr_val = adapter->itr;
361 vector++;
364 err = request_irq(adapter->msix_entries[vector].vector,
365 &igb_msix_other, 0, netdev->name, netdev);
366 if (err)
367 goto out;
369 adapter->napi.poll = igb_clean_rx_ring_msix;
370 for (i = 0; i < adapter->num_rx_queues; i++)
371 adapter->rx_ring[i].napi.poll = adapter->napi.poll;
372 igb_configure_msix(adapter);
373 return 0;
374 out:
375 return err;
378 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
380 if (adapter->msix_entries) {
381 pci_disable_msix(adapter->pdev);
382 kfree(adapter->msix_entries);
383 adapter->msix_entries = NULL;
384 } else if (adapter->msi_enabled)
385 pci_disable_msi(adapter->pdev);
386 return;
391 * igb_set_interrupt_capability - set MSI or MSI-X if supported
393 * Attempt to configure interrupts using the best available
394 * capabilities of the hardware and kernel.
396 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
398 int err;
399 int numvecs, i;
401 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
402 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
403 GFP_KERNEL);
404 if (!adapter->msix_entries)
405 goto msi_only;
407 for (i = 0; i < numvecs; i++)
408 adapter->msix_entries[i].entry = i;
410 err = pci_enable_msix(adapter->pdev,
411 adapter->msix_entries,
412 numvecs);
413 if (err == 0)
414 return;
416 igb_reset_interrupt_capability(adapter);
418 /* If we can't do MSI-X, try MSI */
419 msi_only:
420 adapter->num_rx_queues = 1;
421 if (!pci_enable_msi(adapter->pdev))
422 adapter->msi_enabled = 1;
423 return;
427 * igb_request_irq - initialize interrupts
429 * Attempts to configure interrupts using the best available
430 * capabilities of the hardware and kernel.
432 static int igb_request_irq(struct igb_adapter *adapter)
434 struct net_device *netdev = adapter->netdev;
435 struct e1000_hw *hw = &adapter->hw;
436 int err = 0;
438 if (adapter->msix_entries) {
439 err = igb_request_msix(adapter);
440 if (!err) {
441 /* enable IAM, auto-mask,
442 * DO NOT USE EIAM or IAM in legacy mode */
443 wr32(E1000_IAM, IMS_ENABLE_MASK);
444 goto request_done;
446 /* fall back to MSI */
447 igb_reset_interrupt_capability(adapter);
448 if (!pci_enable_msi(adapter->pdev))
449 adapter->msi_enabled = 1;
450 igb_free_all_tx_resources(adapter);
451 igb_free_all_rx_resources(adapter);
452 adapter->num_rx_queues = 1;
453 igb_alloc_queues(adapter);
455 if (adapter->msi_enabled) {
456 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
457 netdev->name, netdev);
458 if (!err)
459 goto request_done;
460 /* fall back to legacy interrupts */
461 igb_reset_interrupt_capability(adapter);
462 adapter->msi_enabled = 0;
465 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
466 netdev->name, netdev);
468 if (err)
469 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
470 err);
472 request_done:
473 return err;
476 static void igb_free_irq(struct igb_adapter *adapter)
478 struct net_device *netdev = adapter->netdev;
480 if (adapter->msix_entries) {
481 int vector = 0, i;
483 for (i = 0; i < adapter->num_tx_queues; i++)
484 free_irq(adapter->msix_entries[vector++].vector,
485 &(adapter->tx_ring[i]));
486 for (i = 0; i < adapter->num_rx_queues; i++)
487 free_irq(adapter->msix_entries[vector++].vector,
488 &(adapter->rx_ring[i]));
490 free_irq(adapter->msix_entries[vector++].vector, netdev);
491 return;
494 free_irq(adapter->pdev->irq, netdev);
498 * igb_irq_disable - Mask off interrupt generation on the NIC
499 * @adapter: board private structure
501 static void igb_irq_disable(struct igb_adapter *adapter)
503 struct e1000_hw *hw = &adapter->hw;
505 if (adapter->msix_entries) {
506 wr32(E1000_EIMC, ~0);
507 wr32(E1000_EIAC, 0);
509 wr32(E1000_IMC, ~0);
510 wrfl();
511 synchronize_irq(adapter->pdev->irq);
515 * igb_irq_enable - Enable default interrupt generation settings
516 * @adapter: board private structure
518 static void igb_irq_enable(struct igb_adapter *adapter)
520 struct e1000_hw *hw = &adapter->hw;
522 if (adapter->msix_entries) {
523 wr32(E1000_EIMS,
524 adapter->eims_enable_mask);
525 wr32(E1000_EIAC,
526 adapter->eims_enable_mask);
527 wr32(E1000_IMS, E1000_IMS_LSC);
528 } else
529 wr32(E1000_IMS, IMS_ENABLE_MASK);
532 static void igb_update_mng_vlan(struct igb_adapter *adapter)
534 struct net_device *netdev = adapter->netdev;
535 u16 vid = adapter->hw.mng_cookie.vlan_id;
536 u16 old_vid = adapter->mng_vlan_id;
537 if (adapter->vlgrp) {
538 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
539 if (adapter->hw.mng_cookie.status &
540 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
541 igb_vlan_rx_add_vid(netdev, vid);
542 adapter->mng_vlan_id = vid;
543 } else
544 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
546 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
547 (vid != old_vid) &&
548 !vlan_group_get_device(adapter->vlgrp, old_vid))
549 igb_vlan_rx_kill_vid(netdev, old_vid);
550 } else
551 adapter->mng_vlan_id = vid;
556 * igb_release_hw_control - release control of the h/w to f/w
557 * @adapter: address of board private structure
559 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
560 * For ASF and Pass Through versions of f/w this means that the
561 * driver is no longer loaded.
564 static void igb_release_hw_control(struct igb_adapter *adapter)
566 struct e1000_hw *hw = &adapter->hw;
567 u32 ctrl_ext;
569 /* Let firmware take over control of h/w */
570 ctrl_ext = rd32(E1000_CTRL_EXT);
571 wr32(E1000_CTRL_EXT,
572 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
577 * igb_get_hw_control - get control of the h/w from f/w
578 * @adapter: address of board private structure
580 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
581 * For ASF and Pass Through versions of f/w this means that
582 * the driver is loaded.
585 static void igb_get_hw_control(struct igb_adapter *adapter)
587 struct e1000_hw *hw = &adapter->hw;
588 u32 ctrl_ext;
590 /* Let firmware know the driver has taken over */
591 ctrl_ext = rd32(E1000_CTRL_EXT);
592 wr32(E1000_CTRL_EXT,
593 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
596 static void igb_init_manageability(struct igb_adapter *adapter)
598 struct e1000_hw *hw = &adapter->hw;
600 if (adapter->en_mng_pt) {
601 u32 manc2h = rd32(E1000_MANC2H);
602 u32 manc = rd32(E1000_MANC);
604 /* enable receiving management packets to the host */
605 /* this will probably generate destination unreachable messages
606 * from the host OS, but the packets will be handled on SMBUS */
607 manc |= E1000_MANC_EN_MNG2HOST;
608 #define E1000_MNG2HOST_PORT_623 (1 << 5)
609 #define E1000_MNG2HOST_PORT_664 (1 << 6)
610 manc2h |= E1000_MNG2HOST_PORT_623;
611 manc2h |= E1000_MNG2HOST_PORT_664;
612 wr32(E1000_MANC2H, manc2h);
614 wr32(E1000_MANC, manc);
619 * igb_configure - configure the hardware for RX and TX
620 * @adapter: private board structure
622 static void igb_configure(struct igb_adapter *adapter)
624 struct net_device *netdev = adapter->netdev;
625 int i;
627 igb_get_hw_control(adapter);
628 igb_set_multi(netdev);
630 igb_restore_vlan(adapter);
631 igb_init_manageability(adapter);
633 igb_configure_tx(adapter);
634 igb_setup_rctl(adapter);
635 igb_configure_rx(adapter);
636 /* call IGB_DESC_UNUSED which always leaves
637 * at least 1 descriptor unused to make sure
638 * next_to_use != next_to_clean */
639 for (i = 0; i < adapter->num_rx_queues; i++) {
640 struct igb_ring *ring = &adapter->rx_ring[i];
641 igb_alloc_rx_buffers_adv(adapter, ring, IGB_DESC_UNUSED(ring));
645 adapter->tx_queue_len = netdev->tx_queue_len;
650 * igb_up - Open the interface and prepare it to handle traffic
651 * @adapter: board private structure
654 int igb_up(struct igb_adapter *adapter)
656 struct e1000_hw *hw = &adapter->hw;
657 int i;
659 /* hardware has been reset, we need to reload some things */
660 igb_configure(adapter);
662 clear_bit(__IGB_DOWN, &adapter->state);
664 napi_enable(&adapter->napi);
666 if (adapter->msix_entries) {
667 for (i = 0; i < adapter->num_rx_queues; i++)
668 napi_enable(&adapter->rx_ring[i].napi);
669 igb_configure_msix(adapter);
672 /* Clear any pending interrupts. */
673 rd32(E1000_ICR);
674 igb_irq_enable(adapter);
676 /* Fire a link change interrupt to start the watchdog. */
677 wr32(E1000_ICS, E1000_ICS_LSC);
678 return 0;
681 void igb_down(struct igb_adapter *adapter)
683 struct e1000_hw *hw = &adapter->hw;
684 struct net_device *netdev = adapter->netdev;
685 u32 tctl, rctl;
686 int i;
688 /* signal that we're down so the interrupt handler does not
689 * reschedule our watchdog timer */
690 set_bit(__IGB_DOWN, &adapter->state);
692 /* disable receives in the hardware */
693 rctl = rd32(E1000_RCTL);
694 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
695 /* flush and sleep below */
697 netif_stop_queue(netdev);
699 /* disable transmits in the hardware */
700 tctl = rd32(E1000_TCTL);
701 tctl &= ~E1000_TCTL_EN;
702 wr32(E1000_TCTL, tctl);
703 /* flush both disables and wait for them to finish */
704 wrfl();
705 msleep(10);
707 napi_disable(&adapter->napi);
709 if (adapter->msix_entries)
710 for (i = 0; i < adapter->num_rx_queues; i++)
711 napi_disable(&adapter->rx_ring[i].napi);
712 igb_irq_disable(adapter);
714 del_timer_sync(&adapter->watchdog_timer);
715 del_timer_sync(&adapter->phy_info_timer);
717 netdev->tx_queue_len = adapter->tx_queue_len;
718 netif_carrier_off(netdev);
719 adapter->link_speed = 0;
720 adapter->link_duplex = 0;
722 igb_reset(adapter);
723 igb_clean_all_tx_rings(adapter);
724 igb_clean_all_rx_rings(adapter);
727 void igb_reinit_locked(struct igb_adapter *adapter)
729 WARN_ON(in_interrupt());
730 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
731 msleep(1);
732 igb_down(adapter);
733 igb_up(adapter);
734 clear_bit(__IGB_RESETTING, &adapter->state);
737 void igb_reset(struct igb_adapter *adapter)
739 struct e1000_hw *hw = &adapter->hw;
740 struct e1000_fc_info *fc = &adapter->hw.fc;
741 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
742 u16 hwm;
744 /* Repartition Pba for greater than 9k mtu
745 * To take effect CTRL.RST is required.
747 pba = E1000_PBA_34K;
749 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
750 /* adjust PBA for jumbo frames */
751 wr32(E1000_PBA, pba);
753 /* To maintain wire speed transmits, the Tx FIFO should be
754 * large enough to accommodate two full transmit packets,
755 * rounded up to the next 1KB and expressed in KB. Likewise,
756 * the Rx FIFO should be large enough to accommodate at least
757 * one full receive packet and is similarly rounded up and
758 * expressed in KB. */
759 pba = rd32(E1000_PBA);
760 /* upper 16 bits has Tx packet buffer allocation size in KB */
761 tx_space = pba >> 16;
762 /* lower 16 bits has Rx packet buffer allocation size in KB */
763 pba &= 0xffff;
764 /* the tx fifo also stores 16 bytes of information about the tx
765 * but don't include ethernet FCS because hardware appends it */
766 min_tx_space = (adapter->max_frame_size +
767 sizeof(struct e1000_tx_desc) -
768 ETH_FCS_LEN) * 2;
769 min_tx_space = ALIGN(min_tx_space, 1024);
770 min_tx_space >>= 10;
771 /* software strips receive CRC, so leave room for it */
772 min_rx_space = adapter->max_frame_size;
773 min_rx_space = ALIGN(min_rx_space, 1024);
774 min_rx_space >>= 10;
776 /* If current Tx allocation is less than the min Tx FIFO size,
777 * and the min Tx FIFO size is less than the current Rx FIFO
778 * allocation, take space away from current Rx allocation */
779 if (tx_space < min_tx_space &&
780 ((min_tx_space - tx_space) < pba)) {
781 pba = pba - (min_tx_space - tx_space);
783 /* if short on rx space, rx wins and must trump tx
784 * adjustment */
785 if (pba < min_rx_space)
786 pba = min_rx_space;
789 wr32(E1000_PBA, pba);
791 /* flow control settings */
792 /* The high water mark must be low enough to fit one full frame
793 * (or the size used for early receive) above it in the Rx FIFO.
794 * Set it to the lower of:
795 * - 90% of the Rx FIFO size, or
796 * - the full Rx FIFO size minus one full frame */
797 hwm = min(((pba << 10) * 9 / 10),
798 ((pba << 10) - adapter->max_frame_size));
800 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
801 fc->low_water = fc->high_water - 8;
802 fc->pause_time = 0xFFFF;
803 fc->send_xon = 1;
804 fc->type = fc->original_type;
806 /* Allow time for pending master requests to run */
807 adapter->hw.mac.ops.reset_hw(&adapter->hw);
808 wr32(E1000_WUC, 0);
810 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
811 dev_err(&adapter->pdev->dev, "Hardware Error\n");
813 igb_update_mng_vlan(adapter);
815 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
816 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
818 igb_reset_adaptive(&adapter->hw);
819 if (adapter->hw.phy.ops.get_phy_info)
820 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
824 * igb_probe - Device Initialization Routine
825 * @pdev: PCI device information struct
826 * @ent: entry in igb_pci_tbl
828 * Returns 0 on success, negative on failure
830 * igb_probe initializes an adapter identified by a pci_dev structure.
831 * The OS initialization, configuring of the adapter private structure,
832 * and a hardware reset occur.
