2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
36 #include "rt2x00pci.h"
41 * BBP and RF register require indirect register access,
42 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
43 * These indirect registers work with busy bits,
44 * and we will try maximal REGISTER_BUSY_COUNT times to access
45 * the register while taking a REGISTER_BUSY_DELAY us delay
46 * between each attampt. When the busy bit is still set at that time,
47 * the access attempt is considered to have failed,
48 * and we will print an error.
50 static u32
rt61pci_bbp_check(struct rt2x00_dev
*rt2x00dev
)
55 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
56 rt2x00pci_register_read(rt2x00dev
, PHY_CSR3
, ®
);
57 if (!rt2x00_get_field32(reg
, PHY_CSR3_BUSY
))
59 udelay(REGISTER_BUSY_DELAY
);
65 static void rt61pci_bbp_write(struct rt2x00_dev
*rt2x00dev
,
66 const unsigned int word
, const u8 value
)
71 * Wait until the BBP becomes ready.
73 reg
= rt61pci_bbp_check(rt2x00dev
);
74 if (rt2x00_get_field32(reg
, PHY_CSR3_BUSY
)) {
75 ERROR(rt2x00dev
, "PHY_CSR3 register busy. Write failed.\n");
80 * Write the data into the BBP.
83 rt2x00_set_field32(®
, PHY_CSR3_VALUE
, value
);
84 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
85 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
86 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 0);
88 rt2x00pci_register_write(rt2x00dev
, PHY_CSR3
, reg
);
91 static void rt61pci_bbp_read(struct rt2x00_dev
*rt2x00dev
,
92 const unsigned int word
, u8
*value
)
97 * Wait until the BBP becomes ready.
99 reg
= rt61pci_bbp_check(rt2x00dev
);
100 if (rt2x00_get_field32(reg
, PHY_CSR3_BUSY
)) {
101 ERROR(rt2x00dev
, "PHY_CSR3 register busy. Read failed.\n");
106 * Write the request into the BBP.
109 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
110 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
111 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 1);
113 rt2x00pci_register_write(rt2x00dev
, PHY_CSR3
, reg
);
116 * Wait until the BBP becomes ready.
118 reg
= rt61pci_bbp_check(rt2x00dev
);
119 if (rt2x00_get_field32(reg
, PHY_CSR3_BUSY
)) {
120 ERROR(rt2x00dev
, "PHY_CSR3 register busy. Read failed.\n");
125 *value
= rt2x00_get_field32(reg
, PHY_CSR3_VALUE
);
128 static void rt61pci_rf_write(struct rt2x00_dev
*rt2x00dev
,
129 const unsigned int word
, const u32 value
)
137 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
138 rt2x00pci_register_read(rt2x00dev
, PHY_CSR4
, ®
);
139 if (!rt2x00_get_field32(reg
, PHY_CSR4_BUSY
))
141 udelay(REGISTER_BUSY_DELAY
);
144 ERROR(rt2x00dev
, "PHY_CSR4 register busy. Write failed.\n");
149 rt2x00_set_field32(®
, PHY_CSR4_VALUE
, value
);
150 rt2x00_set_field32(®
, PHY_CSR4_NUMBER_OF_BITS
, 21);
151 rt2x00_set_field32(®
, PHY_CSR4_IF_SELECT
, 0);
152 rt2x00_set_field32(®
, PHY_CSR4_BUSY
, 1);
154 rt2x00pci_register_write(rt2x00dev
, PHY_CSR4
, reg
);
155 rt2x00_rf_write(rt2x00dev
, word
, value
);
158 static void rt61pci_mcu_request(struct rt2x00_dev
*rt2x00dev
,
159 const u8 command
, const u8 token
,
160 const u8 arg0
, const u8 arg1
)
164 rt2x00pci_register_read(rt2x00dev
, H2M_MAILBOX_CSR
, ®
);
166 if (rt2x00_get_field32(reg
, H2M_MAILBOX_CSR_OWNER
)) {
167 ERROR(rt2x00dev
, "mcu request error. "
168 "Request 0x%02x failed for token 0x%02x.\n",
173 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_OWNER
, 1);
174 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_CMD_TOKEN
, token
);
175 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_ARG0
, arg0
);
176 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_ARG1
, arg1
);
