Merge git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-for-linus
[wrt350n-kernel.git] / drivers / net / tulip / de2104x.c
blob567c62757e9d154ec39b5083d1f0f4b28bcf18ad
1 /* de2104x.c: A Linux PCI Ethernet driver for Intel/Digital 21040/1 chips. */
2 /*
3 Copyright 2001,2003 Jeff Garzik <jgarzik@pobox.com>
5 Copyright 1994, 1995 Digital Equipment Corporation. [de4x5.c]
6 Written/copyright 1994-2001 by Donald Becker. [tulip.c]
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL.
15 See the file COPYING in this distribution for more information.
17 TODO, in rough priority order:
18 * Support forcing media type with a module parameter,
19 like dl2k.c/sundance.c
20 * Constants (module parms?) for Rx work limit
21 * Complete reset on PciErr
22 * Jumbo frames / dev->change_mtu
23 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
24 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
25 * Implement Tx software interrupt mitigation via
26 Tx descriptor bit
30 #define DRV_NAME "de2104x"
31 #define DRV_VERSION "0.7"
32 #define DRV_RELDATE "Mar 17, 2004"
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/init.h>
39 #include <linux/pci.h>
40 #include <linux/delay.h>
41 #include <linux/ethtool.h>
42 #include <linux/compiler.h>
43 #include <linux/rtnetlink.h>
44 #include <linux/crc32.h>
46 #include <asm/io.h>
47 #include <asm/irq.h>
48 #include <asm/uaccess.h>
49 #include <asm/unaligned.h>
51 /* These identify the driver base version and may not be removed. */
52 static char version[] =
53 KERN_INFO DRV_NAME " PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
55 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
56 MODULE_DESCRIPTION("Intel/Digital 21040/1 series PCI Ethernet driver");
57 MODULE_LICENSE("GPL");
58 MODULE_VERSION(DRV_VERSION);
60 static int debug = -1;
61 module_param (debug, int, 0);
62 MODULE_PARM_DESC (debug, "de2104x bitmapped message enable number");
64 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
65 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
66 || defined(CONFIG_SPARC) || defined(__ia64__) \
67 || defined(__sh__) || defined(__mips__)
68 static int rx_copybreak = 1518;
69 #else
70 static int rx_copybreak = 100;
71 #endif
72 module_param (rx_copybreak, int, 0);
73 MODULE_PARM_DESC (rx_copybreak, "de2104x Breakpoint at which Rx packets are copied");
75 #define PFX DRV_NAME ": "
77 #define DE_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
78 NETIF_MSG_PROBE | \
79 NETIF_MSG_LINK | \
80 NETIF_MSG_IFDOWN | \
81 NETIF_MSG_IFUP | \
82 NETIF_MSG_RX_ERR | \
83 NETIF_MSG_TX_ERR)
85 #define DE_RX_RING_SIZE 64
86 #define DE_TX_RING_SIZE 64
87 #define DE_RING_BYTES \
88 ((sizeof(struct de_desc) * DE_RX_RING_SIZE) + \
89 (sizeof(struct de_desc) * DE_TX_RING_SIZE))
90 #define NEXT_TX(N) (((N) + 1) & (DE_TX_RING_SIZE - 1))
91 #define NEXT_RX(N) (((N) + 1) & (DE_RX_RING_SIZE - 1))
92 #define TX_BUFFS_AVAIL(CP) \
93 (((CP)->tx_tail <= (CP)->tx_head) ? \
94 (CP)->tx_tail + (DE_TX_RING_SIZE - 1) - (CP)->tx_head : \
95 (CP)->tx_tail - (CP)->tx_head - 1)
97 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
98 #define RX_OFFSET 2
100 #define DE_SETUP_SKB ((struct sk_buff *) 1)
101 #define DE_DUMMY_SKB ((struct sk_buff *) 2)
102 #define DE_SETUP_FRAME_WORDS 96
103 #define DE_EEPROM_WORDS 256
104 #define DE_EEPROM_SIZE (DE_EEPROM_WORDS * sizeof(u16))
105 #define DE_MAX_MEDIA 5
107 #define DE_MEDIA_TP_AUTO 0
108 #define DE_MEDIA_BNC 1
109 #define DE_MEDIA_AUI 2
110 #define DE_MEDIA_TP 3
111 #define DE_MEDIA_TP_FD 4
112 #define DE_MEDIA_INVALID DE_MAX_MEDIA
113 #define DE_MEDIA_FIRST 0
114 #define DE_MEDIA_LAST (DE_MAX_MEDIA - 1)
115 #define DE_AUI_BNC (SUPPORTED_AUI | SUPPORTED_BNC)
117 #define DE_TIMER_LINK (60 * HZ)
118 #define DE_TIMER_NO_LINK (5 * HZ)
120 #define DE_NUM_REGS 16
121 #define DE_REGS_SIZE (DE_NUM_REGS * sizeof(u32))
122 #define DE_REGS_VER 1
124 /* Time in jiffies before concluding the transmitter is hung. */
125 #define TX_TIMEOUT (6*HZ)
127 #define DE_UNALIGNED_16(a) (u16)(get_unaligned((u16 *)(a)))
129 /* This is a mysterious value that can be written to CSR11 in the 21040 (only)
130 to support a pre-NWay full-duplex signaling mechanism using short frames.
131 No one knows what it should be, but if left at its default value some
132 10base2(!) packets trigger a full-duplex-request interrupt. */
133 #define FULL_DUPLEX_MAGIC 0x6969
135 enum {
136 /* NIC registers */
137 BusMode = 0x00,
138 TxPoll = 0x08,
139 RxPoll = 0x10,
140 RxRingAddr = 0x18,
141 TxRingAddr = 0x20,
142 MacStatus = 0x28,
143 MacMode = 0x30,
144 IntrMask = 0x38,
145 RxMissed = 0x40,
146 ROMCmd = 0x48,
147 CSR11 = 0x58,
148 SIAStatus = 0x60,
149 CSR13 = 0x68,
150 CSR14 = 0x70,
151 CSR15 = 0x78,
152 PCIPM = 0x40,
154 /* BusMode bits */
155 CmdReset = (1 << 0),
156 CacheAlign16 = 0x00008000,
157 BurstLen4 = 0x00000400,
159 /* Rx/TxPoll bits */
160 NormalTxPoll = (1 << 0),
161 NormalRxPoll = (1 << 0),
163 /* Tx/Rx descriptor status bits */
164 DescOwn = (1 << 31),
165 RxError = (1 << 15),
166 RxErrLong = (1 << 7),
167 RxErrCRC = (1 << 1),
168 RxErrFIFO = (1 << 0),
169 RxErrRunt = (1 << 11),
170 RxErrFrame = (1 << 14),
171 RingEnd = (1 << 25),
172 FirstFrag = (1 << 29),
173 LastFrag = (1 << 30),
174 TxError = (1 << 15),
175 TxFIFOUnder = (1 << 1),
176 TxLinkFail = (1 << 2) | (1 << 10) | (1 << 11),
177 TxMaxCol = (1 << 8),
178 TxOWC = (1 << 9),
179 TxJabber = (1 << 14),
180 SetupFrame = (1 << 27),
181 TxSwInt = (1 << 31),
183 /* MacStatus bits */
184 IntrOK = (1 << 16),
185 IntrErr = (1 << 15),
186 RxIntr = (1 << 6),
187 RxEmpty = (1 << 7),
188 TxIntr = (1 << 0),
189 TxEmpty = (1 << 2),
190 PciErr = (1 << 13),
191 TxState = (1 << 22) | (1 << 21) | (1 << 20),
192 RxState = (1 << 19) | (1 << 18) | (1 << 17),
193 LinkFail = (1 << 12),
194 LinkPass = (1 << 4),
195 RxStopped = (1 << 8),
196 TxStopped = (1 << 1),
198 /* MacMode bits */
199 TxEnable = (1 << 13),
200 RxEnable = (1 << 1),
201 RxTx = TxEnable | RxEnable,
202 FullDuplex = (1 << 9),
203 AcceptAllMulticast = (1 << 7),
204 AcceptAllPhys = (1 << 6),
205 BOCnt = (1 << 5),
206 MacModeClear = (1<<12) | (1<<11) | (1<<10) | (1<<8) | (1<<3) |
207 RxTx | BOCnt | AcceptAllPhys | AcceptAllMulticast,
209 /* ROMCmd bits */
210 EE_SHIFT_CLK = 0x02, /* EEPROM shift clock. */
211 EE_CS = 0x01, /* EEPROM chip select. */
212 EE_DATA_WRITE = 0x04, /* Data from the Tulip to EEPROM. */
213 EE_WRITE_0 = 0x01,
214 EE_WRITE_1 = 0x05,
215 EE_DATA_READ = 0x08, /* Data from the EEPROM chip. */
216 EE_ENB = (0x4800 | EE_CS),
218 /* The EEPROM commands include the alway-set leading bit. */
219 EE_READ_CMD = 6,
221 /* RxMissed bits */
222 RxMissedOver = (1 << 16),
223 RxMissedMask = 0xffff,
225 /* SROM-related bits */
226 SROMC0InfoLeaf = 27,
227 MediaBlockMask = 0x3f,
228 MediaCustomCSRs = (1 << 6),
230 /* PCIPM bits */
231 PM_Sleep = (1 << 31),
232 PM_Snooze = (1 << 30),
233 PM_Mask = PM_Sleep | PM_Snooze,
235 /* SIAStatus bits */
236 NWayState = (1 << 14) | (1 << 13) | (1 << 12),
237 NWayRestart = (1 << 12),
238 NonselPortActive = (1 << 9),
239 LinkFailStatus = (1 << 2),
240 NetCxnErr = (1 << 1),
243 static const u32 de_intr_mask =
244 IntrOK | IntrErr | RxIntr | RxEmpty | TxIntr | TxEmpty |
245 LinkPass | LinkFail | PciErr;
248 * Set the programmable burst length to 4 longwords for all:
249 * DMA errors result without these values. Cache align 16 long.