834 static int __devinit igb_probe(struct pci_dev *pdev,
835 const struct pci_device_id *ent)
837 struct net_device *netdev;
838 struct igb_adapter *adapter;
839 struct e1000_hw *hw;
840 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
841 unsigned long mmio_start, mmio_len;
842 static int cards_found;
843 int i, err, pci_using_dac;
844 u16 eeprom_data = 0;
845 u16 eeprom_apme_mask = IGB_EEPROM_APME;
846 u32 part_num;
848 err = pci_enable_device(pdev);
849 if (err)
850 return err;
852 pci_using_dac = 0;
853 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
854 if (!err) {
855 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
856 if (!err)
857 pci_using_dac = 1;
858 } else {
859 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
860 if (err) {
861 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
862 if (err) {
863 dev_err(&pdev->dev, "No usable DMA "
864 "configuration, aborting\n");
865 goto err_dma;
870 err = pci_request_regions(pdev, igb_driver_name);
871 if (err)
872 goto err_pci_reg;
874 pci_set_master(pdev);
876 err = -ENOMEM;
877 netdev = alloc_etherdev(sizeof(struct igb_adapter));
878 if (!netdev)
879 goto err_alloc_etherdev;
881 SET_NETDEV_DEV(netdev, &pdev->dev);
883 pci_set_drvdata(pdev, netdev);
884 adapter = netdev_priv(netdev);
885 adapter->netdev = netdev;
886 adapter->pdev = pdev;
887 hw = &adapter->hw;
888 hw->back = adapter;
889 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
891 mmio_start = pci_resource_start(pdev, 0);
892 mmio_len = pci_resource_len(pdev, 0);
894 err = -EIO;
895 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
896 if (!adapter->hw.hw_addr)
897 goto err_ioremap;
899 netdev->open = &igb_open;
900 netdev->stop = &igb_close;
901 netdev->get_stats = &igb_get_stats;
902 netdev->set_multicast_list = &igb_set_multi;
903 netdev->set_mac_address = &igb_set_mac;
904 netdev->change_mtu = &igb_change_mtu;
905 netdev->do_ioctl = &igb_ioctl;
906 igb_set_ethtool_ops(netdev);
907 netdev->tx_timeout = &igb_tx_timeout;
908 netdev->watchdog_timeo = 5 * HZ;
909 netif_napi_add(netdev, &adapter->napi, igb_clean, 64);
910 netdev->vlan_rx_register = igb_vlan_rx_register;
911 netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
912 netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
913 #ifdef CONFIG_NET_POLL_CONTROLLER
914 netdev->poll_controller = igb_netpoll;
915 #endif
916 netdev->hard_start_xmit = &igb_xmit_frame_adv;
918 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
920 netdev->mem_start = mmio_start;
921 netdev->mem_end = mmio_start + mmio_len;
923 adapter->bd_number = cards_found;
925 /* PCI config space info */
926 hw->vendor_id = pdev->vendor;
927 hw->device_id = pdev->device;
928 hw->revision_id = pdev->revision;
929 hw->subsystem_vendor_id = pdev->subsystem_vendor;
930 hw->subsystem_device_id = pdev->subsystem_device;
932 /* setup the private structure */
933 hw->back = adapter;
934 /* Copy the default MAC, PHY and NVM function pointers */
935 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
936 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
937 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
938 /* Initialize skew-specific constants */
939 err = ei->get_invariants(hw);
940 if (err)
941 goto err_hw_init;
943 err = igb_sw_init(adapter);
944 if (err)
945 goto err_sw_init;
947 igb_get_bus_info_pcie(hw);
949 hw->phy.autoneg_wait_to_complete = false;
950 hw->mac.adaptive_ifs = true;
952 /* Copper options */
953 if (hw->phy.media_type == e1000_media_type_copper) {
954 hw->phy.mdix = AUTO_ALL_MODES;
955 hw->phy.disable_polarity_correction = false;
956 hw->phy.ms_type = e1000_ms_hw_default;
959 if (igb_check_reset_block(hw))
960 dev_info(&pdev->dev,
961 "PHY reset is blocked due to SOL/IDER session.\n");
963 netdev->features = NETIF_F_SG |
964 NETIF_F_HW_CSUM |
965 NETIF_F_HW_VLAN_TX |
966 NETIF_F_HW_VLAN_RX |
967 NETIF_F_HW_VLAN_FILTER;
969 netdev->features |= NETIF_F_TSO;
971 netdev->features |= NETIF_F_TSO6;
972 if (pci_using_dac)
973 netdev->features |= NETIF_F_HIGHDMA;
975 netdev->features |= NETIF_F_LLTX;
976 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
978 /* before reading the NVM, reset the controller to put the device in a
979 * known good starting state */
980 hw->mac.ops.reset_hw(hw);
982 /* make sure the NVM is good */
983 if (igb_validate_nvm_checksum(hw) < 0) {
984 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
985 err = -EIO;
986 goto err_eeprom;
989 /* copy the MAC address out of the NVM */
990 if (hw->mac.ops.read_mac_addr(hw))
991 dev_err(&pdev->dev, "NVM Read Error\n");
993 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
994 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
996 if (!is_valid_ether_addr(netdev->perm_addr)) {
997 dev_err(&pdev->dev, "Invalid MAC Address\n");
998 err = -EIO;
999 goto err_eeprom;
1002 init_timer(&adapter->watchdog_timer);
1003 adapter->watchdog_timer.function = &igb_watchdog;
1004 adapter->watchdog_timer.data = (unsigned long) adapter;
1006 init_timer(&adapter->phy_info_timer);
1007 adapter->phy_info_timer.function = &igb_update_phy_info;
1008 adapter->phy_info_timer.data = (unsigned long) adapter;
1010 INIT_WORK(&adapter->reset_task, igb_reset_task);
1011 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1013 /* Initialize link & ring properties that are user-changeable */
1014 adapter->tx_ring->count = 256;
1015 for (i = 0; i < adapter->num_tx_queues; i++)
1016 adapter->tx_ring[i].count = adapter->tx_ring->count;
1017 adapter->rx_ring->count = 256;
1018 for (i = 0; i < adapter->num_rx_queues; i++)
1019 adapter->rx_ring[i].count = adapter->rx_ring->count;
1021 adapter->fc_autoneg = true;
1022 hw->mac.autoneg = true;
1023 hw->phy.autoneg_advertised = 0x2f;
1025 hw->fc.original_type = e1000_fc_default;
1026 hw->fc.type = e1000_fc_default;
1028 adapter->itr_setting = 3;
1029 adapter->itr = IGB_START_ITR;
1031 igb_validate_mdi_setting(hw);
1033 adapter->rx_csum = 1;
1035 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1036 * enable the ACPI Magic Packet filter
1039 if (hw->bus.func == 0 ||
1040 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1041 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1042 &eeprom_data);
1044 if (eeprom_data & eeprom_apme_mask)
1045 adapter->eeprom_wol |= E1000_WUFC_MAG;
1047 /* now that we have the eeprom settings, apply the special cases where
1048 * the eeprom may be wrong or the board simply won't support wake on
1049 * lan on a particular port */
1050 switch (pdev->device) {
1051 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1052 adapter->eeprom_wol = 0;
1053 break;
1054 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1055 /* Wake events only supported on port A for dual fiber
1056 * regardless of eeprom setting */
1057 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1058 adapter->eeprom_wol = 0;
1059 break;
1062 /* initialize the wol settings based on the eeprom settings */
1063 adapter->wol = adapter->eeprom_wol;
1065 /* reset the hardware with the new settings */
1066 igb_reset(adapter);
1068 /* let the f/w know that the h/w is now under the control of the
1069 * driver. */
1070 igb_get_hw_control(adapter);
1072 /* tell the stack to leave us alone until igb_open() is called */
1073 netif_carrier_off(netdev);
1074 netif_stop_queue(netdev);
1076 strcpy(netdev->name, "eth%d");
1077 err = register_netdev(netdev);
1078 if (err)
1079 goto err_register;
1081 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1082 /* print bus type/speed/width info */
1083 dev_info(&pdev->dev,
1084 "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1085 netdev->name,
1086 ((hw->bus.speed == e1000_bus_speed_2500)
1087 ? "2.5Gb/s" : "unknown"),
1088 ((hw->bus.width == e1000_bus_width_pcie_x4)
1089 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1090 ? "Width x1" : "unknown"),
1091 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1092 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1094 igb_read_part_num(hw, &part_num);
1095 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1096 (part_num >> 8), (part_num & 0xff));
1098 dev_info(&pdev->dev,
1099 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1100 adapter->msix_entries ? "MSI-X" :
1101 adapter->msi_enabled ? "MSI" : "legacy",
1102 adapter->num_rx_queues, adapter->num_tx_queues);
1104 cards_found++;
1105 return 0;
1107 err_register:
1108 igb_release_hw_control(adapter);
1109 err_eeprom:
1110 if (!igb_check_reset_block(hw))
1111 hw->phy.ops.reset_phy(hw);
1113 if (hw->flash_address)
1114 iounmap(hw->flash_address);
1116 igb_remove_device(hw);
1117 kfree(adapter->tx_ring);
1118 kfree(adapter->rx_ring);
1119 err_sw_init:
1120 err_hw_init:
1121 iounmap(hw->hw_addr);
1122 err_ioremap:
1123 free_netdev(netdev);
1124 err_alloc_etherdev:
1125 pci_release_regions(pdev);
1126 err_pci_reg:
1127 err_dma:
1128 pci_disable_device(pdev);
1129 return err;
1133 * igb_remove - Device Removal Routine
1134 * @pdev: PCI device information struct
1136 * igb_remove is called by the PCI subsystem to alert the driver
1137 * that it should release a PCI device. The could be caused by a
1138 * Hot-Plug event, or because the driver is going to be removed from
1139 * memory.
1141 static void __devexit igb_remove(struct pci_dev *pdev)
1143 struct net_device *netdev = pci_get_drvdata(pdev);
1144 struct igb_adapter *adapter = netdev_priv(netdev);
1146 /* flush_scheduled work may reschedule our watchdog task, so
1147 * explicitly disable watchdog tasks from being rescheduled */
1148 set_bit(__IGB_DOWN, &adapter->state);
1149 del_timer_sync(&adapter->watchdog_timer);
1150 del_timer_sync(&adapter->phy_info_timer);
1152 flush_scheduled_work();
1154 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1155 * would have already happened in close and is redundant. */
1156 igb_release_hw_control(adapter);
1158 unregister_netdev(netdev);
1160 if (!igb_check_reset_block(&adapter->hw))
1161 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1163 igb_remove_device(&adapter->hw);
1164 igb_reset_interrupt_capability(adapter);
1166 kfree(adapter->tx_ring);
1167 kfree(adapter->rx_ring);
1169 iounmap(adapter->hw.hw_addr);
1170 if (adapter->hw.flash_address)
1171 iounmap(adapter->hw.flash_address);
1172 pci_release_regions(pdev);
1174 free_netdev(netdev);
1176 pci_disable_device(pdev);
1180 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1181 * @adapter: board private structure to initialize
1183 * igb_sw_init initializes the Adapter private data structure.
1184 * Fields are initialized based on PCI device information and
1185 * OS network device settings (MTU size).
1187 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1189 struct e1000_hw *hw = &adapter->hw;
1190 struct net_device *netdev = adapter->netdev;
1191 struct pci_dev *pdev = adapter->pdev;
1193 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1195 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1196 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1197 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1198 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1200 /* Number of supported queues. */
1201 /* Having more queues than CPUs doesn't make sense. */
1202 adapter->num_tx_queues = 1;
1203 adapter->num_rx_queues = min(IGB_MAX_RX_QUEUES, num_online_cpus());
1205 igb_set_interrupt_capability(adapter);
1207 if (igb_alloc_queues(adapter)) {
1208 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1209 return -ENOMEM;
1212 /* Explicitly disable IRQ since the NIC can be in any state. */
1213 igb_irq_disable(adapter);
1215 set_bit(__IGB_DOWN, &adapter->state);
1216 return 0;
1220 * igb_open - Called when a network interface is made active
1221 * @netdev: network interface device structure
1223 * Returns 0 on success, negative value on failure
1225 * The open entry point is called when a network interface is made
1226 * active by the system (IFF_UP). At this point all resources needed
1227 * for transmit and receive operations are allocated, the interrupt
1228 * handler is registered with the OS, the watchdog timer is started,
1229 * and the stack is notified that the interface is ready.
1231 static int igb_open(struct net_device *netdev)
1233 struct igb_adapter *adapter = netdev_priv(netdev);
1234 struct e1000_hw *hw = &adapter->hw;
1235 int err;
1236 int i;
1238 /* disallow open during test */
1239 if (test_bit(__IGB_TESTING, &adapter->state))
1240 return -EBUSY;
1242 /* allocate transmit descriptors */
1243 err = igb_setup_all_tx_resources(adapter);
1244 if (err)
1245 goto err_setup_tx;
1247 /* allocate receive descriptors */
1248 err = igb_setup_all_rx_resources(adapter);
1249 if (err)
1250 goto err_setup_rx;
1252 /* e1000_power_up_phy(adapter); */
1254 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1255 if ((adapter->hw.mng_cookie.status &
1256 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1257 igb_update_mng_vlan(adapter);
1259 /* before we allocate an interrupt, we must be ready to handle it.
1260 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1261 * as soon as we call pci_request_irq, so we have to setup our
1262 * clean_rx handler before we do so. */
1263 igb_configure(adapter);
1265 err = igb_request_irq(adapter);
1266 if (err)
1267 goto err_req_irq;
1269 /* From here on the code is the same as igb_up() */
1270 clear_bit(__IGB_DOWN, &adapter->state);
1272 napi_enable(&adapter->napi);
1273 if (adapter->msix_entries)
1274 for (i = 0; i < adapter->num_rx_queues; i++)
1275 napi_enable(&adapter->rx_ring[i].napi);
1277 igb_irq_enable(adapter);
1279 /* Clear any pending interrupts. */
1280 rd32(E1000_ICR);
1281 /* Fire a link status change interrupt to start the watchdog. */
1282 wr32(E1000_ICS, E1000_ICS_LSC);
1284 return 0;
1286 err_req_irq:
1287 igb_release_hw_control(adapter);
1288 /* e1000_power_down_phy(adapter); */
1289 igb_free_all_rx_resources(adapter);
1290 err_setup_rx:
1291 igb_free_all_tx_resources(adapter);
1292 err_setup_tx:
1293 igb_reset(adapter);
1295 return err;
1299 * igb_close - Disables a network interface
1300 * @netdev: network interface device structure
1302 * Returns 0, this is not allowed to fail
1304 * The close entry point is called when an interface is de-activated
1305 * by the OS. The hardware is still under the driver's control, but
1306 * needs to be disabled. A global MAC reset is issued to stop the
1307 * hardware, and all transmit and receive resources are freed.