177 rt2x00pci_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, reg
);
179 rt2x00pci_register_read(rt2x00dev
, HOST_CMD_CSR
, ®
);
180 rt2x00_set_field32(®
, HOST_CMD_CSR_HOST_COMMAND
, command
);
181 rt2x00_set_field32(®
, HOST_CMD_CSR_INTERRUPT_MCU
, 1);
182 rt2x00pci_register_write(rt2x00dev
, HOST_CMD_CSR
, reg
);
185 static void rt61pci_eepromregister_read(struct eeprom_93cx6
*eeprom
)
187 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
190 rt2x00pci_register_read(rt2x00dev
, E2PROM_CSR
, ®
);
192 eeprom
->reg_data_in
= !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_IN
);
193 eeprom
->reg_data_out
= !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_OUT
);
194 eeprom
->reg_data_clock
=
195 !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_CLOCK
);
196 eeprom
->reg_chip_select
=
197 !!rt2x00_get_field32(reg
, E2PROM_CSR_CHIP_SELECT
);
200 static void rt61pci_eepromregister_write(struct eeprom_93cx6
*eeprom
)
202 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
205 rt2x00_set_field32(®
, E2PROM_CSR_DATA_IN
, !!eeprom
->reg_data_in
);
206 rt2x00_set_field32(®
, E2PROM_CSR_DATA_OUT
, !!eeprom
->reg_data_out
);
207 rt2x00_set_field32(®
, E2PROM_CSR_DATA_CLOCK
,
208 !!eeprom
->reg_data_clock
);
209 rt2x00_set_field32(®
, E2PROM_CSR_CHIP_SELECT
,
210 !!eeprom
->reg_chip_select
);
212 rt2x00pci_register_write(rt2x00dev
, E2PROM_CSR
, reg
);
215 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
216 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
218 static void rt61pci_read_csr(struct rt2x00_dev
*rt2x00dev
,
219 const unsigned int word
, u32
*data
)
221 rt2x00pci_register_read(rt2x00dev
, CSR_OFFSET(word
), data
);
224 static void rt61pci_write_csr(struct rt2x00_dev
*rt2x00dev
,
225 const unsigned int word
, u32 data
)
227 rt2x00pci_register_write(rt2x00dev
, CSR_OFFSET(word
), data
);
230 static const struct rt2x00debug rt61pci_rt2x00debug
= {
231 .owner
= THIS_MODULE
,
233 .read
= rt61pci_read_csr
,
234 .write
= rt61pci_write_csr
,
235 .word_size
= sizeof(u32
),
236 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
239 .read
= rt2x00_eeprom_read
,
240 .write
= rt2x00_eeprom_write
,
241 .word_size
= sizeof(u16
),
242 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
245 .read
= rt61pci_bbp_read
,
246 .write
= rt61pci_bbp_write
,
247 .word_size
= sizeof(u8
),
248 .word_count
= BBP_SIZE
/ sizeof(u8
),
251 .read
= rt2x00_rf_read
,
252 .write
= rt61pci_rf_write
,
253 .word_size
= sizeof(u32
),
254 .word_count
= RF_SIZE
/ sizeof(u32
),
257 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
259 #ifdef CONFIG_RT61PCI_RFKILL
260 static int rt61pci_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
264 rt2x00pci_register_read(rt2x00dev
, MAC_CSR13
, ®
);
265 return rt2x00_get_field32(reg
, MAC_CSR13_BIT5
);;
268 #define rt61pci_rfkill_poll NULL
269 #endif /* CONFIG_RT61PCI_RFKILL */
272 * Configuration handlers.
274 static void rt61pci_config_mac_addr(struct rt2x00_dev
*rt2x00dev
, __le32
*mac
)
278 tmp
= le32_to_cpu(mac
[1]);
279 rt2x00_set_field32(&tmp
, MAC_CSR3_UNICAST_TO_ME_MASK
, 0xff);
280 mac
[1] = cpu_to_le32(tmp
);
282 rt2x00pci_register_multiwrite(rt2x00dev
, MAC_CSR2
, mac
,
283 (2 * sizeof(__le32
)));
286 static void rt61pci_config_bssid(struct rt2x00_dev
*rt2x00dev
, __le32
*bssid
)
290 tmp
= le32_to_cpu(bssid
[1]);
291 rt2x00_set_field32(&tmp
, MAC_CSR5_BSS_ID_MASK
, 3);
292 bssid
[1] = cpu_to_le32(tmp
);
294 rt2x00pci_register_multiwrite(rt2x00dev
, MAC_CSR4
, bssid
,
295 (2 * sizeof(__le32
)));
298 static void rt61pci_config_type(struct rt2x00_dev
*rt2x00dev
, const int type
,
304 * Clear current synchronisation setup.