251 static const u32 de_bus_mode = CacheAlign16 | BurstLen4;
253 struct de_srom_media_block {
254 u8 opts;
255 u16 csr13;
256 u16 csr14;
257 u16 csr15;
258 } __attribute__((packed));
260 struct de_srom_info_leaf {
261 u16 default_media;
262 u8 n_blocks;
263 u8 unused;
264 } __attribute__((packed));
266 struct de_desc {
267 __le32 opts1;
268 __le32 opts2;
269 __le32 addr1;
270 __le32 addr2;
273 struct media_info {
274 u16 type; /* DE_MEDIA_xxx */
275 u16 csr13;
276 u16 csr14;
277 u16 csr15;
280 struct ring_info {
281 struct sk_buff *skb;
282 dma_addr_t mapping;
285 struct de_private {
286 unsigned tx_head;
287 unsigned tx_tail;
288 unsigned rx_tail;
290 void __iomem *regs;
291 struct net_device *dev;
292 spinlock_t lock;
294 struct de_desc *rx_ring;
295 struct de_desc *tx_ring;
296 struct ring_info tx_skb[DE_TX_RING_SIZE];
297 struct ring_info rx_skb[DE_RX_RING_SIZE];
298 unsigned rx_buf_sz;
299 dma_addr_t ring_dma;
301 u32 msg_enable;
303 struct net_device_stats net_stats;
305 struct pci_dev *pdev;
307 u16 setup_frame[DE_SETUP_FRAME_WORDS];
309 u32 media_type;
310 u32 media_supported;
311 u32 media_advertise;
312 struct media_info media[DE_MAX_MEDIA];
313 struct timer_list media_timer;
315 u8 *ee_data;
316 unsigned board_idx;
317 unsigned de21040 : 1;
318 unsigned media_lock : 1;
322 static void de_set_rx_mode (struct net_device *dev);
323 static void de_tx (struct de_private *de);
324 static void de_clean_rings (struct de_private *de);
325 static void de_media_interrupt (struct de_private *de, u32 status);
326 static void de21040_media_timer (unsigned long data);
327 static void de21041_media_timer (unsigned long data);
328 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media);
331 static struct pci_device_id de_pci_tbl[] = {
332 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
333 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
334 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
335 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
336 { },
338 MODULE_DEVICE_TABLE(pci, de_pci_tbl);
340 static const char * const media_name[DE_MAX_MEDIA] = {
341 "10baseT auto",
342 "BNC",
343 "AUI",
344 "10baseT-HD",
345 "10baseT-FD"
348 /* 21040 transceiver register settings:
349 * TP AUTO(unused), BNC(unused), AUI, TP, TP FD*/
350 static u16 t21040_csr13[] = { 0, 0, 0x8F09, 0x8F01, 0x8F01, };
351 static u16 t21040_csr14[] = { 0, 0, 0x0705, 0xFFFF, 0xFFFD, };
352 static u16 t21040_csr15[] = { 0, 0, 0x0006, 0x0000, 0x0000, };
354 /* 21041 transceiver register settings: TP AUTO, BNC, AUI, TP, TP FD*/
355 static u16 t21041_csr13[] = { 0xEF01, 0xEF09, 0xEF09, 0xEF01, 0xEF09, };
356 static u16 t21041_csr14[] = { 0xFFFF, 0xF7FD, 0xF7FD, 0x6F3F, 0x6F3D, };
357 static u16 t21041_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, };
360 #define dr32(reg) readl(de->regs + (reg))
361 #define dw32(reg,val) writel((val), de->regs + (reg))
364 static void de_rx_err_acct (struct de_private *de, unsigned rx_tail,
365 u32 status, u32 len)
367 if (netif_msg_rx_err (de))
368 printk (KERN_DEBUG
369 "%s: rx err, slot %d status 0x%x len %d\n",
370 de->dev->name, rx_tail, status, len);
372 if ((status & 0x38000300) != 0x0300) {
373 /* Ingore earlier buffers. */
374 if ((status & 0xffff) != 0x7fff) {
375 if (netif_msg_rx_err(de))
376 printk(KERN_WARNING "%s: Oversized Ethernet frame "
377 "spanned multiple buffers, status %8.8x!\n",
378 de->dev->name, status);
379 de->net_stats.rx_length_errors++;
381 } else if (status & RxError) {
382 /* There was a fatal error. */
383 de->net_stats.rx_errors++; /* end of a packet.*/
384 if (status & 0x0890) de->net_stats.rx_length_errors++;
385 if (status & RxErrCRC) de->net_stats.rx_crc_errors++;
386 if (status & RxErrFIFO) de->net_stats.rx_fifo_errors++;
390 static void de_rx (struct de_private *de)
392 unsigned rx_tail = de->rx_tail;
393 unsigned rx_work = DE_RX_RING_SIZE;
394 unsigned drop = 0;
395 int rc;
397 while (rx_work--) {
398 u32 status, len;
399 dma_addr_t mapping;
400 struct sk_buff *skb, *copy_skb;
401 unsigned copying_skb, buflen;
403 skb = de->rx_skb[rx_tail].skb;
404 BUG_ON(!skb);
405 rmb();
406 status = le32_to_cpu(de->rx_ring[rx_tail].opts1);
407 if (status & DescOwn)
408 break;
410 len = ((status >> 16) & 0x7ff) - 4;
411 mapping = de->rx_skb[rx_tail].mapping;
413 if (unlikely(drop)) {
414 de->net_stats.rx_dropped++;
415 goto rx_next;
418 if (unlikely((status & 0x38008300) != 0x0300)) {
419 de_rx_err_acct(de, rx_tail, status, len);
420 goto rx_next;
423 copying_skb = (len <= rx_copybreak);
425 if (unlikely(netif_msg_rx_status(de)))
426 printk(KERN_DEBUG "%s: rx slot %d status 0x%x len %d copying? %d\n",
427 de->dev->name, rx_tail, status, len,
428 copying_skb);
430 buflen = copying_skb ? (len + RX_OFFSET) : de->rx_buf_sz;
431 copy_skb = dev_alloc_skb (buflen);
432 if (unlikely(!copy_skb)) {
433 de->net_stats.rx_dropped++;
434 drop = 1;
435 rx_work = 100;
436 goto rx_next;
439 if (!copying_skb) {
440 pci_unmap_single(de->pdev, mapping,
441 buflen, PCI_DMA_FROMDEVICE);
442 skb_put(skb, len);
444 mapping =
445 de->rx_skb[rx_tail].mapping =
446 pci_map_single(de->pdev, copy_skb->data,
447 buflen, PCI_DMA_FROMDEVICE);
448 de->rx_skb[rx_tail].skb = copy_skb;
449 } else {
450 pci_dma_sync_single_for_cpu(de->pdev, mapping, len, PCI_DMA_FROMDEVICE);
451 skb_reserve(copy_skb, RX_OFFSET);
452 skb_copy_from_linear_data(skb, skb_put(copy_skb, len),
453 len);
454 pci_dma_sync_single_for_device(de->pdev, mapping, len, PCI_DMA_FROMDEVICE);
456 /* We'll reuse the original ring buffer. */
457 skb = copy_skb;
460 skb->protocol = eth_type_trans (skb, de->dev);
462 de->net_stats.rx_packets++;
463 de->net_stats.rx_bytes += skb->len;
464 de->dev->last_rx = jiffies;
465 rc = netif_rx (skb);
466 if (rc == NET_RX_DROP)
467 drop = 1;
469 rx_next:
470 de->rx_ring[rx_tail].opts1 = cpu_to_le32(DescOwn);
471 if (rx_tail == (DE_RX_RING_SIZE - 1))
472 de->rx_ring[rx_tail].opts2 =
473 cpu_to_le32(RingEnd | de->rx_buf_sz);
474 else
475 de->rx_ring[rx_tail].opts2 = cpu_to_le32(de->rx_buf_sz);
476 de->rx_ring[rx_tail].addr1 = cpu_to_le32(mapping);
477 rx_tail = NEXT_RX(rx_tail);
480 if (!rx_work)
481 printk(KERN_WARNING "%s: rx work limit reached\n", de->dev->name);
483 de->rx_tail = rx_tail;
486 static irqreturn_t de_interrupt (int irq, void *dev_instance)
488 struct net_device *dev = dev_instance;
489 struct de_private *de = dev->priv;
490 u32 status;
492 status = dr32(MacStatus);
493 if ((!(status & (IntrOK|IntrErr))) || (status == 0xFFFF))
494 return IRQ_NONE;
496 if (netif_msg_intr(de))
497 printk(KERN_DEBUG "%s: intr, status %08x mode %08x desc %u/%u/%u\n",
498 dev->name, status, dr32(MacMode), de->rx_tail, de->tx_head, de->tx_tail);
500 dw32(MacStatus, status);
502 if (status & (RxIntr | RxEmpty)) {
503 de_rx(de);
504 if (status & RxEmpty)