1309 static int igb_close(struct net_device *netdev)
1311 struct igb_adapter *adapter = netdev_priv(netdev);
1313 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1314 igb_down(adapter);
1316 igb_free_irq(adapter);
1318 igb_free_all_tx_resources(adapter);
1319 igb_free_all_rx_resources(adapter);
1321 /* kill manageability vlan ID if supported, but not if a vlan with
1322 * the same ID is registered on the host OS (let 8021q kill it) */
1323 if ((adapter->hw.mng_cookie.status &
1324 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1325 !(adapter->vlgrp &&
1326 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1327 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1329 return 0;
1333 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1334 * @adapter: board private structure
1335 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1337 * Return 0 on success, negative on failure
1340 int igb_setup_tx_resources(struct igb_adapter *adapter,
1341 struct igb_ring *tx_ring)
1343 struct pci_dev *pdev = adapter->pdev;
1344 int size;
1346 size = sizeof(struct igb_buffer) * tx_ring->count;
1347 tx_ring->buffer_info = vmalloc(size);
1348 if (!tx_ring->buffer_info)
1349 goto err;
1350 memset(tx_ring->buffer_info, 0, size);
1352 /* round up to nearest 4K */
1353 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1354 + sizeof(u32);
1355 tx_ring->size = ALIGN(tx_ring->size, 4096);
1357 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1358 &tx_ring->dma);
1360 if (!tx_ring->desc)
1361 goto err;
1363 tx_ring->adapter = adapter;
1364 tx_ring->next_to_use = 0;
1365 tx_ring->next_to_clean = 0;
1366 spin_lock_init(&tx_ring->tx_clean_lock);
1367 spin_lock_init(&tx_ring->tx_lock);
1368 return 0;
1370 err:
1371 vfree(tx_ring->buffer_info);
1372 dev_err(&adapter->pdev->dev,
1373 "Unable to allocate memory for the transmit descriptor ring\n");
1374 return -ENOMEM;
1378 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1379 * (Descriptors) for all queues
1380 * @adapter: board private structure
1382 * Return 0 on success, negative on failure
1384 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1386 int i, err = 0;
1388 for (i = 0; i < adapter->num_tx_queues; i++) {
1389 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1390 if (err) {
1391 dev_err(&adapter->pdev->dev,
1392 "Allocation for Tx Queue %u failed\n", i);
1393 for (i--; i >= 0; i--)
1394 igb_free_tx_resources(adapter,
1395 &adapter->tx_ring[i]);
1396 break;
1400 return err;
1404 * igb_configure_tx - Configure transmit Unit after Reset
1405 * @adapter: board private structure
1407 * Configure the Tx unit of the MAC after a reset.
1409 static void igb_configure_tx(struct igb_adapter *adapter)
1411 u64 tdba, tdwba;
1412 struct e1000_hw *hw = &adapter->hw;
1413 u32 tctl;
1414 u32 txdctl, txctrl;
1415 int i;
1417 for (i = 0; i < adapter->num_tx_queues; i++) {
1418 struct igb_ring *ring = &(adapter->tx_ring[i]);
1420 wr32(E1000_TDLEN(i),
1421 ring->count * sizeof(struct e1000_tx_desc));
1422 tdba = ring->dma;
1423 wr32(E1000_TDBAL(i),
1424 tdba & 0x00000000ffffffffULL);
1425 wr32(E1000_TDBAH(i), tdba >> 32);
1427 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1428 tdwba |= 1; /* enable head wb */
1429 wr32(E1000_TDWBAL(i),
1430 tdwba & 0x00000000ffffffffULL);
1431 wr32(E1000_TDWBAH(i), tdwba >> 32);
1433 ring->head = E1000_TDH(i);
1434 ring->tail = E1000_TDT(i);
1435 writel(0, hw->hw_addr + ring->tail);
1436 writel(0, hw->hw_addr + ring->head);
1437 txdctl = rd32(E1000_TXDCTL(i));
1438 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1439 wr32(E1000_TXDCTL(i), txdctl);
1441 /* Turn off Relaxed Ordering on head write-backs. The
1442 * writebacks MUST be delivered in order or it will
1443 * completely screw up our bookeeping.
1445 txctrl = rd32(E1000_DCA_TXCTRL(i));
1446 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1447 wr32(E1000_DCA_TXCTRL(i), txctrl);
1452 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1454 /* Program the Transmit Control Register */
1456 tctl = rd32(E1000_TCTL);
1457 tctl &= ~E1000_TCTL_CT;
1458 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1459 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1461 igb_config_collision_dist(hw);
1463 /* Setup Transmit Descriptor Settings for eop descriptor */
1464 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1466 /* Enable transmits */
1467 tctl |= E1000_TCTL_EN;
1469 wr32(E1000_TCTL, tctl);
1473 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1474 * @adapter: board private structure
1475 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1477 * Returns 0 on success, negative on failure
1480 int igb_setup_rx_resources(struct igb_adapter *adapter,
1481 struct igb_ring *rx_ring)
1483 struct pci_dev *pdev = adapter->pdev;
1484 int size, desc_len;
1486 size = sizeof(struct igb_buffer) * rx_ring->count;
1487 rx_ring->buffer_info = vmalloc(size);
1488 if (!rx_ring->buffer_info)
1489 goto err;
1490 memset(rx_ring->buffer_info, 0, size);
1492 desc_len = sizeof(union e1000_adv_rx_desc);
1494 /* Round up to nearest 4K */
1495 rx_ring->size = rx_ring->count * desc_len;
1496 rx_ring->size = ALIGN(rx_ring->size, 4096);
1498 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1499 &rx_ring->dma);
1501 if (!rx_ring->desc)
1502 goto err;
1504 rx_ring->next_to_clean = 0;
1505 rx_ring->next_to_use = 0;
1506 rx_ring->pending_skb = NULL;
1508 rx_ring->adapter = adapter;
1509 /* FIXME: do we want to setup ring->napi->poll here? */
1510 rx_ring->napi.poll = adapter->napi.poll;
1512 return 0;
1514 err:
1515 vfree(rx_ring->buffer_info);
1516 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1517 "the receive descriptor ring\n");
1518 return -ENOMEM;
1522 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1523 * (Descriptors) for all queues
1524 * @adapter: board private structure
1526 * Return 0 on success, negative on failure
1528 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1530 int i, err = 0;
1532 for (i = 0; i < adapter->num_rx_queues; i++) {
1533 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1534 if (err) {
1535 dev_err(&adapter->pdev->dev,
1536 "Allocation for Rx Queue %u failed\n", i);
1537 for (i--; i >= 0; i--)
1538 igb_free_rx_resources(adapter,
1539 &adapter->rx_ring[i]);
1540 break;
1544 return err;
1548 * igb_setup_rctl - configure the receive control registers
1549 * @adapter: Board private structure
1551 static void igb_setup_rctl(struct igb_adapter *adapter)
1553 struct e1000_hw *hw = &adapter->hw;
1554 u32 rctl;
1555 u32 srrctl = 0;
1556 int i;
1558 rctl = rd32(E1000_RCTL);
1560 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1562 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1563 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1564 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1566 /* disable the stripping of CRC because it breaks
1567 * BMC firmware connected over SMBUS
1568 rctl |= E1000_RCTL_SECRC;
1571 rctl &= ~E1000_RCTL_SBP;
1573 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1574 rctl &= ~E1000_RCTL_LPE;
1575 else
1576 rctl |= E1000_RCTL_LPE;
1577 if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1578 /* Setup buffer sizes */
1579 rctl &= ~E1000_RCTL_SZ_4096;
1580 rctl |= E1000_RCTL_BSEX;
1581 switch (adapter->rx_buffer_len) {
1582 case IGB_RXBUFFER_256:
1583 rctl |= E1000_RCTL_SZ_256;
1584 rctl &= ~E1000_RCTL_BSEX;
1585 break;
1586 case IGB_RXBUFFER_512:
1587 rctl |= E1000_RCTL_SZ_512;
1588 rctl &= ~E1000_RCTL_BSEX;
1589 break;
1590 case IGB_RXBUFFER_1024:
1591 rctl |= E1000_RCTL_SZ_1024;
1592 rctl &= ~E1000_RCTL_BSEX;
1593 break;
1594 case IGB_RXBUFFER_2048:
1595 default:
1596 rctl |= E1000_RCTL_SZ_2048;
1597 rctl &= ~E1000_RCTL_BSEX;
1598 break;
1599 case IGB_RXBUFFER_4096:
1600 rctl |= E1000_RCTL_SZ_4096;
1601 break;
1602 case IGB_RXBUFFER_8192:
1603 rctl |= E1000_RCTL_SZ_8192;
1604 break;
1605 case IGB_RXBUFFER_16384:
1606 rctl |= E1000_RCTL_SZ_16384;
1607 break;
1609 } else {
1610 rctl &= ~E1000_RCTL_BSEX;
1611 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1614 /* 82575 and greater support packet-split where the protocol
1615 * header is placed in skb->data and the packet data is
1616 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1617 * In the case of a non-split, skb->data is linearly filled,
1618 * followed by the page buffers. Therefore, skb->data is
1619 * sized to hold the largest protocol header.
1621 /* allocations using alloc_page take too long for regular MTU
1622 * so only enable packet split for jumbo frames */
1623 if (rctl & E1000_RCTL_LPE) {
1624 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1625 srrctl = adapter->rx_ps_hdr_size <<
1626 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1627 /* buffer size is ALWAYS one page */
1628 srrctl |= PAGE_SIZE >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1629 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1630 } else {
1631 adapter->rx_ps_hdr_size = 0;
1632 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1635 for (i = 0; i < adapter->num_rx_queues; i++)
1636 wr32(E1000_SRRCTL(i), srrctl);
1638 wr32(E1000_RCTL, rctl);
1642 * igb_configure_rx - Configure receive Unit after Reset
1643 * @adapter: board private structure
1645 * Configure the Rx unit of the MAC after a reset.
1647 static void igb_configure_rx(struct igb_adapter *adapter)
1649 u64 rdba;
1650 struct e1000_hw *hw = &adapter->hw;
1651 u32 rctl, rxcsum;
1652 u32 rxdctl;
1653 int i;
1655 /* disable receives while setting up the descriptors */
1656 rctl = rd32(E1000_RCTL);
1657 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1658 wrfl();
1659 mdelay(10);
1661 if (adapter->itr_setting > 3)
1662 wr32(E1000_ITR,
1663 1000000000 / (adapter->itr * 256));
1665 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1666 * the Base and Length of the Rx Descriptor Ring */
1667 for (i = 0; i < adapter->num_rx_queues; i++) {
1668 struct igb_ring *ring = &(adapter->rx_ring[i]);
1669 rdba = ring->dma;
1670 wr32(E1000_RDBAL(i),
1671 rdba & 0x00000000ffffffffULL);
1672 wr32(E1000_RDBAH(i), rdba >> 32);
1673 wr32(E1000_RDLEN(i),
1674 ring->count * sizeof(union e1000_adv_rx_desc));
1676 ring->head = E1000_RDH(i);
1677 ring->tail = E1000_RDT(i);
1678 writel(0, hw->hw_addr + ring->tail);
1679 writel(0, hw->hw_addr + ring->head);
1681 rxdctl = rd32(E1000_RXDCTL(i));
1682 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1683 rxdctl &= 0xFFF00000;
1684 rxdctl |= IGB_RX_PTHRESH;
1685 rxdctl |= IGB_RX_HTHRESH << 8;
1686 rxdctl |= IGB_RX_WTHRESH << 16;
1687 wr32(E1000_RXDCTL(i), rxdctl);
1690 if (adapter->num_rx_queues > 1) {
1691 u32 random[10];
1692 u32 mrqc;
1693 u32 j, shift;
1694 union e1000_reta {
1695 u32 dword;
1696 u8 bytes[4];
1697 } reta;
1699 get_random_bytes(&random[0], 40);
1701 shift = 6;
1702 for (j = 0; j < (32 * 4); j++) {
1703 reta.bytes[j & 3] =
1704 (j % adapter->num_rx_queues) << shift;
1705 if ((j & 3) == 3)
1706 writel(reta.dword,
1707 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1709 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1711 /* Fill out hash function seeds */
1712 for (j = 0; j < 10; j++)
1713 array_wr32(E1000_RSSRK(0), j, random[j]);
1715 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1716 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1717 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1718 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1719 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1720 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1721 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1722 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1725 wr32(E1000_MRQC, mrqc);
1727 /* Multiqueue and raw packet checksumming are mutually
1728 * exclusive. Note that this not the same as TCP/IP
1729 * checksumming, which works fine. */
1730 rxcsum = rd32(E1000_RXCSUM);
1731 rxcsum |= E1000_RXCSUM_PCSD;
1732 wr32(E1000_RXCSUM, rxcsum);
1733 } else {
1734 /* Enable Receive Checksum Offload for TCP and UDP */
1735 rxcsum = rd32(E1000_RXCSUM);
1736 if (adapter->rx_csum) {
1737 rxcsum |= E1000_RXCSUM_TUOFL;
1739 /* Enable IPv4 payload checksum for UDP fragments
1740 * Must be used in conjunction with packet-split. */
1741 if (adapter->rx_ps_hdr_size)
1742 rxcsum |= E1000_RXCSUM_IPPCSE;
1743 } else {
1744 rxcsum &= ~E1000_RXCSUM_TUOFL;
1745 /* don't need to clear IPPCSE as it defaults to 0 */
1747 wr32(E1000_RXCSUM, rxcsum);
1750 if (adapter->vlgrp)
1751 wr32(E1000_RLPML,
1752 adapter->max_frame_size + VLAN_TAG_SIZE);
1753 else
1754 wr32(E1000_RLPML, adapter->max_frame_size);
1756 /* Enable Receives */
1757 wr32(E1000_RCTL, rctl);
1761 * igb_free_tx_resources - Free Tx Resources per Queue
1762 * @adapter: board private structure
1763 * @tx_ring: Tx descriptor ring for a specific queue
1765 * Free all transmit software resources
1767 static void igb_free_tx_resources(struct igb_adapter *adapter,
1768 struct igb_ring *tx_ring)
1770 struct pci_dev *pdev = adapter->pdev;
1772 igb_clean_tx_ring(adapter, tx_ring);
1774 vfree(tx_ring->buffer_info);
1775 tx_ring->buffer_info = NULL;
1777 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1779 tx_ring->desc = NULL;