305 * For the Beacon base registers we only need to clear
306 * the first byte since that byte contains the VALID and OWNER
307 * bits which (when set to 0) will invalidate the entire beacon.
309 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, 0);
310 rt2x00pci_register_write(rt2x00dev
, HW_BEACON_BASE0
, 0);
311 rt2x00pci_register_write(rt2x00dev
, HW_BEACON_BASE1
, 0);
312 rt2x00pci_register_write(rt2x00dev
, HW_BEACON_BASE2
, 0);
313 rt2x00pci_register_write(rt2x00dev
, HW_BEACON_BASE3
, 0);
316 * Enable synchronisation.
318 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
319 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 1);
320 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
,
321 (tsf_sync
== TSF_SYNC_BEACON
));
322 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
323 rt2x00_set_field32(®
, TXRX_CSR9_TSF_SYNC
, tsf_sync
);
324 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
327 static void rt61pci_config_preamble(struct rt2x00_dev
*rt2x00dev
,
328 const int short_preamble
,
329 const int ack_timeout
,
330 const int ack_consume_time
)
334 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
335 rt2x00_set_field32(®
, TXRX_CSR0_RX_ACK_TIMEOUT
, ack_timeout
);
336 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
338 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR4
, ®
);
339 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_PREAMBLE
,
341 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
344 static void rt61pci_config_phymode(struct rt2x00_dev
*rt2x00dev
,
345 const int basic_rate_mask
)
347 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR5
, basic_rate_mask
);
350 static void rt61pci_config_channel(struct rt2x00_dev
*rt2x00dev
,
351 struct rf_channel
*rf
, const int txpower
)
357 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
358 rt2x00_set_field32(&rf
->rf4
, RF4_FREQ_OFFSET
, rt2x00dev
->freq_offset
);
360 smart
= !(rt2x00_rf(&rt2x00dev
->chip
, RF5225
) ||
361 rt2x00_rf(&rt2x00dev
->chip
, RF2527
));
363 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
364 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, smart
);
365 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
368 if (txpower
> MAX_TXPOWER
&& txpower
<= (MAX_TXPOWER
+ r94
))
369 r94
+= txpower
- MAX_TXPOWER
;
370 else if (txpower
< MIN_TXPOWER
&& txpower
>= (MIN_TXPOWER
- r94
))
372 rt61pci_bbp_write(rt2x00dev
, 94, r94
);
374 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
375 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
376 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
377 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
381 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
382 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
383 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
| 0x00000004);
384 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
388 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
389 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
390 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
391 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
396 static void rt61pci_config_txpower(struct rt2x00_dev
*rt2x00dev
,
399 struct rf_channel rf
;
401 rt2x00_rf_read(rt2x00dev
, 1, &rf
.rf1
);
402 rt2x00_rf_read(rt2x00dev
, 2, &rf
.rf2
);
403 rt2x00_rf_read(rt2x00dev
, 3, &rf
.rf3
);
404 rt2x00_rf_read(rt2x00dev
, 4, &rf
.rf4
);
406 rt61pci_config_channel(rt2x00dev
, &rf
, txpower
);
409 static void rt61pci_config_antenna_5x(struct rt2x00_dev
*rt2x00dev
,
410 struct antenna_setup
*ant
)
416 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
417 rt61pci_bbp_read(rt2x00dev
, 4, &r4
);
418 rt61pci_bbp_read(rt2x00dev
, 77, &r77
);
420 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
,
421 rt2x00_rf(&rt2x00dev
->chip
, RF5325
));
424 * Configure the RX antenna.
427 case ANTENNA_HW_DIVERSITY
:
428 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 2);
429 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
,
430 (rt2x00dev
->curr_hwmode
!= HWMODE_A
));
433 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
434 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
435 if (rt2x00dev
->curr_hwmode
== HWMODE_A
)
436 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
438 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
440 case ANTENNA_SW_DIVERSITY
:
442 * NOTE: We should never come here because rt2x00lib is
443 * supposed to catch this and send us the correct antenna
444 * explicitely. However we are nog going to bug about this.