505 dw32(RxPoll, NormalRxPoll);
508 spin_lock(&de->lock);
510 if (status & (TxIntr | TxEmpty))
511 de_tx(de);
513 if (status & (LinkPass | LinkFail))
514 de_media_interrupt(de, status);
516 spin_unlock(&de->lock);
518 if (status & PciErr) {
519 u16 pci_status;
521 pci_read_config_word(de->pdev, PCI_STATUS, &pci_status);
522 pci_write_config_word(de->pdev, PCI_STATUS, pci_status);
523 printk(KERN_ERR "%s: PCI bus error, status=%08x, PCI status=%04x\n",
524 dev->name, status, pci_status);
527 return IRQ_HANDLED;
530 static void de_tx (struct de_private *de)
532 unsigned tx_head = de->tx_head;
533 unsigned tx_tail = de->tx_tail;
535 while (tx_tail != tx_head) {
536 struct sk_buff *skb;
537 u32 status;
539 rmb();
540 status = le32_to_cpu(de->tx_ring[tx_tail].opts1);
541 if (status & DescOwn)
542 break;
544 skb = de->tx_skb[tx_tail].skb;
545 BUG_ON(!skb);
546 if (unlikely(skb == DE_DUMMY_SKB))
547 goto next;
549 if (unlikely(skb == DE_SETUP_SKB)) {
550 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping,
551 sizeof(de->setup_frame), PCI_DMA_TODEVICE);
552 goto next;
555 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping,
556 skb->len, PCI_DMA_TODEVICE);
558 if (status & LastFrag) {
559 if (status & TxError) {
560 if (netif_msg_tx_err(de))
561 printk(KERN_DEBUG "%s: tx err, status 0x%x\n",
562 de->dev->name, status);
563 de->net_stats.tx_errors++;
564 if (status & TxOWC)
565 de->net_stats.tx_window_errors++;
566 if (status & TxMaxCol)
567 de->net_stats.tx_aborted_errors++;
568 if (status & TxLinkFail)
569 de->net_stats.tx_carrier_errors++;
570 if (status & TxFIFOUnder)
571 de->net_stats.tx_fifo_errors++;
572 } else {
573 de->net_stats.tx_packets++;
574 de->net_stats.tx_bytes += skb->len;
575 if (netif_msg_tx_done(de))
576 printk(KERN_DEBUG "%s: tx done, slot %d\n", de->dev->name, tx_tail);
578 dev_kfree_skb_irq(skb);
581 next:
582 de->tx_skb[tx_tail].skb = NULL;
584 tx_tail = NEXT_TX(tx_tail);
587 de->tx_tail = tx_tail;
589 if (netif_queue_stopped(de->dev) && (TX_BUFFS_AVAIL(de) > (DE_TX_RING_SIZE / 4)))
590 netif_wake_queue(de->dev);
593 static int de_start_xmit (struct sk_buff *skb, struct net_device *dev)
595 struct de_private *de = dev->priv;
596 unsigned int entry, tx_free;
597 u32 mapping, len, flags = FirstFrag | LastFrag;
598 struct de_desc *txd;
600 spin_lock_irq(&de->lock);
602 tx_free = TX_BUFFS_AVAIL(de);
603 if (tx_free == 0) {
604 netif_stop_queue(dev);
605 spin_unlock_irq(&de->lock);
606 return 1;
608 tx_free--;
610 entry = de->tx_head;
612 txd = &de->tx_ring[entry];
614 len = skb->len;
615 mapping = pci_map_single(de->pdev, skb->data, len, PCI_DMA_TODEVICE);
616 if (entry == (DE_TX_RING_SIZE - 1))
617 flags |= RingEnd;
618 if (!tx_free || (tx_free == (DE_TX_RING_SIZE / 2)))
619 flags |= TxSwInt;
620 flags |= len;
621 txd->opts2 = cpu_to_le32(flags);
622 txd->addr1 = cpu_to_le32(mapping);
624 de->tx_skb[entry].skb = skb;
625 de->tx_skb[entry].mapping = mapping;
626 wmb();
628 txd->opts1 = cpu_to_le32(DescOwn);
629 wmb();
631 de->tx_head = NEXT_TX(entry);
632 if (netif_msg_tx_queued(de))
633 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
634 dev->name, entry, skb->len);
636 if (tx_free == 0)
637 netif_stop_queue(dev);
639 spin_unlock_irq(&de->lock);
641 /* Trigger an immediate transmit demand. */
642 dw32(TxPoll, NormalTxPoll);
643 dev->trans_start = jiffies;
645 return 0;
648 /* Set or clear the multicast filter for this adaptor.
649 Note that we only use exclusion around actually queueing the
650 new frame, not around filling de->setup_frame. This is non-deterministic
651 when re-entered but still correct. */
653 #undef set_bit_le
654 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
656 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
658 struct de_private *de = dev->priv;
659 u16 hash_table[32];
660 struct dev_mc_list *mclist;
661 int i;
662 u16 *eaddrs;
664 memset(hash_table, 0, sizeof(hash_table));
665 set_bit_le(255, hash_table); /* Broadcast entry */
666 /* This should work on big-endian machines as well. */
667 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
668 i++, mclist = mclist->next) {
669 int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
671 set_bit_le(index, hash_table);
673 for (i = 0; i < 32; i++) {
674 *setup_frm++ = hash_table[i];
675 *setup_frm++ = hash_table[i];
677 setup_frm = &de->setup_frame[13*6];
680 /* Fill the final entry with our physical address. */
681 eaddrs = (u16 *)dev->dev_addr;
682 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
683 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
684 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
687 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
689 struct de_private *de = dev->priv;
690 struct dev_mc_list *mclist;
691 int i;
692 u16 *eaddrs;
694 /* We have <= 14 addresses so we can use the wonderful
695 16 address perfect filtering of the Tulip. */
696 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
697 i++, mclist = mclist->next) {
698 eaddrs = (u16 *)mclist->dmi_addr;
699 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
700 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
701 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
703 /* Fill the unused entries with the broadcast address. */
704 memset(setup_frm, 0xff, (15-i)*12);
705 setup_frm = &de->setup_frame[15*6];
707 /* Fill the final entry with our physical address. */
708 eaddrs = (u16 *)dev->dev_addr;
709 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
710 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
711 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
715 static void __de_set_rx_mode (struct net_device *dev)
717 struct de_private *de = dev->priv;
718 u32 macmode;
719 unsigned int entry;
720 u32 mapping;
721 struct de_desc *txd;
722 struct de_desc *dummy_txd = NULL;
724 macmode = dr32(MacMode) & ~(AcceptAllMulticast | AcceptAllPhys);
726 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
727 macmode |= AcceptAllMulticast | AcceptAllPhys;
728 goto out;
731 if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
732 /* Too many to filter well -- accept all multicasts. */
733 macmode |= AcceptAllMulticast;
734 goto out;
737 /* Note that only the low-address shortword of setup_frame is valid!
738 The values are doubled for big-endian architectures. */
739 if (dev->mc_count > 14) /* Must use a multicast hash table. */
740 build_setup_frame_hash (de->setup_frame, dev);
741 else
742 build_setup_frame_perfect (de->setup_frame, dev);
745 * Now add this frame to the Tx list.
748 entry = de->tx_head;
750 /* Avoid a chip errata by prefixing a dummy entry. */
751 if (entry != 0) {
752 de->tx_skb[entry].skb = DE_DUMMY_SKB;
754 dummy_txd = &de->tx_ring[entry];
755 dummy_txd->opts2 = (entry == (DE_TX_RING_SIZE - 1)) ?