1783 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1784 * @adapter: board private structure
1786 * Free all transmit software resources
1788 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1790 int i;
1792 for (i = 0; i < adapter->num_tx_queues; i++)
1793 igb_free_tx_resources(adapter, &adapter->tx_ring[i]);
1796 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
1797 struct igb_buffer *buffer_info)
1799 if (buffer_info->dma) {
1800 pci_unmap_page(adapter->pdev,
1801 buffer_info->dma,
1802 buffer_info->length,
1803 PCI_DMA_TODEVICE);
1804 buffer_info->dma = 0;
1806 if (buffer_info->skb) {
1807 dev_kfree_skb_any(buffer_info->skb);
1808 buffer_info->skb = NULL;
1810 buffer_info->time_stamp = 0;
1811 /* buffer_info must be completely set up in the transmit path */
1815 * igb_clean_tx_ring - Free Tx Buffers
1816 * @adapter: board private structure
1817 * @tx_ring: ring to be cleaned
1819 static void igb_clean_tx_ring(struct igb_adapter *adapter,
1820 struct igb_ring *tx_ring)
1822 struct igb_buffer *buffer_info;
1823 unsigned long size;
1824 unsigned int i;
1826 if (!tx_ring->buffer_info)
1827 return;
1828 /* Free all the Tx ring sk_buffs */
1830 for (i = 0; i < tx_ring->count; i++) {
1831 buffer_info = &tx_ring->buffer_info[i];
1832 igb_unmap_and_free_tx_resource(adapter, buffer_info);
1835 size = sizeof(struct igb_buffer) * tx_ring->count;
1836 memset(tx_ring->buffer_info, 0, size);
1838 /* Zero out the descriptor ring */
1840 memset(tx_ring->desc, 0, tx_ring->size);
1842 tx_ring->next_to_use = 0;
1843 tx_ring->next_to_clean = 0;
1845 writel(0, adapter->hw.hw_addr + tx_ring->head);
1846 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1850 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
1851 * @adapter: board private structure
1853 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
1855 int i;
1857 for (i = 0; i < adapter->num_tx_queues; i++)
1858 igb_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1862 * igb_free_rx_resources - Free Rx Resources
1863 * @adapter: board private structure
1864 * @rx_ring: ring to clean the resources from
1866 * Free all receive software resources
1868 static void igb_free_rx_resources(struct igb_adapter *adapter,
1869 struct igb_ring *rx_ring)
1871 struct pci_dev *pdev = adapter->pdev;
1873 igb_clean_rx_ring(adapter, rx_ring);
1875 vfree(rx_ring->buffer_info);
1876 rx_ring->buffer_info = NULL;
1878 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1880 rx_ring->desc = NULL;
1884 * igb_free_all_rx_resources - Free Rx Resources for All Queues
1885 * @adapter: board private structure
1887 * Free all receive software resources
1889 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
1891 int i;
1893 for (i = 0; i < adapter->num_rx_queues; i++)
1894 igb_free_rx_resources(adapter, &adapter->rx_ring[i]);
1898 * igb_clean_rx_ring - Free Rx Buffers per Queue
1899 * @adapter: board private structure
1900 * @rx_ring: ring to free buffers from
1902 static void igb_clean_rx_ring(struct igb_adapter *adapter,
1903 struct igb_ring *rx_ring)
1905 struct igb_buffer *buffer_info;
1906 struct pci_dev *pdev = adapter->pdev;
1907 unsigned long size;
1908 unsigned int i;
1910 if (!rx_ring->buffer_info)
1911 return;
1912 /* Free all the Rx ring sk_buffs */
1913 for (i = 0; i < rx_ring->count; i++) {
1914 buffer_info = &rx_ring->buffer_info[i];
1915 if (buffer_info->dma) {
1916 if (adapter->rx_ps_hdr_size)
1917 pci_unmap_single(pdev, buffer_info->dma,
1918 adapter->rx_ps_hdr_size,
1919 PCI_DMA_FROMDEVICE);
1920 else
1921 pci_unmap_single(pdev, buffer_info->dma,
1922 adapter->rx_buffer_len,
1923 PCI_DMA_FROMDEVICE);
1924 buffer_info->dma = 0;
1927 if (buffer_info->skb) {
1928 dev_kfree_skb(buffer_info->skb);
1929 buffer_info->skb = NULL;
1931 if (buffer_info->page) {
1932 pci_unmap_page(pdev, buffer_info->page_dma,
1933 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1934 put_page(buffer_info->page);
1935 buffer_info->page = NULL;
1936 buffer_info->page_dma = 0;
1940 /* there also may be some cached data from a chained receive */
1941 if (rx_ring->pending_skb) {
1942 dev_kfree_skb(rx_ring->pending_skb);
1943 rx_ring->pending_skb = NULL;
1946 size = sizeof(struct igb_buffer) * rx_ring->count;
1947 memset(rx_ring->buffer_info, 0, size);
1949 /* Zero out the descriptor ring */
1950 memset(rx_ring->desc, 0, rx_ring->size);
1952 rx_ring->next_to_clean = 0;
1953 rx_ring->next_to_use = 0;
1955 writel(0, adapter->hw.hw_addr + rx_ring->head);
1956 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1960 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
1961 * @adapter: board private structure
1963 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
1965 int i;
1967 for (i = 0; i < adapter->num_rx_queues; i++)
1968 igb_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1972 * igb_set_mac - Change the Ethernet Address of the NIC
1973 * @netdev: network interface device structure
1974 * @p: pointer to an address structure
1976 * Returns 0 on success, negative on failure
1978 static int igb_set_mac(struct net_device *netdev, void *p)
1980 struct igb_adapter *adapter = netdev_priv(netdev);
1981 struct sockaddr *addr = p;
1983 if (!is_valid_ether_addr(addr->sa_data))
1984 return -EADDRNOTAVAIL;
1986 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1987 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
1989 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1991 return 0;
1995 * igb_set_multi - Multicast and Promiscuous mode set
1996 * @netdev: network interface device structure
1998 * The set_multi entry point is called whenever the multicast address
1999 * list or the network interface flags are updated. This routine is
2000 * responsible for configuring the hardware for proper multicast,
2001 * promiscuous mode, and all-multi behavior.
2003 static void igb_set_multi(struct net_device *netdev)
2005 struct igb_adapter *adapter = netdev_priv(netdev);
2006 struct e1000_hw *hw = &adapter->hw;
2007 struct e1000_mac_info *mac = &hw->mac;
2008 struct dev_mc_list *mc_ptr;
2009 u8 *mta_list;
2010 u32 rctl;
2011 int i;
2013 /* Check for Promiscuous and All Multicast modes */
2015 rctl = rd32(E1000_RCTL);
2017 if (netdev->flags & IFF_PROMISC)
2018 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2019 else if (netdev->flags & IFF_ALLMULTI) {
2020 rctl |= E1000_RCTL_MPE;
2021 rctl &= ~E1000_RCTL_UPE;
2022 } else
2023 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2025 wr32(E1000_RCTL, rctl);
2027 if (!netdev->mc_count) {
2028 /* nothing to program, so clear mc list */
2029 igb_update_mc_addr_list(hw, NULL, 0, 1,
2030 mac->rar_entry_count);
2031 return;
2034 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2035 if (!mta_list)
2036 return;
2038 /* The shared function expects a packed array of only addresses. */
2039 mc_ptr = netdev->mc_list;
2041 for (i = 0; i < netdev->mc_count; i++) {
2042 if (!mc_ptr)
2043 break;
2044 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2045 mc_ptr = mc_ptr->next;
2047 igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
2048 kfree(mta_list);
2051 /* Need to wait a few seconds after link up to get diagnostic information from
2052 * the phy */
2053 static void igb_update_phy_info(unsigned long data)
2055 struct igb_adapter *adapter = (struct igb_adapter *) data;
2056 if (adapter->hw.phy.ops.get_phy_info)
2057 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
2061 * igb_watchdog - Timer Call-back
2062 * @data: pointer to adapter cast into an unsigned long
2064 static void igb_watchdog(unsigned long data)
2066 struct igb_adapter *adapter = (struct igb_adapter *)data;
2067 /* Do the rest outside of interrupt context */
2068 schedule_work(&adapter->watchdog_task);
2071 static void igb_watchdog_task(struct work_struct *work)
2073 struct igb_adapter *adapter = container_of(work,
2074 struct igb_adapter, watchdog_task);
2075 struct e1000_hw *hw = &adapter->hw;
2077 struct net_device *netdev = adapter->netdev;
2078 struct igb_ring *tx_ring = adapter->tx_ring;
2079 struct e1000_mac_info *mac = &adapter->hw.mac;
2080 u32 link;
2081 s32 ret_val;
2083 if ((netif_carrier_ok(netdev)) &&
2084 (rd32(E1000_STATUS) & E1000_STATUS_LU))
2085 goto link_up;
2087 ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2088 if ((ret_val == E1000_ERR_PHY) &&
2089 (hw->phy.type == e1000_phy_igp_3) &&
2090 (rd32(E1000_CTRL) &
2091 E1000_PHY_CTRL_GBE_DISABLE))
2092 dev_info(&adapter->pdev->dev,
2093 "Gigabit has been disabled, downgrading speed\n");
2095 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2096 !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2097 link = mac->serdes_has_link;
2098 else
2099 link = rd32(E1000_STATUS) &
2100 E1000_STATUS_LU;
2102 if (link) {
2103 if (!netif_carrier_ok(netdev)) {
2104 u32 ctrl;
2105 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2106 &adapter->link_speed,
2107 &adapter->link_duplex);
2109 ctrl = rd32(E1000_CTRL);
2110 dev_info(&adapter->pdev->dev,
2111 "NIC Link is Up %d Mbps %s, "
2112 "Flow Control: %s\n",
2113 adapter->link_speed,
2114 adapter->link_duplex == FULL_DUPLEX ?
2115 "Full Duplex" : "Half Duplex",
2116 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2117 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2118 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2119 E1000_CTRL_TFCE) ? "TX" : "None")));
2121 /* tweak tx_queue_len according to speed/duplex and
2122 * adjust the timeout factor */
2123 netdev->tx_queue_len = adapter->tx_queue_len;
2124 adapter->tx_timeout_factor = 1;
2125 switch (adapter->link_speed) {
2126 case SPEED_10:
2127 netdev->tx_queue_len = 10;
2128 adapter->tx_timeout_factor = 14;
2129 break;
2130 case SPEED_100:
2131 netdev->tx_queue_len = 100;
2132 /* maybe add some timeout factor ? */
2133 break;
2136 netif_carrier_on(netdev);
2137 netif_wake_queue(netdev);
2139 if (!test_bit(__IGB_DOWN, &adapter->state))
2140 mod_timer(&adapter->phy_info_timer,
2141 round_jiffies(jiffies + 2 * HZ));
2143 } else {
2144 if (netif_carrier_ok(netdev)) {
2145 adapter->link_speed = 0;
2146 adapter->link_duplex = 0;
2147 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2148 netif_carrier_off(netdev);
2149 netif_stop_queue(netdev);
2150 if (!test_bit(__IGB_DOWN, &adapter->state))
2151 mod_timer(&adapter->phy_info_timer,
2152 round_jiffies(jiffies + 2 * HZ));
2156 link_up:
2157 igb_update_stats(adapter);
2159 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2160 adapter->tpt_old = adapter->stats.tpt;
2161 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2162 adapter->colc_old = adapter->stats.colc;
2164 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2165 adapter->gorc_old = adapter->stats.gorc;
2166 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2167 adapter->gotc_old = adapter->stats.gotc;
2169 igb_update_adaptive(&adapter->hw);
2171 if (!netif_carrier_ok(netdev)) {
2172 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2173 /* We've lost link, so the controller stops DMA,
2174 * but we've got queued Tx work that's never going
2175 * to get done, so reset controller to flush Tx.
2176 * (Do the reset outside of interrupt context). */
2177 adapter->tx_timeout_count++;
2178 schedule_work(&adapter->reset_task);
2182 /* Cause software interrupt to ensure rx ring is cleaned */
2183 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2185 /* Force detection of hung controller every watchdog period */
2186 tx_ring->detect_tx_hung = true;
2188 /* Reset the timer */
2189 if (!test_bit(__IGB_DOWN, &adapter->state))
2190 mod_timer(&adapter->watchdog_timer,
2191 round_jiffies(jiffies + 2 * HZ));
2194 enum latency_range {
2195 lowest_latency = 0,
2196 low_latency = 1,
2197 bulk_latency = 2,
2198 latency_invalid = 255
2202 static void igb_lower_rx_eitr(struct igb_adapter *adapter,
2203 struct igb_ring *rx_ring)
2205 struct e1000_hw *hw = &adapter->hw;
2206 int new_val;
2208 new_val = rx_ring->itr_val / 2;
2209 if (new_val < IGB_MIN_DYN_ITR)
2210 new_val = IGB_MIN_DYN_ITR;
2212 if (new_val != rx_ring->itr_val) {
2213 rx_ring->itr_val = new_val;
2214 wr32(rx_ring->itr_register,
2215 1000000000 / (new_val * 256));
2219 static void igb_raise_rx_eitr(struct igb_adapter *adapter,
2220 struct igb_ring *rx_ring)
2222 struct e1000_hw *hw = &adapter->hw;
2223 int new_val;
2225 new_val = rx_ring->itr_val * 2;
2226 if (new_val > IGB_MAX_DYN_ITR)
2227 new_val = IGB_MAX_DYN_ITR;
2229 if (new_val != rx_ring->itr_val) {
2230 rx_ring->itr_val = new_val;
2231 wr32(rx_ring->itr_register,
2232 1000000000 / (new_val * 256));
2237 * igb_update_itr - update the dynamic ITR value based on statistics
2238 * Stores a new ITR value based on packets and byte
2239 * counts during the last interrupt. The advantage of per interrupt
2240 * computation is faster updates and more accurate ITR for the current
2241 * traffic pattern. Constants in this function were computed
2242 * based on theoretical maximum wire speed and thresholds were set based
2243 * on testing data as well as attempting to minimize response time
2244 * while increasing bulk throughput.
2245 * this functionality is controlled by the InterruptThrottleRate module
2246 * parameter (see igb_param.c)
2247 * NOTE: These calculations are only valid when operating in a single-
2248 * queue environment.