445 * Instead, just default to antenna B.
448 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
449 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
450 if (rt2x00dev
->curr_hwmode
== HWMODE_A
)
451 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
453 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
457 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
458 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
459 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
462 static void rt61pci_config_antenna_2x(struct rt2x00_dev
*rt2x00dev
,
463 struct antenna_setup
*ant
)
469 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
470 rt61pci_bbp_read(rt2x00dev
, 4, &r4
);
471 rt61pci_bbp_read(rt2x00dev
, 77, &r77
);
473 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
,
474 rt2x00_rf(&rt2x00dev
->chip
, RF2529
));
475 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
,
476 !test_bit(CONFIG_FRAME_TYPE
, &rt2x00dev
->flags
));
479 * Configure the RX antenna.
482 case ANTENNA_HW_DIVERSITY
:
483 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 2);
486 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
487 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
489 case ANTENNA_SW_DIVERSITY
:
491 * NOTE: We should never come here because rt2x00lib is
492 * supposed to catch this and send us the correct antenna
493 * explicitely. However we are nog going to bug about this.
494 * Instead, just default to antenna B.
497 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
498 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
502 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
503 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
504 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
507 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev
*rt2x00dev
,
508 const int p1
, const int p2
)
512 rt2x00pci_register_read(rt2x00dev
, MAC_CSR13
, ®
);
514 rt2x00_set_field32(®
, MAC_CSR13_BIT4
, p1
);
515 rt2x00_set_field32(®
, MAC_CSR13_BIT12
, 0);
517 rt2x00_set_field32(®
, MAC_CSR13_BIT3
, !p2
);
518 rt2x00_set_field32(®
, MAC_CSR13_BIT11
, 0);
520 rt2x00pci_register_write(rt2x00dev
, MAC_CSR13
, reg
);
523 static void rt61pci_config_antenna_2529(struct rt2x00_dev
*rt2x00dev
,
524 struct antenna_setup
*ant
)
530 rt61pci_bbp_read(rt2x00dev
, 3, &r3
);
531 rt61pci_bbp_read(rt2x00dev
, 4, &r4
);
532 rt61pci_bbp_read(rt2x00dev
, 77, &r77
);
534 /* FIXME: Antenna selection for the rf 2529 is very confusing in the
535 * legacy driver. The code below should be ok for non-diversity setups.
539 * Configure the RX antenna.
543 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
544 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
545 rt61pci_config_antenna_2529_rx(rt2x00dev
, 0, 0);
547 case ANTENNA_SW_DIVERSITY
:
548 case ANTENNA_HW_DIVERSITY
:
550 * NOTE: We should never come here because rt2x00lib is
551 * supposed to catch this and send us the correct antenna
552 * explicitely. However we are nog going to bug about this.
553 * Instead, just default to antenna B.
556 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
557 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
558 rt61pci_config_antenna_2529_rx(rt2x00dev
, 1, 1);
562 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
563 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
564 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
570 * value[0] -> non-LNA
576 static const struct antenna_sel antenna_sel_a