756 cpu_to_le32(RingEnd) : 0;
757 dummy_txd->addr1 = 0;
759 /* Must set DescOwned later to avoid race with chip */
761 entry = NEXT_TX(entry);
764 de->tx_skb[entry].skb = DE_SETUP_SKB;
765 de->tx_skb[entry].mapping = mapping =
766 pci_map_single (de->pdev, de->setup_frame,
767 sizeof (de->setup_frame), PCI_DMA_TODEVICE);
769 /* Put the setup frame on the Tx list. */
770 txd = &de->tx_ring[entry];
771 if (entry == (DE_TX_RING_SIZE - 1))
772 txd->opts2 = cpu_to_le32(SetupFrame | RingEnd | sizeof (de->setup_frame));
773 else
774 txd->opts2 = cpu_to_le32(SetupFrame | sizeof (de->setup_frame));
775 txd->addr1 = cpu_to_le32(mapping);
776 wmb();
778 txd->opts1 = cpu_to_le32(DescOwn);
779 wmb();
781 if (dummy_txd) {
782 dummy_txd->opts1 = cpu_to_le32(DescOwn);
783 wmb();
786 de->tx_head = NEXT_TX(entry);
788 if (TX_BUFFS_AVAIL(de) == 0)
789 netif_stop_queue(dev);
791 /* Trigger an immediate transmit demand. */
792 dw32(TxPoll, NormalTxPoll);
794 out:
795 if (macmode != dr32(MacMode))
796 dw32(MacMode, macmode);
799 static void de_set_rx_mode (struct net_device *dev)
801 unsigned long flags;
802 struct de_private *de = dev->priv;
804 spin_lock_irqsave (&de->lock, flags);
805 __de_set_rx_mode(dev);
806 spin_unlock_irqrestore (&de->lock, flags);
809 static inline void de_rx_missed(struct de_private *de, u32 rx_missed)
811 if (unlikely(rx_missed & RxMissedOver))
812 de->net_stats.rx_missed_errors += RxMissedMask;
813 else
814 de->net_stats.rx_missed_errors += (rx_missed & RxMissedMask);
817 static void __de_get_stats(struct de_private *de)
819 u32 tmp = dr32(RxMissed); /* self-clearing */
821 de_rx_missed(de, tmp);
824 static struct net_device_stats *de_get_stats(struct net_device *dev)
826 struct de_private *de = dev->priv;
828 /* The chip only need report frame silently dropped. */
829 spin_lock_irq(&de->lock);
830 if (netif_running(dev) && netif_device_present(dev))
831 __de_get_stats(de);
832 spin_unlock_irq(&de->lock);
834 return &de->net_stats;
837 static inline int de_is_running (struct de_private *de)
839 return (dr32(MacStatus) & (RxState | TxState)) ? 1 : 0;
842 static void de_stop_rxtx (struct de_private *de)
844 u32 macmode;
845 unsigned int work = 1000;
847 macmode = dr32(MacMode);
848 if (macmode & RxTx) {
849 dw32(MacMode, macmode & ~RxTx);
850 dr32(MacMode);
853 while (--work > 0) {
854 if (!de_is_running(de))
855 return;
856 cpu_relax();
859 printk(KERN_WARNING "%s: timeout expired stopping DMA\n", de->dev->name);
862 static inline void de_start_rxtx (struct de_private *de)
864 u32 macmode;
866 macmode = dr32(MacMode);
867 if ((macmode & RxTx) != RxTx) {
868 dw32(MacMode, macmode | RxTx);
869 dr32(MacMode);
873 static void de_stop_hw (struct de_private *de)
876 udelay(5);
877 dw32(IntrMask, 0);
879 de_stop_rxtx(de);
881 dw32(MacStatus, dr32(MacStatus));
883 udelay(10);
885 de->rx_tail = 0;
886 de->tx_head = de->tx_tail = 0;
889 static void de_link_up(struct de_private *de)
891 if (!netif_carrier_ok(de->dev)) {
892 netif_carrier_on(de->dev);
893 if (netif_msg_link(de))
894 printk(KERN_INFO "%s: link up, media %s\n",
895 de->dev->name, media_name[de->media_type]);
899 static void de_link_down(struct de_private *de)
901 if (netif_carrier_ok(de->dev)) {
902 netif_carrier_off(de->dev);
903 if (netif_msg_link(de))
904 printk(KERN_INFO "%s: link down\n", de->dev->name);
908 static void de_set_media (struct de_private *de)
910 unsigned media = de->media_type;
911 u32 macmode = dr32(MacMode);
913 if (de_is_running(de))
914 printk(KERN_WARNING "%s: chip is running while changing media!\n", de->dev->name);
916 if (de->de21040)
917 dw32(CSR11, FULL_DUPLEX_MAGIC);
918 dw32(CSR13, 0); /* Reset phy */
919 dw32(CSR14, de->media[media].csr14);
920 dw32(CSR15, de->media[media].csr15);
921 dw32(CSR13, de->media[media].csr13);
923 /* must delay 10ms before writing to other registers,
924 * especially CSR6
926 mdelay(10);
928 if (media == DE_MEDIA_TP_FD)
929 macmode |= FullDuplex;
930 else
931 macmode &= ~FullDuplex;
933 if (netif_msg_link(de)) {
934 printk(KERN_INFO "%s: set link %s\n"
935 KERN_INFO "%s: mode 0x%x, sia 0x%x,0x%x,0x%x,0x%x\n"
936 KERN_INFO "%s: set mode 0x%x, set sia 0x%x,0x%x,0x%x\n",
937 de->dev->name, media_name[media],
938 de->dev->name, dr32(MacMode), dr32(SIAStatus),
939 dr32(CSR13), dr32(CSR14), dr32(CSR15),
940 de->dev->name, macmode, de->media[media].csr13,
941 de->media[media].csr14, de->media[media].csr15);
943 if (macmode != dr32(MacMode))
944 dw32(MacMode, macmode);
947 static void de_next_media (struct de_private *de, u32 *media,
948 unsigned int n_media)
950 unsigned int i;
952 for (i = 0; i < n_media; i++) {
953 if (de_ok_to_advertise(de, media[i])) {
954 de->media_type = media[i];
955 return;
960 static void de21040_media_timer (unsigned long data)
962 struct de_private *de = (struct de_private *) data;
963 struct net_device *dev = de->dev;
964 u32 status = dr32(SIAStatus);
965 unsigned int carrier;
966 unsigned long flags;
968 carrier = (status & NetCxnErr) ? 0 : 1;
970 if (carrier) {
971 if (de->media_type != DE_MEDIA_AUI && (status & LinkFailStatus))
972 goto no_link_yet;
974 de->media_timer.expires = jiffies + DE_TIMER_LINK;
975 add_timer(&de->media_timer);
976 if (!netif_carrier_ok(dev))
977 de_link_up(de);
978 else
979 if (netif_msg_timer(de))
980 printk(KERN_INFO "%s: %s link ok, status %x\n",
981 dev->name, media_name[de->media_type],
982 status);
983 return;
986 de_link_down(de);
988 if (de->media_lock)
989 return;
991 if (de->media_type == DE_MEDIA_AUI) {
992 u32 next_state = DE_MEDIA_TP;
993 de_next_media(de, &next_state, 1);
994 } else {
995 u32 next_state = DE_MEDIA_AUI;
996 de_next_media(de, &next_state, 1);
999 spin_lock_irqsave(&de->lock, flags);
1000 de_stop_rxtx(de);
1001 spin_unlock_irqrestore(&de->lock, flags);
1002 de_set_media(de);
1003 de_start_rxtx(de);
1005 no_link_yet:
1006 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
1007 add_timer(&de->media_timer);
1009 if (netif_msg_timer(de))
1010 printk(KERN_INFO "%s: no link, trying media %s, status %x\n",
1011 dev->name, media_name[de->media_type], status);
1014 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media)
1016 switch (new_media) {
1017 case DE_MEDIA_TP_AUTO:
1018 if (!(de->media_advertise & ADVERTISED_Autoneg))
1019 return 0;
1020 if (!(de->media_advertise & (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full)))
1021 return 0;
1022 break;
1023 case DE_MEDIA_BNC:
1024 if (!(de->media_advertise & ADVERTISED_BNC))
1025 return 0;
1026 break;
1027 case DE_MEDIA_AUI:
1028 if (!(de->media_advertise & ADVERTISED_AUI))
1029 return 0;
1030 break;
1031 case DE_MEDIA_TP:
1032 if (!(de->media_advertise & ADVERTISED_10baseT_Half))
1033 return 0;
1034 break;
1035 case DE_MEDIA_TP_FD:
1036 if (!(de->media_advertise & ADVERTISED_10baseT_Full))
1037 return 0;
1038 break;
1041 return 1;
1044 static void de21041_media_timer (unsigned long data)
1046 struct de_private *de = (struct de_private *) data;
1047 struct net_device *dev = de->dev;
1048 u32 status = dr32(SIAStatus);
1049 unsigned int carrier;
1050 unsigned long flags;
1052 carrier = (status & NetCxnErr) ? 0 : 1;
1054 if (carrier) {
1055 if ((de->media_type == DE_MEDIA_TP_AUTO ||
1056 de->media_type == DE_MEDIA_TP ||
1057 de->media_type == DE_MEDIA_TP_FD) &&
1058 (status & LinkFailStatus))
1059 goto no_link_yet;
1061 de->media_timer.expires = jiffies + DE_TIMER_LINK;
1062 add_timer(&de->media_timer);
1063 if (!netif_carrier_ok(dev))
1064 de_link_up(de);
1065 else
1066 if (netif_msg_timer(de))
1067 printk(KERN_INFO "%s: %s link ok, mode %x status %x\n",
1068 dev->name, media_name[de->media_type],
1069 dr32(MacMode), status);
1070 return;
1073 de_link_down(de);
1075 /* if media type locked, don't switch media */
1076 if (de->media_lock)
1077 goto set_media;
1079 /* if activity detected, use that as hint for new media type */
1080 if (status & NonselPortActive) {
1081 unsigned int have_media = 1;
1083 /* if AUI/BNC selected, then activity is on TP port */
1084 if (de->media_type == DE_MEDIA_AUI ||
1085 de->media_type == DE_MEDIA_BNC) {
1086 if (de_ok_to_advertise(de, DE_MEDIA_TP_AUTO))
1087 de->media_type = DE_MEDIA_TP_AUTO;
1088 else
1089 have_media = 0;
1092 /* TP selected. If there is only TP and BNC, then it's BNC */
1093 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_BNC) &&
1094 de_ok_to_advertise(de, DE_MEDIA_BNC))
1095 de->media_type = DE_MEDIA_BNC;
1097 /* TP selected. If there is only TP and AUI, then it's AUI */
1098 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_AUI) &&
1099 de_ok_to_advertise(de, DE_MEDIA_AUI))
1100 de->media_type = DE_MEDIA_AUI;
1102 /* otherwise, ignore the hint */
1103 else
1104 have_media = 0;
1106 if (have_media)
1107 goto set_media;
1111 * Absent or ambiguous activity hint, move to next advertised
1112 * media state. If de->media_type is left unchanged, this
1113 * simply resets the PHY and reloads the current media settings.