2249 * @adapter: pointer to adapter
2250 * @itr_setting: current adapter->itr
2251 * @packets: the number of packets during this measurement interval
2252 * @bytes: the number of bytes during this measurement interval
2254 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2255 int packets, int bytes)
2257 unsigned int retval = itr_setting;
2259 if (packets == 0)
2260 goto update_itr_done;
2262 switch (itr_setting) {
2263 case lowest_latency:
2264 /* handle TSO and jumbo frames */
2265 if (bytes/packets > 8000)
2266 retval = bulk_latency;
2267 else if ((packets < 5) && (bytes > 512))
2268 retval = low_latency;
2269 break;
2270 case low_latency: /* 50 usec aka 20000 ints/s */
2271 if (bytes > 10000) {
2272 /* this if handles the TSO accounting */
2273 if (bytes/packets > 8000) {
2274 retval = bulk_latency;
2275 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2276 retval = bulk_latency;
2277 } else if ((packets > 35)) {
2278 retval = lowest_latency;
2280 } else if (bytes/packets > 2000) {
2281 retval = bulk_latency;
2282 } else if (packets <= 2 && bytes < 512) {
2283 retval = lowest_latency;
2285 break;
2286 case bulk_latency: /* 250 usec aka 4000 ints/s */
2287 if (bytes > 25000) {
2288 if (packets > 35)
2289 retval = low_latency;
2290 } else if (bytes < 6000) {
2291 retval = low_latency;
2293 break;
2296 update_itr_done:
2297 return retval;
2300 static void igb_set_itr(struct igb_adapter *adapter, u16 itr_register,
2301 int rx_only)
2303 u16 current_itr;
2304 u32 new_itr = adapter->itr;
2306 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2307 if (adapter->link_speed != SPEED_1000) {
2308 current_itr = 0;
2309 new_itr = 4000;
2310 goto set_itr_now;
2313 adapter->rx_itr = igb_update_itr(adapter,
2314 adapter->rx_itr,
2315 adapter->rx_ring->total_packets,
2316 adapter->rx_ring->total_bytes);
2317 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2318 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2319 adapter->rx_itr = low_latency;
2321 if (!rx_only) {
2322 adapter->tx_itr = igb_update_itr(adapter,
2323 adapter->tx_itr,
2324 adapter->tx_ring->total_packets,
2325 adapter->tx_ring->total_bytes);
2326 /* conservative mode (itr 3) eliminates the
2327 * lowest_latency setting */
2328 if (adapter->itr_setting == 3 &&
2329 adapter->tx_itr == lowest_latency)
2330 adapter->tx_itr = low_latency;
2332 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2333 } else {
2334 current_itr = adapter->rx_itr;
2337 switch (current_itr) {
2338 /* counts and packets in update_itr are dependent on these numbers */
2339 case lowest_latency:
2340 new_itr = 70000;
2341 break;
2342 case low_latency:
2343 new_itr = 20000; /* aka hwitr = ~200 */
2344 break;
2345 case bulk_latency:
2346 new_itr = 4000;
2347 break;
2348 default:
2349 break;
2352 set_itr_now:
2353 if (new_itr != adapter->itr) {
2354 /* this attempts to bias the interrupt rate towards Bulk
2355 * by adding intermediate steps when interrupt rate is
2356 * increasing */
2357 new_itr = new_itr > adapter->itr ?
2358 min(adapter->itr + (new_itr >> 2), new_itr) :
2359 new_itr;
2360 /* Don't write the value here; it resets the adapter's
2361 * internal timer, and causes us to delay far longer than
2362 * we should between interrupts. Instead, we write the ITR
2363 * value at the beginning of the next interrupt so the timing
2364 * ends up being correct.
2366 adapter->itr = new_itr;
2367 adapter->set_itr = 1;
2370 return;
2374 #define IGB_TX_FLAGS_CSUM 0x00000001
2375 #define IGB_TX_FLAGS_VLAN 0x00000002
2376 #define IGB_TX_FLAGS_TSO 0x00000004
2377 #define IGB_TX_FLAGS_IPV4 0x00000008
2378 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2379 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2381 static inline int igb_tso_adv(struct igb_adapter *adapter,
2382 struct igb_ring *tx_ring,
2383 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2385 struct e1000_adv_tx_context_desc *context_desc;
2386 unsigned int i;
2387 int err;
2388 struct igb_buffer *buffer_info;
2389 u32 info = 0, tu_cmd = 0;
2390 u32 mss_l4len_idx, l4len;
2391 *hdr_len = 0;
2393 if (skb_header_cloned(skb)) {
2394 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2395 if (err)
2396 return err;
2399 l4len = tcp_hdrlen(skb);
2400 *hdr_len += l4len;
2402 if (skb->protocol == htons(ETH_P_IP)) {
2403 struct iphdr *iph = ip_hdr(skb);
2404 iph->tot_len = 0;
2405 iph->check = 0;
2406 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2407 iph->daddr, 0,
2408 IPPROTO_TCP,
2410 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2411 ipv6_hdr(skb)->payload_len = 0;
2412 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2413 &ipv6_hdr(skb)->daddr,
2414 0, IPPROTO_TCP, 0);
2417 i = tx_ring->next_to_use;
2419 buffer_info = &tx_ring->buffer_info[i];
2420 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2421 /* VLAN MACLEN IPLEN */
2422 if (tx_flags & IGB_TX_FLAGS_VLAN)
2423 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2424 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2425 *hdr_len += skb_network_offset(skb);
2426 info |= skb_network_header_len(skb);
2427 *hdr_len += skb_network_header_len(skb);
2428 context_desc->vlan_macip_lens = cpu_to_le32(info);
2430 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2431 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2433 if (skb->protocol == htons(ETH_P_IP))
2434 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2435 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2437 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2439 /* MSS L4LEN IDX */
2440 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2441 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2443 /* Context index must be unique per ring. Luckily, so is the interrupt
2444 * mask value. */
2445 mss_l4len_idx |= tx_ring->eims_value >> 4;
2447 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2448 context_desc->seqnum_seed = 0;
2450 buffer_info->time_stamp = jiffies;
2451 buffer_info->dma = 0;
2452 i++;
2453 if (i == tx_ring->count)
2454 i = 0;
2456 tx_ring->next_to_use = i;
2458 return true;
2461 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2462 struct igb_ring *tx_ring,
2463 struct sk_buff *skb, u32 tx_flags)
2465 struct e1000_adv_tx_context_desc *context_desc;
2466 unsigned int i;
2467 struct igb_buffer *buffer_info;
2468 u32 info = 0, tu_cmd = 0;
2470 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2471 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2472 i = tx_ring->next_to_use;
2473 buffer_info = &tx_ring->buffer_info[i];
2474 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2476 if (tx_flags & IGB_TX_FLAGS_VLAN)
2477 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2478 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2479 if (skb->ip_summed == CHECKSUM_PARTIAL)
2480 info |= skb_network_header_len(skb);
2482 context_desc->vlan_macip_lens = cpu_to_le32(info);
2484 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2486 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2487 if (skb->protocol == htons(ETH_P_IP))
2488 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2489 if (skb->sk && (skb->sk->sk_protocol == IPPROTO_TCP))
2490 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2493 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2494 context_desc->seqnum_seed = 0;
2495 context_desc->mss_l4len_idx =
2496 cpu_to_le32(tx_ring->eims_value >> 4);
2498 buffer_info->time_stamp = jiffies;
2499 buffer_info->dma = 0;
2501 i++;
2502 if (i == tx_ring->count)
2503 i = 0;
2504 tx_ring->next_to_use = i;
2506 return true;
2510 return false;
2513 #define IGB_MAX_TXD_PWR 16
2514 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2516 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2517 struct igb_ring *tx_ring,
2518 struct sk_buff *skb)
2520 struct igb_buffer *buffer_info;
2521 unsigned int len = skb_headlen(skb);
2522 unsigned int count = 0, i;
2523 unsigned int f;
2525 i = tx_ring->next_to_use;
2527 buffer_info = &tx_ring->buffer_info[i];
2528 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2529 buffer_info->length = len;
2530 /* set time_stamp *before* dma to help avoid a possible race */
2531 buffer_info->time_stamp = jiffies;
2532 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2533 PCI_DMA_TODEVICE);
2534 count++;
2535 i++;
2536 if (i == tx_ring->count)
2537 i = 0;
2539 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2540 struct skb_frag_struct *frag;
2542 frag = &skb_shinfo(skb)->frags[f];
2543 len = frag->size;
2545 buffer_info = &tx_ring->buffer_info[i];
2546 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2547 buffer_info->length = len;
2548 buffer_info->time_stamp = jiffies;
2549 buffer_info->dma = pci_map_page(adapter->pdev,
2550 frag->page,
2551 frag->page_offset,
2552 len,
2553 PCI_DMA_TODEVICE);
2555 count++;
2556 i++;
2557 if (i == tx_ring->count)
2558 i = 0;
2561 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2562 tx_ring->buffer_info[i].skb = skb;
2564 return count;
2567 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2568 struct igb_ring *tx_ring,
2569 int tx_flags, int count, u32 paylen,
2570 u8 hdr_len)
2572 union e1000_adv_tx_desc *tx_desc = NULL;
2573 struct igb_buffer *buffer_info;
2574 u32 olinfo_status = 0, cmd_type_len;
2575 unsigned int i;
2577 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2578 E1000_ADVTXD_DCMD_DEXT);
2580 if (tx_flags & IGB_TX_FLAGS_VLAN)
2581 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2583 if (tx_flags & IGB_TX_FLAGS_TSO) {
2584 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2586 /* insert tcp checksum */
2587 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2589 /* insert ip checksum */
2590 if (tx_flags & IGB_TX_FLAGS_IPV4)
2591 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2593 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2594 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2597 if (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2598 IGB_TX_FLAGS_VLAN))
2599 olinfo_status |= tx_ring->eims_value >> 4;
2601 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2603 i = tx_ring->next_to_use;
2604 while (count--) {
2605 buffer_info = &tx_ring->buffer_info[i];
2606 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2607 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2608 tx_desc->read.cmd_type_len =
2609 cpu_to_le32(cmd_type_len | buffer_info->length);
2610 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2611 i++;
2612 if (i == tx_ring->count)
2613 i = 0;
2616 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2617 /* Force memory writes to complete before letting h/w
2618 * know there are new descriptors to fetch. (Only
2619 * applicable for weak-ordered memory model archs,
2620 * such as IA-64). */
2621 wmb();
2623 tx_ring->next_to_use = i;
2624 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2625 /* we need this if more than one processor can write to our tail
2626 * at a time, it syncronizes IO on IA64/Altix systems */
2627 mmiowb();
2630 static int __igb_maybe_stop_tx(struct net_device *netdev,
2631 struct igb_ring *tx_ring, int size)
2633 struct igb_adapter *adapter = netdev_priv(netdev);
2635 netif_stop_queue(netdev);
2636 /* Herbert's original patch had:
2637 * smp_mb__after_netif_stop_queue();
2638 * but since that doesn't exist yet, just open code it. */
2639 smp_mb();
2641 /* We need to check again in a case another CPU has just
2642 * made room available. */
2643 if (IGB_DESC_UNUSED(tx_ring) < size)
2644 return -EBUSY;
2646 /* A reprieve! */
2647 netif_start_queue(netdev);
2648 ++adapter->restart_queue;
2649 return 0;
2652 static int igb_maybe_stop_tx(struct net_device *netdev,
2653 struct igb_ring *tx_ring, int size)
2655 if (IGB_DESC_UNUSED(tx_ring) >= size)
2656 return 0;
2657 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2660 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2662 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2663 struct net_device *netdev,
2664 struct igb_ring *tx_ring)
2666 struct igb_adapter *adapter = netdev_priv(netdev);
2667 unsigned int tx_flags = 0;
2668 unsigned int len;
2669 unsigned long irq_flags;
2670 u8 hdr_len = 0;
2671 int tso = 0;
2673 len = skb_headlen(skb);
2675 if (test_bit(__IGB_DOWN, &adapter->state)) {
2676 dev_kfree_skb_any(skb);
2677 return NETDEV_TX_OK;
2680 if (skb->len <= 0) {
2681 dev_kfree_skb_any(skb);
2682 return NETDEV_TX_OK;
2685 if (!spin_trylock_irqsave(&tx_ring->tx_lock, irq_flags))
2686 /* Collision - tell upper layer to requeue */
2687 return NETDEV_TX_LOCKED;
2689 /* need: 1 descriptor per page,
2690 * + 2 desc gap to keep tail from touching head,
2691 * + 1 desc for skb->data,
2692 * + 1 desc for context descriptor,
2693 * otherwise try next time */
2694 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2695 /* this is a hard error */
2696 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2697 return NETDEV_TX_BUSY;
2700 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2701 tx_flags |= IGB_TX_FLAGS_VLAN;
2702 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2705 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2706 &hdr_len) : 0;
2708 if (tso < 0) {
2709 dev_kfree_skb_any(skb);
2710 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2711 return NETDEV_TX_OK;
2714 if (tso)
2715 tx_flags |= IGB_TX_FLAGS_TSO;
2716 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2717 if (skb->ip_summed == CHECKSUM_PARTIAL)
2718 tx_flags |= IGB_TX_FLAGS_CSUM;
2720 if (skb->protocol == htons(ETH_P_IP))
2721 tx_flags |= IGB_TX_FLAGS_IPV4;
2723 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2724 igb_tx_map_adv(adapter, tx_ring, skb),
2725 skb->len, hdr_len);
2727 netdev->trans_start = jiffies;
2729 /* Make sure there is space in the ring for the next send. */
2730 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
2732 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2733 return NETDEV_TX_OK;
2736 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
2738 struct igb_adapter *adapter = netdev_priv(netdev);
2739 struct igb_ring *tx_ring = &adapter->tx_ring[0];
2741 /* This goes back to the question of how to logically map a tx queue
2742 * to a flow. Right now, performance is impacted slightly negatively
2743 * if using multiple tx queues. If the stack breaks away from a
2744 * single qdisc implementation, we can look at this again. */
2745 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
2749 * igb_tx_timeout - Respond to a Tx Hang
2750 * @netdev: network interface device structure
2752 static void igb_tx_timeout(struct net_device *netdev)
2754 struct igb_adapter *adapter = netdev_priv(netdev);
2755 struct e1000_hw *hw = &adapter->hw;
2757 /* Do the reset outside of interrupt context */
2758 adapter->tx_timeout_count++;
2759 schedule_work(&adapter->reset_task);
2760 wr32(E1000_EICS, adapter->eims_enable_mask &
2761 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
2764 static void igb_reset_task(struct work_struct *work)
2766 struct igb_adapter *adapter;
2767 adapter = container_of(work, struct igb_adapter, reset_task);
2769 igb_reinit_locked(adapter);
2773 * igb_get_stats - Get System Network Statistics
2774 * @netdev: network interface device structure
2776 * Returns the address of the device statistics structure.
2777 * The statistics are actually updated from the timer callback.