[] = {
577 { 96, { 0x58, 0x78 } },
578 { 104, { 0x38, 0x48 } },
579 { 75, { 0xfe, 0x80 } },
580 { 86, { 0xfe, 0x80 } },
581 { 88, { 0xfe, 0x80 } },
582 { 35, { 0x60, 0x60 } },
583 { 97, { 0x58, 0x58 } },
584 { 98, { 0x58, 0x58 } },
587 static const struct antenna_sel antenna_sel_bg
[] = {
588 { 96, { 0x48, 0x68 } },
589 { 104, { 0x2c, 0x3c } },
590 { 75, { 0xfe, 0x80 } },
591 { 86, { 0xfe, 0x80 } },
592 { 88, { 0xfe, 0x80 } },
593 { 35, { 0x50, 0x50 } },
594 { 97, { 0x48, 0x48 } },
595 { 98, { 0x48, 0x48 } },
598 static void rt61pci_config_antenna(struct rt2x00_dev
*rt2x00dev
,
599 struct antenna_setup
*ant
)
601 const struct antenna_sel
*sel
;
606 if (rt2x00dev
->curr_hwmode
== HWMODE_A
) {
608 lna
= test_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
);
610 sel
= antenna_sel_bg
;
611 lna
= test_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
);
614 for (i
= 0; i
< ARRAY_SIZE(antenna_sel_a
); i
++)
615 rt61pci_bbp_write(rt2x00dev
, sel
[i
].word
, sel
[i
].value
[lna
]);
617 rt2x00pci_register_read(rt2x00dev
, PHY_CSR0
, ®
);
619 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_BG
,
620 (rt2x00dev
->curr_hwmode
== HWMODE_B
||
621 rt2x00dev
->curr_hwmode
== HWMODE_G
));
622 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_A
,
623 (rt2x00dev
->curr_hwmode
== HWMODE_A
));
625 rt2x00pci_register_write(rt2x00dev
, PHY_CSR0
, reg
);
627 if (rt2x00_rf(&rt2x00dev
->chip
, RF5225
) ||
628 rt2x00_rf(&rt2x00dev
->chip
, RF5325
))
629 rt61pci_config_antenna_5x(rt2x00dev
, ant
);
630 else if (rt2x00_rf(&rt2x00dev
->chip
, RF2527
))
631 rt61pci_config_antenna_2x(rt2x00dev
, ant
);
632 else if (rt2x00_rf(&rt2x00dev
->chip
, RF2529
)) {
633 if (test_bit(CONFIG_DOUBLE_ANTENNA
, &rt2x00dev
->flags
))
634 rt61pci_config_antenna_2x(rt2x00dev
, ant
);
636 rt61pci_config_antenna_2529(rt2x00dev
, ant
);
640 static void rt61pci_config_duration(struct rt2x00_dev
*rt2x00dev
,
641 struct rt2x00lib_conf
*libconf
)
645 rt2x00pci_register_read(rt2x00dev
, MAC_CSR9
, ®
);
646 rt2x00_set_field32(®
, MAC_CSR9_SLOT_TIME
, libconf
->slot_time
);
647 rt2x00pci_register_write(rt2x00dev
, MAC_CSR9
, reg
);
649 rt2x00pci_register_read(rt2x00dev
, MAC_CSR8
, ®
);
650 rt2x00_set_field32(®
, MAC_CSR8_SIFS
, libconf
->sifs
);
651 rt2x00_set_field32(®
, MAC_CSR8_SIFS_AFTER_RX_OFDM
, 3);
652 rt2x00_set_field32(®
, MAC_CSR8_EIFS
, libconf
->eifs
);
653 rt2x00pci_register_write(rt2x00dev
, MAC_CSR8
, reg
);
655 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
656 rt2x00_set_field32(®
, TXRX_CSR0_TSF_OFFSET
, IEEE80211_HEADER
);
657 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
659 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR4
, ®
);
660 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_ENABLE
, 1);
661 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
663 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
664 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_INTERVAL
,
665 libconf
->conf
->beacon_int
* 16);
666 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
669 static void rt61pci_config(struct rt2x00_dev
*rt2x00dev
,
670 const unsigned int flags
,
671 struct rt2x00lib_conf
*libconf
)
673 if (flags
& CONFIG_UPDATE_PHYMODE
)
674 rt61pci_config_phymode(rt2x00dev
, libconf
->basic_rates
);
675 if (flags
& CONFIG_UPDATE_CHANNEL
)
676 rt61pci_config_channel(rt2x00dev
, &libconf
->rf
,
677 libconf
->conf
->power_level
);
678 if ((flags
& CONFIG_UPDATE_TXPOWER