1115 if (de->media_type == DE_MEDIA_AUI) {
1116 u32 next_states[] = { DE_MEDIA_BNC, DE_MEDIA_TP_AUTO };
1117 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1118 } else if (de->media_type == DE_MEDIA_BNC) {
1119 u32 next_states[] = { DE_MEDIA_TP_AUTO, DE_MEDIA_AUI };
1120 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1121 } else {
1122 u32 next_states[] = { DE_MEDIA_AUI, DE_MEDIA_BNC, DE_MEDIA_TP_AUTO };
1123 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1126 set_media:
1127 spin_lock_irqsave(&de->lock, flags);
1128 de_stop_rxtx(de);
1129 spin_unlock_irqrestore(&de->lock, flags);
1130 de_set_media(de);
1131 de_start_rxtx(de);
1133 no_link_yet:
1134 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
1135 add_timer(&de->media_timer);
1137 if (netif_msg_timer(de))
1138 printk(KERN_INFO "%s: no link, trying media %s, status %x\n",
1139 dev->name, media_name[de->media_type], status);
1142 static void de_media_interrupt (struct de_private *de, u32 status)
1144 if (status & LinkPass) {
1145 de_link_up(de);
1146 mod_timer(&de->media_timer, jiffies + DE_TIMER_LINK);
1147 return;
1150 BUG_ON(!(status & LinkFail));
1152 if (netif_carrier_ok(de->dev)) {
1153 de_link_down(de);
1154 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1158 static int de_reset_mac (struct de_private *de)
1160 u32 status, tmp;
1163 * Reset MAC. de4x5.c and tulip.c examined for "advice"
1164 * in this area.
1167 if (dr32(BusMode) == 0xffffffff)
1168 return -EBUSY;
1170 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
1171 dw32 (BusMode, CmdReset);
1172 mdelay (1);
1174 dw32 (BusMode, de_bus_mode);
1175 mdelay (1);
1177 for (tmp = 0; tmp < 5; tmp++) {
1178 dr32 (BusMode);
1179 mdelay (1);
1182 mdelay (1);
1184 status = dr32(MacStatus);
1185 if (status & (RxState | TxState))
1186 return -EBUSY;
1187 if (status == 0xffffffff)
1188 return -ENODEV;
1189 return 0;
1192 static void de_adapter_wake (struct de_private *de)
1194 u32 pmctl;
1196 if (de->de21040)
1197 return;
1199 pci_read_config_dword(de->pdev, PCIPM, &pmctl);
1200 if (pmctl & PM_Mask) {
1201 pmctl &= ~PM_Mask;
1202 pci_write_config_dword(de->pdev, PCIPM, pmctl);
1204 /* de4x5.c delays, so we do too */
1205 msleep(10);
1209 static void de_adapter_sleep (struct de_private *de)
1211 u32 pmctl;
1213 if (de->de21040)
1214 return;
1216 pci_read_config_dword(de->pdev, PCIPM, &pmctl);
1217 pmctl |= PM_Sleep;
1218 pci_write_config_dword(de->pdev, PCIPM, pmctl);
1221 static int de_init_hw (struct de_private *de)
1223 struct net_device *dev = de->dev;
1224 u32 macmode;
1225 int rc;
1227 de_adapter_wake(de);
1229 macmode = dr32(MacMode) & ~MacModeClear;
1231 rc = de_reset_mac(de);
1232 if (rc)
1233 return rc;
1235 de_set_media(de); /* reset phy */
1237 dw32(RxRingAddr, de->ring_dma);
1238 dw32(TxRingAddr, de->ring_dma + (sizeof(struct de_desc) * DE_RX_RING_SIZE));
1240 dw32(MacMode, RxTx | macmode);
1242 dr32(RxMissed); /* self-clearing */
1244 dw32(IntrMask, de_intr_mask);
1246 de_set_rx_mode(dev);
1248 return 0;
1251 static int de_refill_rx (struct de_private *de)
1253 unsigned i;
1255 for (i = 0; i < DE_RX_RING_SIZE; i++) {
1256 struct sk_buff *skb;
1258 skb = dev_alloc_skb(de->rx_buf_sz);
1259 if (!skb)
1260 goto err_out;
1262 skb->dev = de->dev;
1264 de->rx_skb[i].mapping = pci_map_single(de->pdev,
1265 skb->data, de->rx_buf_sz, PCI_DMA_FROMDEVICE);
1266 de->rx_skb[i].skb = skb;
1268 de->rx_ring[i].opts1 = cpu_to_le32(DescOwn);
1269 if (i == (DE_RX_RING_SIZE - 1))
1270 de->rx_ring[i].opts2 =
1271 cpu_to_le32(RingEnd | de->rx_buf_sz);
1272 else
1273 de->rx_ring[i].opts2 = cpu_to_le32(de->rx_buf_sz);
1274 de->rx_ring[i].addr1 = cpu_to_le32(de->rx_skb[i].mapping);
1275 de->rx_ring[i].addr2 = 0;
1278 return 0;
1280 err_out:
1281 de_clean_rings(de);
1282 return -ENOMEM;
1285 static int de_init_rings (struct de_private *de)
1287 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
1288 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1290 de->rx_tail = 0;
1291 de->tx_head = de->tx_tail = 0;
1293 return de_refill_rx (de);
1296 static int de_alloc_rings (struct de_private *de)
1298 de->rx_ring = pci_alloc_consistent(de->pdev, DE_RING_BYTES, &de->ring_dma);
1299 if (!de->rx_ring)
1300 return -ENOMEM;
1301 de->tx_ring = &de->rx_ring[DE_RX_RING_SIZE];
1302 return de_init_rings(de);
1305 static void de_clean_rings (struct de_private *de)
1307 unsigned i;
1309 memset(de->rx_ring, 0, sizeof(struct de_desc) * DE_RX_RING_SIZE);
1310 de->rx_ring[DE_RX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1311 wmb();
1312 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
1313 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1314 wmb();
1316 for (i = 0; i < DE_RX_RING_SIZE; i++) {
1317 if (de->rx_skb[i].skb) {
1318 pci_unmap_single(de->pdev, de->rx_skb[i].mapping,
1319 de->rx_buf_sz, PCI_DMA_FROMDEVICE);
1320 dev_kfree_skb(de->rx_skb[i].skb);
1324 for (i = 0; i < DE_TX_RING_SIZE; i++) {
1325 struct sk_buff *skb = de->tx_skb[i].skb;
1326 if ((skb) && (skb != DE_DUMMY_SKB)) {
1327 if (skb != DE_SETUP_SKB) {
1328 de->net_stats.tx_dropped++;
1329 pci_unmap_single(de->pdev,
1330 de->tx_skb[i].mapping,
1331 skb->len, PCI_DMA_TODEVICE);
1332 dev_kfree_skb(skb);
1333 } else {
1334 pci_unmap_single(de->pdev,
1335 de->tx_skb[i].mapping,
1336 sizeof(de->setup_frame),
1337 PCI_DMA_TODEVICE);
1342 memset(&de->rx_skb, 0, sizeof(struct ring_info) * DE_RX_RING_SIZE);
1343 memset(&de->tx_skb, 0, sizeof(struct ring_info) * DE_TX_RING_SIZE);
1346 static void de_free_rings (struct de_private *de)
1348 de_clean_rings(de);
1349 pci_free_consistent(de->pdev, DE_RING_BYTES, de->rx_ring, de->ring_dma);
1350 de->rx_ring = NULL;
1351 de->tx_ring = NULL;
1354 static int de_open (struct net_device *dev)
1356 struct de_private *de = dev->priv;
1357 int rc;
1359 if (netif_msg_ifup(de))
1360 printk(KERN_DEBUG "%s: enabling interface\n", dev->name);
1362 de->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1364 rc = de_alloc_rings(de);
1365 if (rc) {
1366 printk(KERN_ERR "%s: ring allocation failure, err=%d\n",
1367 dev->name, rc);
1368 return rc;
1371 dw32(IntrMask, 0);
1373 rc = request_irq(dev->irq, de_interrupt, IRQF_SHARED, dev->name, dev);
1374 if (rc) {
1375 printk(KERN_ERR "%s: IRQ %d request failure, err=%d\n",
1376 dev->name, dev->irq, rc);
1377 goto err_out_free;
1380 rc = de_init_hw(de);
1381 if (rc) {
1382 printk(KERN_ERR "%s: h/w init failure, err=%d\n",
1383 dev->name, rc);
1384 goto err_out_free_irq;
1387 netif_start_queue(dev);
1388 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1390 return 0;
1392 err_out_free_irq:
1393 free_irq(dev->irq, dev);
1394 err_out_free:
1395 de_free_rings(de);
1396 return rc;
1399 static int de_close (struct net_device *dev)