2779 static struct net_device_stats *
2780 igb_get_stats(struct net_device *netdev)
2782 struct igb_adapter *adapter = netdev_priv(netdev);
2784 /* only return the current stats */
2785 return &adapter->net_stats;
2789 * igb_change_mtu - Change the Maximum Transfer Unit
2790 * @netdev: network interface device structure
2791 * @new_mtu: new value for maximum frame size
2793 * Returns 0 on success, negative on failure
2795 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
2797 struct igb_adapter *adapter = netdev_priv(netdev);
2798 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2800 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2801 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2802 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2803 return -EINVAL;
2806 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2807 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2808 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2809 return -EINVAL;
2812 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2813 msleep(1);
2814 /* igb_down has a dependency on max_frame_size */
2815 adapter->max_frame_size = max_frame;
2816 if (netif_running(netdev))
2817 igb_down(adapter);
2819 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2820 * means we reserve 2 more, this pushes us to allocate from the next
2821 * larger slab size.
2822 * i.e. RXBUFFER_2048 --> size-4096 slab
2825 if (max_frame <= IGB_RXBUFFER_256)
2826 adapter->rx_buffer_len = IGB_RXBUFFER_256;
2827 else if (max_frame <= IGB_RXBUFFER_512)
2828 adapter->rx_buffer_len = IGB_RXBUFFER_512;
2829 else if (max_frame <= IGB_RXBUFFER_1024)
2830 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
2831 else if (max_frame <= IGB_RXBUFFER_2048)
2832 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
2833 else
2834 adapter->rx_buffer_len = IGB_RXBUFFER_4096;
2835 /* adjust allocation if LPE protects us, and we aren't using SBP */
2836 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2837 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
2838 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
2840 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2841 netdev->mtu, new_mtu);
2842 netdev->mtu = new_mtu;
2844 if (netif_running(netdev))
2845 igb_up(adapter);
2846 else
2847 igb_reset(adapter);
2849 clear_bit(__IGB_RESETTING, &adapter->state);
2851 return 0;
2855 * igb_update_stats - Update the board statistics counters
2856 * @adapter: board private structure
2859 void igb_update_stats(struct igb_adapter *adapter)
2861 struct e1000_hw *hw = &adapter->hw;
2862 struct pci_dev *pdev = adapter->pdev;
2863 u16 phy_tmp;
2865 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2868 * Prevent stats update while adapter is being reset, or if the pci
2869 * connection is down.
2871 if (adapter->link_speed == 0)
2872 return;
2873 if (pci_channel_offline(pdev))
2874 return;
2876 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
2877 adapter->stats.gprc += rd32(E1000_GPRC);
2878 adapter->stats.gorc += rd32(E1000_GORCL);
2879 rd32(E1000_GORCH); /* clear GORCL */
2880 adapter->stats.bprc += rd32(E1000_BPRC);
2881 adapter->stats.mprc += rd32(E1000_MPRC);
2882 adapter->stats.roc += rd32(E1000_ROC);
2884 adapter->stats.prc64 += rd32(E1000_PRC64);
2885 adapter->stats.prc127 += rd32(E1000_PRC127);
2886 adapter->stats.prc255 += rd32(E1000_PRC255);
2887 adapter->stats.prc511 += rd32(E1000_PRC511);
2888 adapter->stats.prc1023 += rd32(E1000_PRC1023);
2889 adapter->stats.prc1522 += rd32(E1000_PRC1522);
2890 adapter->stats.symerrs += rd32(E1000_SYMERRS);
2891 adapter->stats.sec += rd32(E1000_SEC);
2893 adapter->stats.mpc += rd32(E1000_MPC);
2894 adapter->stats.scc += rd32(E1000_SCC);
2895 adapter->stats.ecol += rd32(E1000_ECOL);
2896 adapter->stats.mcc += rd32(E1000_MCC);
2897 adapter->stats.latecol += rd32(E1000_LATECOL);
2898 adapter->stats.dc += rd32(E1000_DC);
2899 adapter->stats.rlec += rd32(E1000_RLEC);
2900 adapter->stats.xonrxc += rd32(E1000_XONRXC);
2901 adapter->stats.xontxc += rd32(E1000_XONTXC);
2902 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
2903 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
2904 adapter->stats.fcruc += rd32(E1000_FCRUC);
2905 adapter->stats.gptc += rd32(E1000_GPTC);
2906 adapter->stats.gotc += rd32(E1000_GOTCL);
2907 rd32(E1000_GOTCH); /* clear GOTCL */
2908 adapter->stats.rnbc += rd32(E1000_RNBC);
2909 adapter->stats.ruc += rd32(E1000_RUC);
2910 adapter->stats.rfc += rd32(E1000_RFC);
2911 adapter->stats.rjc += rd32(E1000_RJC);
2912 adapter->stats.tor += rd32(E1000_TORH);
2913 adapter->stats.tot += rd32(E1000_TOTH);
2914 adapter->stats.tpr += rd32(E1000_TPR);
2916 adapter->stats.ptc64 += rd32(E1000_PTC64);
2917 adapter->stats.ptc127 += rd32(E1000_PTC127);
2918 adapter->stats.ptc255 += rd32(E1000_PTC255);
2919 adapter->stats.ptc511 += rd32(E1000_PTC511);
2920 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
2921 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
2923 adapter->stats.mptc += rd32(E1000_MPTC);
2924 adapter->stats.bptc += rd32(E1000_BPTC);
2926 /* used for adaptive IFS */
2928 hw->mac.tx_packet_delta = rd32(E1000_TPT);
2929 adapter->stats.tpt += hw->mac.tx_packet_delta;
2930 hw->mac.collision_delta = rd32(E1000_COLC);
2931 adapter->stats.colc += hw->mac.collision_delta;
2933 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
2934 adapter->stats.rxerrc += rd32(E1000_RXERRC);
2935 adapter->stats.tncrs += rd32(E1000_TNCRS);
2936 adapter->stats.tsctc += rd32(E1000_TSCTC);
2937 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
2939 adapter->stats.iac += rd32(E1000_IAC);
2940 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
2941 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
2942 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
2943 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
2944 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
2945 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
2946 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
2947 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
2949 /* Fill out the OS statistics structure */
2950 adapter->net_stats.multicast = adapter->stats.mprc;
2951 adapter->net_stats.collisions = adapter->stats.colc;
2953 /* Rx Errors */
2955 /* RLEC on some newer hardware can be incorrect so build
2956 * our own version based on RUC and ROC */
2957 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2958 adapter->stats.crcerrs + adapter->stats.algnerrc +
2959 adapter->stats.ruc + adapter->stats.roc +
2960 adapter->stats.cexterr;
2961 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2962 adapter->stats.roc;
2963 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2964 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2965 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2967 /* Tx Errors */
2968 adapter->net_stats.tx_errors = adapter->stats.ecol +
2969 adapter->stats.latecol;
2970 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2971 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2972 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2974 /* Tx Dropped needs to be maintained elsewhere */
2976 /* Phy Stats */
2977 if (hw->phy.media_type == e1000_media_type_copper) {
2978 if ((adapter->link_speed == SPEED_1000) &&
2979 (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
2980 &phy_tmp))) {
2981 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2982 adapter->phy_stats.idle_errors += phy_tmp;
2986 /* Management Stats */
2987 adapter->stats.mgptc += rd32(E1000_MGTPTC);
2988 adapter->stats.mgprc += rd32(E1000_MGTPRC);
2989 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
2993 static irqreturn_t igb_msix_other(int irq, void *data)
2995 struct net_device *netdev = data;
2996 struct igb_adapter *adapter = netdev_priv(netdev);
2997 struct e1000_hw *hw = &adapter->hw;
2998 u32 eicr;
2999 /* disable interrupts from the "other" bit, avoid re-entry */
3000 wr32(E1000_EIMC, E1000_EIMS_OTHER);
3002 eicr = rd32(E1000_EICR);
3004 if (eicr & E1000_EIMS_OTHER) {
3005 u32 icr = rd32(E1000_ICR);
3006 /* reading ICR causes bit 31 of EICR to be cleared */
3007 if (!(icr & E1000_ICR_LSC))
3008 goto no_link_interrupt;
3009 hw->mac.get_link_status = 1;
3010 /* guard against interrupt when we're going down */
3011 if (!test_bit(__IGB_DOWN, &adapter->state))
3012 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3015 no_link_interrupt:
3016 wr32(E1000_IMS, E1000_IMS_LSC);
3017 wr32(E1000_EIMS, E1000_EIMS_OTHER);
3019 return IRQ_HANDLED;
3022 static irqreturn_t igb_msix_tx(int irq, void *data)
3024 struct igb_ring *tx_ring = data;
3025 struct igb_adapter *adapter = tx_ring->adapter;
3026 struct e1000_hw *hw = &adapter->hw;
3028 if (!tx_ring->itr_val)
3029 wr32(E1000_EIMC, tx_ring->eims_value);
3031 tx_ring->total_bytes = 0;
3032 tx_ring->total_packets = 0;
3033 if (!igb_clean_tx_irq(adapter, tx_ring))
3034 /* Ring was not completely cleaned, so fire another interrupt */
3035 wr32(E1000_EICS, tx_ring->eims_value);
3037 if (!tx_ring->itr_val)
3038 wr32(E1000_EIMS, tx_ring->eims_value);
3039 return IRQ_HANDLED;
3042 static irqreturn_t igb_msix_rx(int irq, void *data)
3044 struct igb_ring *rx_ring = data;
3045 struct igb_adapter *adapter = rx_ring->adapter;
3046 struct e1000_hw *hw = &adapter->hw;
3048 if (!rx_ring->itr_val)
3049 wr32(E1000_EIMC, rx_ring->eims_value);
3051 if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi)) {
3052 rx_ring->total_bytes = 0;
3053 rx_ring->total_packets = 0;
3054 rx_ring->no_itr_adjust = 0;
3055 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3056 } else {
3057 if (!rx_ring->no_itr_adjust) {
3058 igb_lower_rx_eitr(adapter, rx_ring);
3059 rx_ring->no_itr_adjust = 1;
3063 return IRQ_HANDLED;
3068 * igb_intr_msi - Interrupt Handler
3069 * @irq: interrupt number
3070 * @data: pointer to a network interface device structure
3072 static irqreturn_t igb_intr_msi(int irq, void *data)
3074 struct net_device *netdev = data;
3075 struct igb_adapter *adapter = netdev_priv(netdev);
3076 struct napi_struct *napi = &adapter->napi;
3077 struct e1000_hw *hw = &adapter->hw;
3078 /* read ICR disables interrupts using IAM */
3079 u32 icr = rd32(E1000_ICR);
3081 /* Write the ITR value calculated at the end of the
3082 * previous interrupt.
3084 if (adapter->set_itr) {
3085 wr32(E1000_ITR,
3086 1000000000 / (adapter->itr * 256));
3087 adapter->set_itr = 0;
3090 /* read ICR disables interrupts using IAM */
3091 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3092 hw->mac.get_link_status = 1;
3093 if (!test_bit(__IGB_DOWN, &adapter->state))
3094 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3097 if (netif_rx_schedule_prep(netdev, napi)) {
3098 adapter->tx_ring->total_bytes = 0;
3099 adapter->tx_ring->total_packets = 0;
3100 adapter->rx_ring->total_bytes = 0;
3101 adapter->rx_ring->total_packets = 0;
3102 __netif_rx_schedule(netdev, napi);
3105 return IRQ_HANDLED;
3109 * igb_intr - Interrupt Handler
3110 * @irq: interrupt number
3111 * @data: pointer to a network interface device structure
3113 static irqreturn_t igb_intr(int irq, void *data)
3115 struct net_device *netdev = data;
3116 struct igb_adapter *adapter = netdev_priv(netdev);
3117 struct napi_struct *napi = &adapter->napi;
3118 struct e1000_hw *hw = &adapter->hw;
3119 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3120 * need for the IMC write */
3121 u32 icr = rd32(E1000_ICR);
3122 u32 eicr = 0;
3123 if (!icr)
3124 return IRQ_NONE; /* Not our interrupt */
3126 /* Write the ITR value calculated at the end of the
3127 * previous interrupt.