) && !(flags
& CONFIG_UPDATE_CHANNEL
))
679 rt61pci_config_txpower(rt2x00dev
, libconf
->conf
->power_level
);
680 if (flags
& CONFIG_UPDATE_ANTENNA
)
681 rt61pci_config_antenna(rt2x00dev
, &libconf
->ant
);
682 if (flags
& (CONFIG_UPDATE_SLOT_TIME
| CONFIG_UPDATE_BEACON_INT
))
683 rt61pci_config_duration(rt2x00dev
, libconf
);
689 static void rt61pci_enable_led(struct rt2x00_dev
*rt2x00dev
)
695 rt2x00pci_register_read(rt2x00dev
, MAC_CSR14
, ®
);
696 rt2x00_set_field32(®
, MAC_CSR14_ON_PERIOD
, 70);
697 rt2x00_set_field32(®
, MAC_CSR14_OFF_PERIOD
, 30);
698 rt2x00pci_register_write(rt2x00dev
, MAC_CSR14
, reg
);
700 rt2x00_set_field16(&rt2x00dev
->led_reg
, MCU_LEDCS_RADIO_STATUS
, 1);
701 rt2x00_set_field16(&rt2x00dev
->led_reg
, MCU_LEDCS_LINK_A_STATUS
,
702 (rt2x00dev
->rx_status
.phymode
== MODE_IEEE80211A
));
703 rt2x00_set_field16(&rt2x00dev
->led_reg
, MCU_LEDCS_LINK_BG_STATUS
,
704 (rt2x00dev
->rx_status
.phymode
!= MODE_IEEE80211A
));
706 arg0
= rt2x00dev
->led_reg
& 0xff;
707 arg1
= (rt2x00dev
->led_reg
>> 8) & 0xff;
709 rt61pci_mcu_request(rt2x00dev
, MCU_LED
, 0xff, arg0
, arg1
);
712 static void rt61pci_disable_led(struct rt2x00_dev
*rt2x00dev
)
718 led_reg
= rt2x00dev
->led_reg
;
719 rt2x00_set_field16(&led_reg
, MCU_LEDCS_RADIO_STATUS
, 0);
720 rt2x00_set_field16(&led_reg
, MCU_LEDCS_LINK_BG_STATUS
, 0);
721 rt2x00_set_field16(&led_reg
, MCU_LEDCS_LINK_A_STATUS
, 0);
723 arg0
= led_reg
& 0xff;
724 arg1
= (led_reg
>> 8) & 0xff;
726 rt61pci_mcu_request(rt2x00dev
, MCU_LED
, 0xff, arg0
, arg1
);
729 static void rt61pci_activity_led(struct rt2x00_dev
*rt2x00dev
, int rssi
)
733 if (rt2x00dev
->led_mode
!= LED_MODE_SIGNAL_STRENGTH
)
737 * Led handling requires a positive value for the rssi,
738 * to do that correctly we need to add the correction.
740 rssi
+= rt2x00dev
->rssi_offset
;
755 rt61pci_mcu_request(rt2x00dev
, MCU_LED_STRENGTH
, 0xff, led
, 0);
761 static void rt61pci_link_stats(struct rt2x00_dev
*rt2x00dev
,
762 struct link_qual
*qual
)
767 * Update FCS error count from register.
769 rt2x00pci_register_read(rt2x00dev
, STA_CSR0
, ®
);
770 qual
->rx_failed
= rt2x00_get_field32(reg
, STA_CSR0_FCS_ERROR
);
773 * Update False CCA count from register.
775 rt2x00pci_register_read(rt2x00dev
, STA_CSR1
, ®
);
776 qual
->false_cca
= rt2x00_get_field32(reg
, STA_CSR1_FALSE_CCA_ERROR
);
779 static void rt61pci_reset_tuner(struct rt2x00_dev
*rt2x00dev
)
781 rt61pci_bbp_write(rt2x00dev
, 17, 0x20);
782 rt2x00dev
->link
.vgc_level
= 0x20;
785 static void rt61pci_link_tuner(struct rt2x00_dev
*rt2x00dev
)
787 int rssi
= rt2x00_get_link_rssi(&rt2x00dev
->link
);
793 * Update Led strength
795 rt61pci_activity_led(rt2x00dev
, rssi
);
797 rt61pci_bbp_read(rt2x00dev
, 17, &r17
);
800 * Determine r17 bounds.
802 if (rt2x00dev
->rx_status
.phymode
== MODE_IEEE80211A
) {
805 if (test_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
)) {
812 if (test_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
)) {
819 * Special big-R17 for very short distance
823 rt61pci_bbp_write(rt2x00dev
, 17, 0x60);
828 * Special big-R17 for short distance
832 rt61pci_bbp_write(rt2x00dev
, 17, up_bound
);
837 * Special big-R17 for middle-short distance
841 if (r17
!= low_bound
)
842 rt61pci_bbp_write(rt2x00dev
, 17, low_bound
);
847 * Special mid-R17 for middle distance
851 if (r17
!= low_bound
)
852 rt61pci_bbp_write(rt2x00dev
, 17, low_bound
);
857 * Special case: Change up_bound based on the rssi.