1401 struct de_private *de = dev->priv;
1402 unsigned long flags;
1404 if (netif_msg_ifdown(de))
1405 printk(KERN_DEBUG "%s: disabling interface\n", dev->name);
1407 del_timer_sync(&de->media_timer);
1409 spin_lock_irqsave(&de->lock, flags);
1410 de_stop_hw(de);
1411 netif_stop_queue(dev);
1412 netif_carrier_off(dev);
1413 spin_unlock_irqrestore(&de->lock, flags);
1415 free_irq(dev->irq, dev);
1417 de_free_rings(de);
1418 de_adapter_sleep(de);
1419 pci_disable_device(de->pdev);
1420 return 0;
1423 static void de_tx_timeout (struct net_device *dev)
1425 struct de_private *de = dev->priv;
1427 printk(KERN_DEBUG "%s: NIC status %08x mode %08x sia %08x desc %u/%u/%u\n",
1428 dev->name, dr32(MacStatus), dr32(MacMode), dr32(SIAStatus),
1429 de->rx_tail, de->tx_head, de->tx_tail);
1431 del_timer_sync(&de->media_timer);
1433 disable_irq(dev->irq);
1434 spin_lock_irq(&de->lock);
1436 de_stop_hw(de);
1437 netif_stop_queue(dev);
1438 netif_carrier_off(dev);
1440 spin_unlock_irq(&de->lock);
1441 enable_irq(dev->irq);
1443 /* Update the error counts. */
1444 __de_get_stats(de);
1446 synchronize_irq(dev->irq);
1447 de_clean_rings(de);
1449 de_init_rings(de);
1451 de_init_hw(de);
1453 netif_wake_queue(dev);
1456 static void __de_get_regs(struct de_private *de, u8 *buf)
1458 int i;
1459 u32 *rbuf = (u32 *)buf;
1461 /* read all CSRs */
1462 for (i = 0; i < DE_NUM_REGS; i++)
1463 rbuf[i] = dr32(i * 8);
1465 /* handle self-clearing RxMissed counter, CSR8 */
1466 de_rx_missed(de, rbuf[8]);
1469 static int __de_get_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1471 ecmd->supported = de->media_supported;
1472 ecmd->transceiver = XCVR_INTERNAL;
1473 ecmd->phy_address = 0;
1474 ecmd->advertising = de->media_advertise;
1476 switch (de->media_type) {
1477 case DE_MEDIA_AUI:
1478 ecmd->port = PORT_AUI;
1479 ecmd->speed = 5;
1480 break;
1481 case DE_MEDIA_BNC:
1482 ecmd->port = PORT_BNC;
1483 ecmd->speed = 2;
1484 break;
1485 default:
1486 ecmd->port = PORT_TP;
1487 ecmd->speed = SPEED_10;
1488 break;
1491 if (dr32(MacMode) & FullDuplex)
1492 ecmd->duplex = DUPLEX_FULL;
1493 else
1494 ecmd->duplex = DUPLEX_HALF;
1496 if (de->media_lock)
1497 ecmd->autoneg = AUTONEG_DISABLE;
1498 else
1499 ecmd->autoneg = AUTONEG_ENABLE;
1501 /* ignore maxtxpkt, maxrxpkt for now */
1503 return 0;
1506 static int __de_set_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1508 u32 new_media;
1509 unsigned int media_lock;
1511 if (ecmd->speed != SPEED_10 && ecmd->speed != 5 && ecmd->speed != 2)
1512 return -EINVAL;
1513 if (de->de21040 && ecmd->speed == 2)
1514 return -EINVAL;
1515 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
1516 return -EINVAL;
1517 if (ecmd->port != PORT_TP && ecmd->port != PORT_AUI && ecmd->port != PORT_BNC)
1518 return -EINVAL;
1519 if (de->de21040 && ecmd->port == PORT_BNC)
1520 return -EINVAL;
1521 if (ecmd->transceiver != XCVR_INTERNAL)
1522 return -EINVAL;
1523 if (ecmd->autoneg != AUTONEG_DISABLE && ecmd->autoneg != AUTONEG_ENABLE)
1524 return -EINVAL;
1525 if (ecmd->advertising & ~de->media_supported)
1526 return -EINVAL;
1527 if (ecmd->autoneg == AUTONEG_ENABLE &&
1528 (!(ecmd->advertising & ADVERTISED_Autoneg)))
1529 return -EINVAL;
1531 switch (ecmd->port) {
1532 case PORT_AUI:
1533 new_media = DE_MEDIA_AUI;
1534 if (!(ecmd->advertising & ADVERTISED_AUI))
1535 return -EINVAL;
1536 break;
1537 case PORT_BNC:
1538 new_media = DE_MEDIA_BNC;
1539 if (!(ecmd->advertising & ADVERTISED_BNC))
1540 return -EINVAL;
1541 break;
1542 default:
1543 if (ecmd->autoneg == AUTONEG_ENABLE)
1544 new_media = DE_MEDIA_TP_AUTO;
1545 else if (ecmd->duplex == DUPLEX_FULL)
1546 new_media = DE_MEDIA_TP_FD;
1547 else
1548 new_media = DE_MEDIA_TP;
1549 if (!(ecmd->advertising & ADVERTISED_TP))
1550 return -EINVAL;
1551 if (!(ecmd->advertising & (ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half)))
1552 return -EINVAL;
1553 break;
1556 media_lock = (ecmd->autoneg == AUTONEG_ENABLE) ? 0 : 1;
1558 if ((new_media == de->media_type) &&
1559 (media_lock == de->media_lock) &&
1560 (ecmd->advertising == de->media_advertise))
1561 return 0; /* nothing to change */
1563 de_link_down(de);
1564 de_stop_rxtx(de);
1566 de->media_type = new_media;
1567 de->media_lock = media_lock;
1568 de->media_advertise = ecmd->advertising;
1569 de_set_media(de);
1571 return 0;
1574 static void de_get_drvinfo (struct net_device *dev,struct ethtool_drvinfo *info)
1576 struct de_private *de = dev->priv;
1578 strcpy (info->driver, DRV_NAME);
1579 strcpy (info->version, DRV_VERSION);
1580 strcpy (info->bus_info, pci_name(de->pdev));
1581 info->eedump_len = DE_EEPROM_SIZE;
1584 static int de_get_regs_len(struct net_device *dev)
1586 return DE_REGS_SIZE;
1589 static int de_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1591 struct de_private *de = dev->priv;
1592 int rc;
1594 spin_lock_irq(&de->lock);
1595 rc = __de_get_settings(de, ecmd);
1596 spin_unlock_irq(&de->lock);
1598 return rc;
1601 static int de_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1603 struct de_private *de = dev->priv;
1604 int rc;
1606 spin_lock_irq(&de->lock);
1607 rc = __de_set_settings(de, ecmd);
1608 spin_unlock_irq(&de->lock);
1610 return rc;
1613 static u32 de_get_msglevel(struct net_device *dev)
1615 struct de_private *de = dev->priv;
1617 return de->msg_enable;
1620 static void de_set_msglevel(struct net_device *dev, u32 msglvl)
1622 struct de_private *de = dev->priv;
1624 de->msg_enable = msglvl;
1627 static int de_get_eeprom(struct net_device *dev,
1628 struct ethtool_eeprom *eeprom, u8 *data)
1630 struct de_private *de = dev->priv;
1632 if (!de->ee_data)
1633 return -EOPNOTSUPP;
1634 if ((eeprom->offset != 0) || (eeprom->magic != 0) ||
1635 (eeprom->len != DE_EEPROM_SIZE))
1636 return -EINVAL;
1637 memcpy(data, de->ee_data, eeprom->len);
1639 return 0;
1642 static int de_nway_reset(struct net_device *dev)
1644 struct de_private *de = dev->priv;
1645 u32 status;
1647 if (de->media_type != DE_MEDIA_TP_AUTO)
1648 return -EINVAL;
1649 if (netif_carrier_ok(de->dev))
1650 de_link_down(de);
1652 status = dr32(SIAStatus);
1653 dw32(SIAStatus, (status & ~NWayState) | NWayRestart);
1654 if (netif_msg_link(de))
1655 printk(KERN_INFO "%s: link nway restart, status %x,%x\n",
1656 de->dev->name, status, dr32(SIAStatus));
1657 return 0;
1660 static void de_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1661 void *data)
1663 struct de_private *de = dev->priv;
1665 regs->version = (DE_REGS_VER << 2) | de->de21040;
1667 spin_lock_irq(&de->lock);
1668 __de_get_regs(de, data);
1669 spin_unlock_irq(&de->lock);
1672 static const struct ethtool_ops de_ethtool_ops = {
1673 .get_link = ethtool_op_get_link,
1674 .get_drvinfo = de_get_drvinfo,