3129 if (adapter->set_itr) {
3130 wr32(E1000_ITR,
3131 1000000000 / (adapter->itr * 256));
3132 adapter->set_itr = 0;
3135 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3136 * not set, then the adapter didn't send an interrupt */
3137 if (!(icr & E1000_ICR_INT_ASSERTED))
3138 return IRQ_NONE;
3140 eicr = rd32(E1000_EICR);
3142 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3143 hw->mac.get_link_status = 1;
3144 /* guard against interrupt when we're going down */
3145 if (!test_bit(__IGB_DOWN, &adapter->state))
3146 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3149 if (netif_rx_schedule_prep(netdev, napi)) {
3150 adapter->tx_ring->total_bytes = 0;
3151 adapter->rx_ring->total_bytes = 0;
3152 adapter->tx_ring->total_packets = 0;
3153 adapter->rx_ring->total_packets = 0;
3154 __netif_rx_schedule(netdev, napi);
3157 return IRQ_HANDLED;
3161 * igb_clean - NAPI Rx polling callback
3162 * @adapter: board private structure
3164 static int igb_clean(struct napi_struct *napi, int budget)
3166 struct igb_adapter *adapter = container_of(napi, struct igb_adapter,
3167 napi);
3168 struct net_device *netdev = adapter->netdev;
3169 int tx_clean_complete = 1, work_done = 0;
3170 int i;
3172 /* Must NOT use netdev_priv macro here. */
3173 adapter = netdev->priv;
3175 /* Keep link state information with original netdev */
3176 if (!netif_carrier_ok(netdev))
3177 goto quit_polling;
3179 /* igb_clean is called per-cpu. This lock protects tx_ring[i] from
3180 * being cleaned by multiple cpus simultaneously. A failure obtaining
3181 * the lock means tx_ring[i] is currently being cleaned anyway. */
3182 for (i = 0; i < adapter->num_tx_queues; i++) {
3183 if (spin_trylock(&adapter->tx_ring[i].tx_clean_lock)) {
3184 tx_clean_complete &= igb_clean_tx_irq(adapter,
3185 &adapter->tx_ring[i]);
3186 spin_unlock(&adapter->tx_ring[i].tx_clean_lock);
3190 for (i = 0; i < adapter->num_rx_queues; i++)
3191 igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i], &work_done,
3192 adapter->rx_ring[i].napi.weight);
3194 /* If no Tx and not enough Rx work done, exit the polling mode */
3195 if ((tx_clean_complete && (work_done < budget)) ||
3196 !netif_running(netdev)) {
3197 quit_polling:
3198 if (adapter->itr_setting & 3)
3199 igb_set_itr(adapter, E1000_ITR, false);
3200 netif_rx_complete(netdev, napi);
3201 if (!test_bit(__IGB_DOWN, &adapter->state))
3202 igb_irq_enable(adapter);
3203 return 0;
3206 return 1;
3209 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3211 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3212 struct igb_adapter *adapter = rx_ring->adapter;
3213 struct e1000_hw *hw = &adapter->hw;
3214 struct net_device *netdev = adapter->netdev;
3215 int work_done = 0;
3217 /* Keep link state information with original netdev */
3218 if (!netif_carrier_ok(netdev))
3219 goto quit_polling;
3221 igb_clean_rx_irq_adv(adapter, rx_ring, &work_done, budget);
3224 /* If not enough Rx work done, exit the polling mode */
3225 if ((work_done == 0) || !netif_running(netdev)) {
3226 quit_polling:
3227 netif_rx_complete(netdev, napi);
3229 wr32(E1000_EIMS, rx_ring->eims_value);
3230 if ((adapter->itr_setting & 3) && !rx_ring->no_itr_adjust &&
3231 (rx_ring->total_packets > IGB_DYN_ITR_PACKET_THRESHOLD)) {
3232 int mean_size = rx_ring->total_bytes /
3233 rx_ring->total_packets;
3234 if (mean_size < IGB_DYN_ITR_LENGTH_LOW)
3235 igb_raise_rx_eitr(adapter, rx_ring);
3236 else if (mean_size > IGB_DYN_ITR_LENGTH_HIGH)
3237 igb_lower_rx_eitr(adapter, rx_ring);
3239 return 0;
3242 return 1;
3245 * igb_clean_tx_irq - Reclaim resources after transmit completes
3246 * @adapter: board private structure
3247 * returns true if ring is completely cleaned
3249 static bool igb_clean_tx_irq(struct igb_adapter *adapter,
3250 struct igb_ring *tx_ring)
3252 struct net_device *netdev = adapter->netdev;
3253 struct e1000_hw *hw = &adapter->hw;
3254 struct e1000_tx_desc *tx_desc;
3255 struct igb_buffer *buffer_info;
3256 struct sk_buff *skb;
3257 unsigned int i;
3258 u32 head, oldhead;
3259 unsigned int count = 0;
3260 bool cleaned = false;
3261 bool retval = true;
3262 unsigned int total_bytes = 0, total_packets = 0;
3264 rmb();
3265 head = *(volatile u32 *)((struct e1000_tx_desc *)tx_ring->desc
3266 + tx_ring->count);
3267 head = le32_to_cpu(head);
3268 i = tx_ring->next_to_clean;
3269 while (1) {
3270 while (i != head) {
3271 cleaned = true;
3272 tx_desc = E1000_TX_DESC(*tx_ring, i);
3273 buffer_info = &tx_ring->buffer_info[i];
3274 skb = buffer_info->skb;
3276 if (skb) {
3277 unsigned int segs, bytecount;
3278 /* gso_segs is currently only valid for tcp */
3279 segs = skb_shinfo(skb)->gso_segs ?: 1;
3280 /* multiply data chunks by size of headers */
3281 bytecount = ((segs - 1) * skb_headlen(skb)) +
3282 skb->len;
3283 total_packets += segs;
3284 total_bytes += bytecount;
3287 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3288 tx_desc->upper.data = 0;
3290 i++;
3291 if (i == tx_ring->count)
3292 i = 0;
3294 count++;
3295 if (count == IGB_MAX_TX_CLEAN) {
3296 retval = false;
3297 goto done_cleaning;
3300 oldhead = head;
3301 rmb();
3302 head = *(volatile u32 *)((struct e1000_tx_desc *)tx_ring->desc
3303 + tx_ring->count);
3304 head = le32_to_cpu(head);
3305 if (head == oldhead)
3306 goto done_cleaning;
3307 } /* while (1) */
3309 done_cleaning:
3310 tx_ring->next_to_clean = i;
3312 if (unlikely(cleaned &&
3313 netif_carrier_ok(netdev) &&
3314 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3315 /* Make sure that anybody stopping the queue after this
3316 * sees the new next_to_clean.
3318 smp_mb();
3319 if (netif_queue_stopped(netdev) &&
3320 !(test_bit(__IGB_DOWN, &adapter->state))) {
3321 netif_wake_queue(netdev);
3322 ++adapter->restart_queue;
3326 if (tx_ring->detect_tx_hung) {
3327 /* Detect a transmit hang in hardware, this serializes the
3328 * check with the clearing of time_stamp and movement of i */
3329 tx_ring->detect_tx_hung = false;
3330 if (tx_ring->buffer_info[i].time_stamp &&
3331 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3332 (adapter->tx_timeout_factor * HZ))
3333 && !(rd32(E1000_STATUS) &
3334 E1000_STATUS_TXOFF)) {
3336 tx_desc = E1000_TX_DESC(*tx_ring, i);
3337 /* detected Tx unit hang */
3338 dev_err(&adapter->pdev->dev,
3339 "Detected Tx Unit Hang\n"
3340 " Tx Queue <%lu>\n"
3341 " TDH <%x>\n"
3342 " TDT <%x>\n"
3343 " next_to_use <%x>\n"
3344 " next_to_clean <%x>\n"
3345 " head (WB) <%x>\n"
3346 "buffer_info[next_to_clean]\n"
3347 " time_stamp <%lx>\n"
3348 " jiffies <%lx>\n"
3349 " desc.status <%x>\n",
3350 (unsigned long)((tx_ring - adapter->tx_ring) /
3351 sizeof(struct igb_ring)),
3352 readl(adapter->hw.hw_addr + tx_ring->head),
3353 readl(adapter->hw.hw_addr + tx_ring->tail),
3354 tx_ring->next_to_use,
3355 tx_ring->next_to_clean,
3356 head,
3357 tx_ring->buffer_info[i].time_stamp,
3358 jiffies,
3359 tx_desc->upper.fields.status);
3360 netif_stop_queue(netdev);
3363 tx_ring->total_bytes += total_bytes;
3364 tx_ring->total_packets += total_packets;
3365 adapter->net_stats.tx_bytes += total_bytes;
3366 adapter->net_stats.tx_packets += total_packets;
3367 return retval;
3372 * igb_receive_skb - helper function to handle rx indications
3373 * @adapter: board private structure
3374 * @status: descriptor status field as written by hardware
3375 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3376 * @skb: pointer to sk_buff to be indicated to stack
3378 static void igb_receive_skb(struct igb_adapter *adapter, u8 status, u16 vlan,
3379 struct sk_buff *skb)
3381 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
3382 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3383 le16_to_cpu(vlan) &
3384 E1000_RXD_SPC_VLAN_MASK);
3385 else
3386 netif_receive_skb(skb);
3390 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3391 u32 status_err, struct sk_buff *skb)
3393 skb->ip_summed = CHECKSUM_NONE;
3395 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3396 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3397 return;
3398 /* TCP/UDP checksum error bit is set */
3399 if (status_err &
3400 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3401 /* let the stack verify checksum errors */
3402 adapter->hw_csum_err++;
3403 return;
3405 /* It must be a TCP or UDP packet with a valid checksum */
3406 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3407 skb->ip_summed = CHECKSUM_UNNECESSARY;
3409 adapter->hw_csum_good++;
3412 static bool igb_clean_rx_irq_adv(struct igb_adapter *adapter,
3413 struct igb_ring *rx_ring,
3414 int *work_done, int budget)
3416 struct net_device *netdev = adapter->netdev;
3417 struct pci_dev *pdev = adapter->pdev;
3418 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3419 struct igb_buffer *buffer_info , *next_buffer;
3420 struct sk_buff *skb;
3421 unsigned int i, j;
3422 u32 length, hlen, staterr;
3423 bool cleaned = false;
3424 int cleaned_count = 0;
3425 unsigned int total_bytes = 0, total_packets = 0;
3427 i = rx_ring->next_to_clean;
3428 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3429 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3431 while (staterr & E1000_RXD_STAT_DD) {
3432 if (*work_done >= budget)
3433 break;
3434 (*work_done)++;
3435 buffer_info = &rx_ring->buffer_info[i];
3437 /* HW will not DMA in data larger than the given buffer, even
3438 * if it parses the (NFS, of course) header to be larger. In
3439 * that case, it fills the header buffer and spills the rest
3440 * into the page.
3442 hlen = le16_to_cpu((rx_desc->wb.lower.lo_dword.hdr_info &
3443 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT);
3444 if (hlen > adapter->rx_ps_hdr_size)
3445 hlen = adapter->rx_ps_hdr_size;
3447 length = le16_to_cpu(rx_desc->wb.upper.length);
3448 cleaned = true;
3449 cleaned_count++;
3451 if (rx_ring->pending_skb != NULL) {
3452 skb = rx_ring->pending_skb;
3453 rx_ring->pending_skb = NULL;
3454 j = rx_ring->pending_skb_page;
3455 } else {
3456 skb = buffer_info->skb;
3457 prefetch(skb->data - NET_IP_ALIGN);
3458 buffer_info->skb = NULL;
3459 if (hlen) {
3460 pci_unmap_single(pdev, buffer_info->dma,
3461 adapter->rx_ps_hdr_size +
3462 NET_IP_ALIGN,
3463 PCI_DMA_FROMDEVICE);
3464 skb_put(skb, hlen);
3465 } else {
3466 pci_unmap_single(pdev, buffer_info->dma,
3467 adapter->rx_buffer_len +
3468 NET_IP_ALIGN,
3469 PCI_DMA_FROMDEVICE);
3470 skb_put(skb, length);
3471 goto send_up;
3473 j = 0;
3476 while (length) {
3477 pci_unmap_page(pdev, buffer_info->page_dma,
3478 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3479 buffer_info->page_dma = 0;
3480 skb_fill_page_desc(skb, j, buffer_info->page,
3481 0, length);
3482 buffer_info->page = NULL;
3484 skb->len += length;
3485 skb->data_len += length;
3486 skb->truesize += length;
3487 rx_desc->wb.upper.status_error = 0;
3488 if (staterr & E1000_RXD_STAT_EOP)
3489 break;
3491 j++;
3492 cleaned_count++;
3493 i++;
3494 if (i == rx_ring->count)
3495 i = 0;
3497 buffer_info = &rx_ring->buffer_info[i];
3498 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3499 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3500 length = le16_to_cpu(rx_desc->wb.upper.length);
3501 if (!(staterr & E1000_RXD_STAT_DD)) {
3502 rx_ring->pending_skb = skb;
3503 rx_ring->pending_skb_page = j;
3504 goto out;
3507 send_up:
3508 pskb_trim(skb, skb->len - 4);
3509 i++;
3510 if (i == rx_ring->count)
3511 i = 0;
3512 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3513 prefetch(next_rxd);
3514 next_buffer = &rx_ring->buffer_info[i];
3516 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3517 dev_kfree_skb_irq(skb);
3518 goto next_desc;
3520 rx_ring->no_itr_adjust |= (staterr & E1000_RXD_STAT_DYNINT);
3522 total_bytes += skb->len;
3523 total_packets++;
3525 igb_rx_checksum_adv(adapter, staterr, skb);
3527 skb->protocol = eth_type_trans(skb, netdev);
3529 igb_receive_skb(adapter, staterr, rx_desc->wb.upper.vlan, skb);
3531 netdev->last_rx = jiffies;
3533 next_desc:
3534 rx_desc->wb.upper.status_error = 0;
3536 /* return some buffers to hardware, one at a time is too slow */
3537 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3538 igb_alloc_rx_buffers_adv(adapter, rx_ring,
3539 cleaned_count);
3540 cleaned_count = 0;
3543 /* use prefetched values */
3544 rx_desc = next_rxd;
3545 buffer_info = next_buffer;
3547 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3549 out:
3550 rx_ring->next_to_clean = i;
3551 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3553 if (cleaned_count)
3554 igb_alloc_rx_buffers_adv(adapter, rx_ring, cleaned_count);
3556 rx_ring->total_packets += total_packets;
3557 rx_ring->total_bytes += total_bytes;
3558 rx_ring->rx_stats.packets += total_packets;
3559 rx_ring->rx_stats.bytes += total_bytes;
3560 adapter->net_stats.rx_bytes += total_bytes;
3561 adapter->net_stats.rx_packets += total_packets;
3562 return cleaned;
3567 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3568 * @adapter: address of board private structure
3570 static void igb_alloc_rx_buffers_adv(struct igb_adapter *adapter,
3571 struct igb_ring *rx_ring,
3572 int cleaned_count)
3574 struct net_device *netdev = adapter->netdev;
3575 struct pci_dev *pdev = adapter->pdev;
3576 union e1000_adv_rx_desc *rx_desc;
3577 struct igb_buffer *buffer_info;
3578 struct sk_buff *skb;
3579 unsigned int i;
3581 i = rx_ring->next_to_use;
3582 buffer_info = &rx_ring->buffer_info[i];
3584 while (cleaned_count--) {
3585 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3587 if (adapter->rx_ps_hdr_size && !buffer_info->page) {