1675 .get_regs_len = de_get_regs_len,
1676 .get_settings = de_get_settings,
1677 .set_settings = de_set_settings,
1678 .get_msglevel = de_get_msglevel,
1679 .set_msglevel = de_set_msglevel,
1680 .get_eeprom = de_get_eeprom,
1681 .nway_reset = de_nway_reset,
1682 .get_regs = de_get_regs,
1685 static void __devinit de21040_get_mac_address (struct de_private *de)
1687 unsigned i;
1689 dw32 (ROMCmd, 0); /* Reset the pointer with a dummy write. */
1691 for (i = 0; i < 6; i++) {
1692 int value, boguscnt = 100000;
1694 value = dr32(ROMCmd);
1695 while (value < 0 && --boguscnt > 0);
1696 de->dev->dev_addr[i] = value;
1697 udelay(1);
1698 if (boguscnt <= 0)
1699 printk(KERN_WARNING PFX "timeout reading 21040 MAC address byte %u\n", i);
1703 static void __devinit de21040_get_media_info(struct de_private *de)
1705 unsigned int i;
1707 de->media_type = DE_MEDIA_TP;
1708 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full |
1709 SUPPORTED_10baseT_Half | SUPPORTED_AUI;
1710 de->media_advertise = de->media_supported;
1712 for (i = 0; i < DE_MAX_MEDIA; i++) {
1713 switch (i) {
1714 case DE_MEDIA_AUI:
1715 case DE_MEDIA_TP:
1716 case DE_MEDIA_TP_FD:
1717 de->media[i].type = i;
1718 de->media[i].csr13 = t21040_csr13[i];
1719 de->media[i].csr14 = t21040_csr14[i];
1720 de->media[i].csr15 = t21040_csr15[i];
1721 break;
1722 default:
1723 de->media[i].type = DE_MEDIA_INVALID;
1724 break;
1729 /* Note: this routine returns extra data bits for size detection. */
1730 static unsigned __devinit tulip_read_eeprom(void __iomem *regs, int location, int addr_len)
1732 int i;
1733 unsigned retval = 0;
1734 void __iomem *ee_addr = regs + ROMCmd;
1735 int read_cmd = location | (EE_READ_CMD << addr_len);
1737 writel(EE_ENB & ~EE_CS, ee_addr);
1738 writel(EE_ENB, ee_addr);
1740 /* Shift the read command bits out. */
1741 for (i = 4 + addr_len; i >= 0; i--) {
1742 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1743 writel(EE_ENB | dataval, ee_addr);
1744 readl(ee_addr);
1745 writel(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1746 readl(ee_addr);
1747 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
1749 writel(EE_ENB, ee_addr);
1750 readl(ee_addr);
1752 for (i = 16; i > 0; i--) {
1753 writel(EE_ENB | EE_SHIFT_CLK, ee_addr);
1754 readl(ee_addr);
1755 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
1756 writel(EE_ENB, ee_addr);
1757 readl(ee_addr);
1760 /* Terminate the EEPROM access. */
1761 writel(EE_ENB & ~EE_CS, ee_addr);
1762 return retval;
1765 static void __devinit de21041_get_srom_info (struct de_private *de)
1767 unsigned i, sa_offset = 0, ofs;
1768 u8 ee_data[DE_EEPROM_SIZE + 6] = {};
1769 unsigned ee_addr_size = tulip_read_eeprom(de->regs, 0xff, 8) & 0x40000 ? 8 : 6;
1770 struct de_srom_info_leaf *il;
1771 void *bufp;
1773 /* download entire eeprom */
1774 for (i = 0; i < DE_EEPROM_WORDS; i++)
1775 ((__le16 *)ee_data)[i] =
1776 cpu_to_le16(tulip_read_eeprom(de->regs, i, ee_addr_size));
1778 /* DEC now has a specification but early board makers
1779 just put the address in the first EEPROM locations. */
1780 /* This does memcmp(eedata, eedata+16, 8) */
1782 #ifndef CONFIG_MIPS_COBALT
1784 for (i = 0; i < 8; i ++)
1785 if (ee_data[i] != ee_data[16+i])
1786 sa_offset = 20;
1788 #endif
1790 /* store MAC address */
1791 for (i = 0; i < 6; i ++)
1792 de->dev->dev_addr[i] = ee_data[i + sa_offset];
1794 /* get offset of controller 0 info leaf. ignore 2nd byte. */
1795 ofs = ee_data[SROMC0InfoLeaf];
1796 if (ofs >= (sizeof(ee_data) - sizeof(struct de_srom_info_leaf) - sizeof(struct de_srom_media_block)))
1797 goto bad_srom;
1799 /* get pointer to info leaf */
1800 il = (struct de_srom_info_leaf *) &ee_data[ofs];
1802 /* paranoia checks */
1803 if (il->n_blocks == 0)
1804 goto bad_srom;
1805 if ((sizeof(ee_data) - ofs) <
1806 (sizeof(struct de_srom_info_leaf) + (sizeof(struct de_srom_media_block) * il->n_blocks)))
1807 goto bad_srom;
1809 /* get default media type */
1810 switch (DE_UNALIGNED_16(&il->default_media)) {
1811 case 0x0001: de->media_type = DE_MEDIA_BNC; break;
1812 case 0x0002: de->media_type = DE_MEDIA_AUI; break;
1813 case 0x0204: de->media_type = DE_MEDIA_TP_FD; break;
1814 default: de->media_type = DE_MEDIA_TP_AUTO; break;
1817 if (netif_msg_probe(de))
1818 printk(KERN_INFO "de%d: SROM leaf offset %u, default media %s\n",
1819 de->board_idx, ofs,
1820 media_name[de->media_type]);
1822 /* init SIA register values to defaults */
1823 for (i = 0; i < DE_MAX_MEDIA; i++) {
1824 de->media[i].type = DE_MEDIA_INVALID;
1825 de->media[i].csr13 = 0xffff;
1826 de->media[i].csr14 = 0xffff;
1827 de->media[i].csr15 = 0xffff;
1830 /* parse media blocks to see what medias are supported,
1831 * and if any custom CSR values are provided
1833 bufp = ((void *)il) + sizeof(*il);
1834 for (i = 0; i < il->n_blocks; i++) {
1835 struct de_srom_media_block *ib = bufp;
1836 unsigned idx;
1838 /* index based on media type in media block */
1839 switch(ib->opts & MediaBlockMask) {
1840 case 0: /* 10baseT */
1841 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Half
1842 | SUPPORTED_Autoneg;
1843 idx = DE_MEDIA_TP;
1844 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
1845 break;
1846 case 1: /* BNC */
1847 de->media_supported |= SUPPORTED_BNC;
1848 idx = DE_MEDIA_BNC;
1849 break;
1850 case 2: /* AUI */
1851 de->media_supported |= SUPPORTED_AUI;
1852 idx = DE_MEDIA_AUI;
1853 break;
1854 case 4: /* 10baseT-FD */
1855 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full
1856 | SUPPORTED_Autoneg;
1857 idx = DE_MEDIA_TP_FD;
1858 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
1859 break;
1860 default:
1861 goto bad_srom;
1864 de->media[idx].type = idx;
1866 if (netif_msg_probe(de))
1867 printk(KERN_INFO "de%d: media block #%u: %s",
1868 de->board_idx, i,
1869 media_name[de->media[idx].type]);
1871 bufp += sizeof (ib->opts);
1873 if (ib->opts & MediaCustomCSRs) {
1874 de->media[idx].csr13 = DE_UNALIGNED_16(&ib->csr13);
1875 de->media[idx].csr14 = DE_UNALIGNED_16(&ib->csr14);
1876 de->media[idx].csr15 = DE_UNALIGNED_16(&ib->csr15);
1877 bufp += sizeof(ib->csr13) + sizeof(ib->csr14) +
1878 sizeof(ib->csr15);
1880 if (netif_msg_probe(de))
1881 printk(" (%x,%x,%x)\n",
1882 de->media[idx].csr13,
1883 de->media[idx].csr14,
1884 de->media[idx].csr15);
1886 } else if (netif_msg_probe(de))
1887 printk("\n");
1889 if (bufp > ((void *)&ee_data[DE_EEPROM_SIZE - 3]))
1890 break;
1893 de->media_advertise = de->media_supported;
1895 fill_defaults:
1896 /* fill in defaults, for cases where custom CSRs not used */
1897 for (i = 0; i < DE_MAX_MEDIA; i++) {
1898 if (de->media[i].csr13 == 0xffff)
1899 de->media[i].csr13 = t21041_csr13[i];
1900 if (de->media[i].csr14 == 0xffff)
1901 de->media[i].csr14 = t21041_csr14[i];
1902 if (de->media[i].csr15 == 0xffff)
1903 de->media[i].csr15 = t21041_csr15[i];
1906 de->ee_data = kmemdup(&ee_data[0], DE_EEPROM_SIZE, GFP_KERNEL);
1908 return;
1910 bad_srom:
1911 /* for error cases, it's ok to assume we support all these */
1912 for (i = 0; i < DE_MAX_MEDIA; i++)
1913 de->media[i].type = i;
1914 de->media_supported =
1915 SUPPORTED_10baseT_Half |
1916 SUPPORTED_10baseT_Full |
1917 SUPPORTED_Autoneg |
1918 SUPPORTED_TP |
1919 SUPPORTED_AUI |
1920 SUPPORTED_BNC;
1921 goto fill_defaults;
1924 static int __devinit de_init_one (struct pci_dev *pdev,
1925 const struct pci_device_id *ent)
1927 struct net_device *dev;
1928 struct de_private *de;
1929 int rc;
1930 void __iomem *regs;
1931 unsigned long pciaddr;
1932 static int board_idx = -1;
1933 DECLARE_MAC_BUF(mac);
1935 board_idx++;
1937 #ifndef MODULE
1938 if (board_idx == 0)
1939 printk("%s", version);
1940 #endif
1942 /* allocate a new ethernet device structure, and fill in defaults */
1943 dev = alloc_etherdev(sizeof(struct de_private));
1944 if (!dev)
1945 return -ENOMEM;
1947 SET_NETDEV_DEV(dev, &pdev->dev);
1948 dev->open = de_open;
1949 dev->stop = de_close;
1950 dev->set_multicast_list = de_set_rx_mode;
1951 dev->hard_start_xmit = de_start_xmit;
1952 dev->get_stats = de_get_stats;
1953 dev->ethtool_ops = &de_ethtool_ops;
1954 dev->tx_timeout = de_tx_timeout;
1955 dev->watchdog_timeo = TX_TIMEOUT;
1957 de = dev->priv;
1958 de->de21040 = ent->driver_data == 0 ? 1 : 0;
1959 de->pdev = pdev;
1960 de->dev = dev;
1961 de->msg_enable = (debug < 0 ? DE_DEF_MSG_ENABLE : debug);
1962 de->board_idx = board_idx;
1963 spin_lock_init (&de->lock);
1964 init_timer(&de->media_timer);
1965 if (de->de21040)
1966 de->media_timer.function = de21040_media_timer;
1967 else
1968 de->media_timer.function = de21041_media_timer;
1969 de->media_timer.data = (unsigned long) de;
1971 netif_carrier_off(dev);
1972 netif_stop_queue(dev);
1974 /* wake up device, assign resources */
1975 rc = pci_enable_device(pdev);
1976 if (rc)
1977 goto err_out_free;
1979 /* reserve PCI resources to ensure driver atomicity */
1980 rc = pci_request_regions(pdev, DRV_NAME);
1981 if (rc)
1982 goto err_out_disable;
1984 /* check for invalid IRQ value */
1985 if (pdev->irq < 2) {
1986 rc = -EIO;
1987 printk(KERN_ERR PFX "invalid irq (%d) for pci dev %s\n",
1988 pdev->irq, pci_name(pdev));
1989 goto err_out_res;
1992 dev->irq = pdev->irq;
1994 /* obtain and check validity of PCI I/O address */
1995 pciaddr = pci_resource_start(pdev, 1);
1996 if (!pciaddr) {
1997 rc = -EIO;
1998 printk(KERN_ERR PFX "no MMIO resource for pci dev %s\n",
1999 pci_name(pdev));
2000 goto err_out_res;
2002 if (pci_resource_len(pdev, 1) < DE_REGS_SIZE) {
2003 rc = -EIO;
2004 printk(KERN_ERR PFX "MMIO resource (%llx) too small on pci dev %s\n",
2005 (unsigned long long)pci_resource_len(pdev, 1), pci_name(pdev));
2006 goto err_out_res;
2009 /* remap CSR registers */
2010 regs = ioremap_nocache(pciaddr, DE_REGS_SIZE);
2011 if (!regs) {
2012 rc = -EIO;
2013 printk(KERN_ERR PFX "Cannot map PCI MMIO (%llx@%lx) on pci dev %s\n",
2014 (unsigned long long)pci_resource_len(pdev, 1),
2015 pciaddr, pci_name(pdev));
2016 goto err_out_res;
2018 dev->base_addr = (unsigned long) regs;
2019 de->regs = regs;
2021 de_adapter_wake(de);
2023 /* make sure hardware is not running */
2024 rc = de_reset_mac(de);
2025 if (rc) {
2026 printk(KERN_ERR PFX "Cannot reset MAC, pci dev %s\n",
2027 pci_name(pdev));
2028 goto err_out_iomap;
2031 /* get MAC address, initialize default media type and
2032 * get list of supported media
2034 if (de->de21040) {
2035 de21040_get_mac_address(de);
2036 de21040_get_media_info(de);
2037 } else {
2038 de21041_get_srom_info(de);
2041 /* register new network interface with kernel */
2042 rc = register_netdev(dev);
2043 if (rc)
2044 goto err_out_iomap;
2046 /* print info about board and interface just registered */
2047 printk (KERN_INFO "%s: %s at 0x%lx, %s, IRQ %d\n",
2048 dev->name,
2049 de->de21040 ? "21040" : "21041",
2050 dev->base_addr,
2051 print_mac(mac, dev->dev_addr),
2052 dev->irq);
2054 pci_set_drvdata(pdev, dev);
2056 /* enable busmastering */
2057 pci_set_master(pdev);
2059 /* put adapter to sleep */
2060 de_adapter_sleep(de);
2062 return 0;
2064 err_out_iomap:
2065 kfree(de->ee_data);
2066 iounmap(regs);
2067 err_out_res:
2068 pci_release_regions(pdev);
2069 err_out_disable:
2070 pci_disable_device(pdev);
2071 err_out_free:
2072 free_netdev(dev);
2073 return rc;
2076 static void __devexit de_remove_one (struct pci_dev *pdev)
2078 struct net_device *dev = pci_get_drvdata(pdev);
2079 struct de_private *de = dev->priv;
2081 BUG_ON(!dev);
2082 unregister_netdev(dev);
2083 kfree(de->ee_data);
2084 iounmap(de->regs);
2085 pci_release_regions(pdev);
2086 pci_disable_device(pdev);
2087 pci_set_drvdata(pdev, NULL);
2088 free_netdev(dev);
2091 #ifdef CONFIG_PM
2093 static int de_suspend (struct pci_dev *pdev, pm_message_t state)
2095 struct net_device *dev = pci_get_drvdata (pdev);
2096 struct de_private *de = dev->priv;
2098 rtnl_lock();
2099 if (netif_running (dev)) {
2100 del_timer_sync(&de->media_timer);
2102 disable_irq(dev->irq);
2103 spin_lock_irq(&de->lock);
2105 de_stop_hw(de);
2106 netif_stop_queue(dev);
2107 netif_device_detach(dev);
2108 netif_carrier_off(dev);
2110 spin_unlock_irq(&de->lock);
2111 enable_irq(dev->irq);
2113 /* Update the error counts. */
2114 __de_get_stats(de);
2116 synchronize_irq(dev->irq);
2117 de_clean_rings(de);
2119 de_adapter_sleep(de);
2120 pci_disable_device(pdev);
2121 } else {
2122 netif_device_detach(dev);
2124 rtnl_unlock();
2125 return 0;
2128 static int de_resume (struct pci_dev *pdev)
2130 struct net_device *dev = pci_get_drvdata (pdev);
2131 struct de_private *de = dev->priv;
2132 int retval = 0;
2134 rtnl_lock();
2135 if (netif_device_present(dev))
2136 goto out;
2137 if (!netif_running(dev))
2138 goto out_attach;
2139 if ((retval = pci_enable_device(pdev))) {
2140 printk (KERN_ERR "%s: pci_enable_device failed in resume\n",
2141 dev->name);
2142 goto out;
2144 de_init_hw(de);
2145 out_attach:
2146 netif_device_attach(dev);
2147 out:
2148 rtnl_unlock();
2149 return 0;
2152 #endif /* CONFIG_PM */
2154 static struct pci_driver de_driver = {
2155 .name = DRV_NAME,
2156 .id_table = de_pci_tbl,
2157 .probe = de_init_one,
2158 .remove = __devexit_p(de_remove_one),
2159 #ifdef CONFIG_PM
2160 .suspend = de_suspend,
2161 .resume = de_resume,
2162 #endif
2165 static int __init de_init (void)
2167 #ifdef MODULE
2168 printk("%s", version);
2169 #endif
2170 return pci_register_driver(&de_driver);
2173 static void __exit de_exit (void)
2175 pci_unregister_driver (&de_driver);
2178 module_init(de_init);
2179 module_exit(de_exit);