3588 buffer_info->page = alloc_page(GFP_ATOMIC);
3589 if (!buffer_info->page) {
3590 adapter->alloc_rx_buff_failed++;
3591 goto no_buffers;
3593 buffer_info->page_dma =
3594 pci_map_page(pdev,
3595 buffer_info->page,
3596 0, PAGE_SIZE,
3597 PCI_DMA_FROMDEVICE);
3600 if (!buffer_info->skb) {
3601 int bufsz;
3603 if (adapter->rx_ps_hdr_size)
3604 bufsz = adapter->rx_ps_hdr_size;
3605 else
3606 bufsz = adapter->rx_buffer_len;
3607 bufsz += NET_IP_ALIGN;
3608 skb = netdev_alloc_skb(netdev, bufsz);
3610 if (!skb) {
3611 adapter->alloc_rx_buff_failed++;
3612 goto no_buffers;
3615 /* Make buffer alignment 2 beyond a 16 byte boundary
3616 * this will result in a 16 byte aligned IP header after
3617 * the 14 byte MAC header is removed
3619 skb_reserve(skb, NET_IP_ALIGN);
3621 buffer_info->skb = skb;
3622 buffer_info->dma = pci_map_single(pdev, skb->data,
3623 bufsz,
3624 PCI_DMA_FROMDEVICE);
3627 /* Refresh the desc even if buffer_addrs didn't change because
3628 * each write-back erases this info. */
3629 if (adapter->rx_ps_hdr_size) {
3630 rx_desc->read.pkt_addr =
3631 cpu_to_le64(buffer_info->page_dma);
3632 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
3633 } else {
3634 rx_desc->read.pkt_addr =
3635 cpu_to_le64(buffer_info->dma);
3636 rx_desc->read.hdr_addr = 0;
3639 i++;
3640 if (i == rx_ring->count)
3641 i = 0;
3642 buffer_info = &rx_ring->buffer_info[i];
3645 no_buffers:
3646 if (rx_ring->next_to_use != i) {
3647 rx_ring->next_to_use = i;
3648 if (i == 0)
3649 i = (rx_ring->count - 1);
3650 else
3651 i--;
3653 /* Force memory writes to complete before letting h/w
3654 * know there are new descriptors to fetch. (Only
3655 * applicable for weak-ordered memory model archs,
3656 * such as IA-64). */
3657 wmb();
3658 writel(i, adapter->hw.hw_addr + rx_ring->tail);
3663 * igb_mii_ioctl -
3664 * @netdev:
3665 * @ifreq:
3666 * @cmd:
3668 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3670 struct igb_adapter *adapter = netdev_priv(netdev);
3671 struct mii_ioctl_data *data = if_mii(ifr);
3673 if (adapter->hw.phy.media_type != e1000_media_type_copper)
3674 return -EOPNOTSUPP;
3676 switch (cmd) {
3677 case SIOCGMIIPHY:
3678 data->phy_id = adapter->hw.phy.addr;
3679 break;
3680 case SIOCGMIIREG:
3681 if (!capable(CAP_NET_ADMIN))
3682 return -EPERM;
3683 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
3684 data->reg_num
3685 & 0x1F, &data->val_out))
3686 return -EIO;
3687 break;
3688 case SIOCSMIIREG:
3689 default:
3690 return -EOPNOTSUPP;
3692 return 0;
3696 * igb_ioctl -
3697 * @netdev:
3698 * @ifreq:
3699 * @cmd:
3701 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3703 switch (cmd) {
3704 case SIOCGMIIPHY:
3705 case SIOCGMIIREG:
3706 case SIOCSMIIREG:
3707 return igb_mii_ioctl(netdev, ifr, cmd);
3708 default:
3709 return -EOPNOTSUPP;
3713 static void igb_vlan_rx_register(struct net_device *netdev,
3714 struct vlan_group *grp)
3716 struct igb_adapter *adapter = netdev_priv(netdev);
3717 struct e1000_hw *hw = &adapter->hw;
3718 u32 ctrl, rctl;
3720 igb_irq_disable(adapter);
3721 adapter->vlgrp = grp;
3723 if (grp) {
3724 /* enable VLAN tag insert/strip */
3725 ctrl = rd32(E1000_CTRL);
3726 ctrl |= E1000_CTRL_VME;
3727 wr32(E1000_CTRL, ctrl);
3729 /* enable VLAN receive filtering */
3730 rctl = rd32(E1000_RCTL);
3731 rctl |= E1000_RCTL_VFE;
3732 rctl &= ~E1000_RCTL_CFIEN;
3733 wr32(E1000_RCTL, rctl);
3734 igb_update_mng_vlan(adapter);
3735 wr32(E1000_RLPML,
3736 adapter->max_frame_size + VLAN_TAG_SIZE);
3737 } else {
3738 /* disable VLAN tag insert/strip */
3739 ctrl = rd32(E1000_CTRL);
3740 ctrl &= ~E1000_CTRL_VME;
3741 wr32(E1000_CTRL, ctrl);
3743 /* disable VLAN filtering */
3744 rctl = rd32(E1000_RCTL);
3745 rctl &= ~E1000_RCTL_VFE;
3746 wr32(E1000_RCTL, rctl);
3747 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
3748 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3749 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
3751 wr32(E1000_RLPML,
3752 adapter->max_frame_size);
3755 if (!test_bit(__IGB_DOWN, &adapter->state))
3756 igb_irq_enable(adapter);
3759 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
3761 struct igb_adapter *adapter = netdev_priv(netdev);
3762 struct e1000_hw *hw = &adapter->hw;
3763 u32 vfta, index;
3765 if ((adapter->hw.mng_cookie.status &
3766 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3767 (vid == adapter->mng_vlan_id))
3768 return;
3769 /* add VID to filter table */
3770 index = (vid >> 5) & 0x7F;
3771 vfta = array_rd32(E1000_VFTA, index);
3772 vfta |= (1 << (vid & 0x1F));
3773 igb_write_vfta(&adapter->hw, index, vfta);
3776 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
3778 struct igb_adapter *adapter = netdev_priv(netdev);
3779 struct e1000_hw *hw = &adapter->hw;
3780 u32 vfta, index;
3782 igb_irq_disable(adapter);
3783 vlan_group_set_device(adapter->vlgrp, vid, NULL);
3785 if (!test_bit(__IGB_DOWN, &adapter->state))
3786 igb_irq_enable(adapter);
3788 if ((adapter->hw.mng_cookie.status &
3789 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3790 (vid == adapter->mng_vlan_id)) {
3791 /* release control to f/w */
3792 igb_release_hw_control(adapter);
3793 return;
3796 /* remove VID from filter table */
3797 index = (vid >> 5) & 0x7F;
3798 vfta = array_rd32(E1000_VFTA, index);
3799 vfta &= ~(1 << (vid & 0x1F));
3800 igb_write_vfta(&adapter->hw, index, vfta);
3803 static void igb_restore_vlan(struct igb_adapter *adapter)
3805 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
3807 if (adapter->vlgrp) {
3808 u16 vid;
3809 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
3810 if (!vlan_group_get_device(adapter->vlgrp, vid))
3811 continue;
3812 igb_vlan_rx_add_vid(adapter->netdev, vid);
3817 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
3819 struct e1000_mac_info *mac = &adapter->hw.mac;
3821 mac->autoneg = 0;
3823 /* Fiber NICs only allow 1000 gbps Full duplex */
3824 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
3825 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
3826 dev_err(&adapter->pdev->dev,
3827 "Unsupported Speed/Duplex configuration\n");
3828 return -EINVAL;
3831 switch (spddplx) {
3832 case SPEED_10 + DUPLEX_HALF:
3833 mac->forced_speed_duplex = ADVERTISE_10_HALF;
3834 break;
3835 case SPEED_10 + DUPLEX_FULL:
3836 mac->forced_speed_duplex = ADVERTISE_10_FULL;
3837 break;
3838 case SPEED_100 + DUPLEX_HALF:
3839 mac->forced_speed_duplex = ADVERTISE_100_HALF;
3840 break;
3841 case SPEED_100 + DUPLEX_FULL:
3842 mac->forced_speed_duplex = ADVERTISE_100_FULL;
3843 break;
3844 case SPEED_1000 + DUPLEX_FULL:
3845 mac->autoneg = 1;
3846 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
3847 break;
3848 case SPEED_1000 + DUPLEX_HALF: /* not supported */
3849 default:
3850 dev_err(&adapter->pdev->dev,
3851 "Unsupported Speed/Duplex configuration\n");
3852 return -EINVAL;
3854 return 0;
3858 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
3860 struct net_device *netdev = pci_get_drvdata(pdev);
3861 struct igb_adapter *adapter = netdev_priv(netdev);
3862 struct e1000_hw *hw = &adapter->hw;
3863 u32 ctrl, ctrl_ext, rctl, status;
3864 u32 wufc = adapter->wol;
3865 #ifdef CONFIG_PM
3866 int retval = 0;
3867 #endif
3869 netif_device_detach(netdev);
3871 if (netif_running(netdev)) {
3872 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3873 igb_down(adapter);
3874 igb_free_irq(adapter);
3877 #ifdef CONFIG_PM
3878 retval = pci_save_state(pdev);
3879 if (retval)
3880 return retval;
3881 #endif
3883 status = rd32(E1000_STATUS);
3884 if (status & E1000_STATUS_LU)
3885 wufc &= ~E1000_WUFC_LNKC;
3887 if (wufc) {
3888 igb_setup_rctl(adapter);
3889 igb_set_multi(netdev);
3891 /* turn on all-multi mode if wake on multicast is enabled */
3892 if (wufc & E1000_WUFC_MC) {
3893 rctl = rd32(E1000_RCTL);
3894 rctl |= E1000_RCTL_MPE;
3895 wr32(E1000_RCTL, rctl);
3898 ctrl = rd32(E1000_CTRL);
3899 /* advertise wake from D3Cold */
3900 #define E1000_CTRL_ADVD3WUC 0x00100000
3901 /* phy power management enable */
3902 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3903 ctrl |= E1000_CTRL_ADVD3WUC;
3904 wr32(E1000_CTRL, ctrl);
3906 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3907 adapter->hw.phy.media_type ==
3908 e1000_media_type_internal_serdes) {
3909 /* keep the laser running in D3 */
3910 ctrl_ext = rd32(E1000_CTRL_EXT);
3911 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3912 wr32(E1000_CTRL_EXT, ctrl_ext);
3915 /* Allow time for pending master requests to run */
3916 igb_disable_pcie_master(&adapter->hw);
3918 wr32(E1000_WUC, E1000_WUC_PME_EN);
3919 wr32(E1000_WUFC, wufc);
3920 pci_enable_wake(pdev, PCI_D3hot, 1);
3921 pci_enable_wake(pdev, PCI_D3cold, 1);
3922 } else {
3923 wr32(E1000_WUC, 0);
3924 wr32(E1000_WUFC, 0);
3925 pci_enable_wake(pdev, PCI_D3hot, 0);
3926 pci_enable_wake(pdev, PCI_D3cold, 0);
3929 /* make sure adapter isn't asleep if manageability is enabled */
3930 if (adapter->en_mng_pt) {
3931 pci_enable_wake(pdev, PCI_D3hot, 1);
3932 pci_enable_wake(pdev, PCI_D3cold, 1);
3935 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3936 * would have already happened in close and is redundant. */
3937 igb_release_hw_control(adapter);
3939 pci_disable_device(pdev);
3941 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3943 return 0;
3946 #ifdef CONFIG_PM
3947 static int igb_resume(struct pci_dev *pdev)
3949 struct net_device *netdev = pci_get_drvdata(pdev);
3950 struct igb_adapter *adapter = netdev_priv(netdev);
3951 struct e1000_hw *hw = &adapter->hw;
3952 u32 err;
3954 pci_set_power_state(pdev, PCI_D0);
3955 pci_restore_state(pdev);
3956 err = pci_enable_device(pdev);
3957 if (err) {
3958 dev_err(&pdev->dev,
3959 "igb: Cannot enable PCI device from suspend\n");
3960 return err;
3962 pci_set_master(pdev);
3964 pci_enable_wake(pdev, PCI_D3hot, 0);
3965 pci_enable_wake(pdev, PCI_D3cold, 0);
3967 if (netif_running(netdev)) {
3968 err = igb_request_irq(adapter);
3969 if (err)
3970 return err;
3973 /* e1000_power_up_phy(adapter); */
3975 igb_reset(adapter);
3976 wr32(E1000_WUS, ~0);
3978 igb_init_manageability(adapter);
3980 if (netif_running(netdev))
3981 igb_up(adapter);
3983 netif_device_attach(netdev);
3985 /* let the f/w know that the h/w is now under the control of the
3986 * driver. */
3987 igb_get_hw_control(adapter);
3989 return 0;
3991 #endif
3993 static void igb_shutdown(struct pci_dev *pdev)
3995 igb_suspend(pdev, PMSG_SUSPEND);
3998 #ifdef CONFIG_NET_POLL_CONTROLLER
4000 * Polling 'interrupt' - used by things like netconsole to send skbs
4001 * without having to re-enable interrupts. It's not called while
4002 * the interrupt routine is executing.
4004 static void igb_netpoll(struct net_device *netdev)
4006 struct igb_adapter *adapter = netdev_priv(netdev);
4007 int i;
4008 int work_done = 0;
4010 igb_irq_disable(adapter);
4011 for (i = 0; i < adapter->num_tx_queues; i++)
4012 igb_clean_tx_irq(adapter, &adapter->tx_ring[i]);
4014 for (i = 0; i < adapter->num_rx_queues; i++)
4015 igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i],
4016 &work_done,
4017 adapter->rx_ring[i].napi.weight);
4019 igb_irq_enable(adapter);
4021 #endif /* CONFIG_NET_POLL_CONTROLLER */
4024 * igb_io_error_detected - called when PCI error is detected
4025 * @pdev: Pointer to PCI device
4026 * @state: The current pci connection state
4028 * This function is called after a PCI bus error affecting
4029 * this device has been detected.
4031 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4032 pci_channel_state_t state)
4034 struct net_device *netdev = pci_get_drvdata(pdev);
4035 struct igb_adapter *adapter = netdev_priv(netdev);
4037 netif_device_detach(netdev);
4039 if (netif_running(netdev))
4040 igb_down(adapter);
4041 pci_disable_device(pdev);
4043 /* Request a slot slot reset. */
4044 return PCI_ERS_RESULT_NEED_RESET;
4048 * igb_io_slot_reset - called after the pci bus has been reset.
4049 * @pdev: Pointer to PCI device
4051 * Restart the card from scratch, as if from a cold-boot. Implementation
4052 * resembles the first-half of the igb_resume routine.
4054 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4056 struct net_device *netdev = pci_get_drvdata(pdev);
4057 struct igb_adapter *adapter = netdev_priv(netdev);
4058 struct e1000_hw *hw = &adapter->hw;
4060 if (pci_enable_device(pdev)) {
4061 dev_err(&pdev->dev,
4062 "Cannot re-enable PCI device after reset.\n");
4063 return PCI_ERS_RESULT_DISCONNECT;
4065 pci_set_master(pdev);
4067 pci_enable_wake(pdev, PCI_D3hot, 0);
4068 pci_enable_wake(pdev, PCI_D3cold, 0);
4070 igb_reset(adapter);
4071 wr32(E1000_WUS, ~0);
4073 return PCI_ERS_RESULT_RECOVERED;
4077 * igb_io_resume - called when traffic can start flowing again.
4078 * @pdev: Pointer to PCI device
4080 * This callback is called when the error recovery driver tells us that
4081 * its OK to resume normal operation. Implementation resembles the
4082 * second-half of the igb_resume routine.
4084 static void igb_io_resume(struct pci_dev *pdev)
4086 struct net_device *netdev = pci_get_drvdata(pdev);
4087 struct igb_adapter *adapter = netdev_priv(netdev);
4089 igb_init_manageability(adapter);
4091 if (netif_running(netdev)) {
4092 if (igb_up(adapter)) {
4093 dev_err(&pdev->dev, "igb_up failed after reset\n");
4094 return;
4098 netif_device_attach(netdev);
4100 /* let the f/w know that the h/w is now under the control of the
4101 * driver. */
4102 igb_get_hw_control(adapter);
4106 /* igb_main.c */