858 * Lower up_bound when rssi is weaker then -74 dBm.
860 up_bound
-= 2 * (-74 - rssi
);
861 if (low_bound
> up_bound
)
862 up_bound
= low_bound
;
864 if (r17
> up_bound
) {
865 rt61pci_bbp_write(rt2x00dev
, 17, up_bound
);
870 * r17 does not yet exceed upper limit, continue and base
871 * the r17 tuning on the false CCA count.
873 if (rt2x00dev
->link
.qual
.false_cca
> 512 && r17
< up_bound
) {
874 if (++r17
> up_bound
)
876 rt61pci_bbp_write(rt2x00dev
, 17, r17
);
877 } else if (rt2x00dev
->link
.qual
.false_cca
< 100 && r17
> low_bound
) {
878 if (--r17
< low_bound
)
880 rt61pci_bbp_write(rt2x00dev
, 17, r17
);
885 * Firmware name function.
887 static char *rt61pci_get_firmware_name(struct rt2x00_dev
*rt2x00dev
)
891 switch (rt2x00dev
->chip
.rt
) {
893 fw_name
= FIRMWARE_RT2561
;
896 fw_name
= FIRMWARE_RT2561s
;
899 fw_name
= FIRMWARE_RT2661
;
910 * Initialization functions.
912 static int rt61pci_load_firmware(struct rt2x00_dev
*rt2x00dev
, void *data
,
919 * Wait for stable hardware.
921 for (i
= 0; i
< 100; i
++) {
922 rt2x00pci_register_read(rt2x00dev
, MAC_CSR0
, ®
);
929 ERROR(rt2x00dev
, "Unstable hardware.\n");
934 * Prepare MCU and mailbox for firmware loading.
937 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 1);
938 rt2x00pci_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
939 rt2x00pci_register_write(rt2x00dev
, M2H_CMD_DONE_CSR
, 0xffffffff);
940 rt2x00pci_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, 0);
941 rt2x00pci_register_write(rt2x00dev
, HOST_CMD_CSR
, 0);
944 * Write firmware to device.
947 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 1);
948 rt2x00_set_field32(®
, MCU_CNTL_CSR_SELECT_BANK
, 1);
949 rt2x00pci_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
951 rt2x00pci_register_multiwrite(rt2x00dev
, FIRMWARE_IMAGE_BASE
,
954 rt2x00_set_field32(®
, MCU_CNTL_CSR_SELECT_BANK
, 0);
955 rt2x00pci_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
957 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 0);
958 rt2x00pci_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
960 for (i
= 0; i
< 100; i
++) {
961 rt2x00pci_register_read(rt2x00dev
, MCU_CNTL_CSR
, ®
);
962 if (rt2x00_get_field32(reg
, MCU_CNTL_CSR_READY
))
968 ERROR(rt2x00dev
, "MCU Control register not ready.\n");
973 * Reset MAC and BBP registers.
976 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 1);
977 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 1);
978 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
980 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
981 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 0);
982 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 0);
983 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
985 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
986 rt2x00_set_field32(®
, MAC_CSR1_HOST_READY
, 1);
987 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
992 static void rt61pci_init_rxentry(struct rt2x00_dev
*rt2x00dev
,
993 struct data_entry
*entry
)
995 __le32
*rxd
= entry
->priv
;
998 rt2x00_desc_read(rxd
, 5, &word
);
999 rt2x00_set_field32(&word
, RXD_W5_BUFFER_PHYSICAL_ADDRESS
,
1001 rt2x00_desc_write(rxd
, 5, word
);
1003 rt2x00_desc_read(rxd
, 0, &word
);
1004 rt2x00_set_field32(&word
, RXD_W0_OWNER_NIC
, 1);
1005 rt2x00_desc_write(rxd
, 0, word
);
1008 static void rt61pci_init_txentry(struct rt2x00_dev
*rt2x00dev
,
1009 struct data_entry
*entry
)
1011 __le32
*txd
= entry
->priv
;
1014 rt2x00_desc_read(txd
, 1, &word
);
1015 rt2x00_set_field32(&word
, TXD_W1_BUFFER_COUNT
, 1);
1016 rt2x00_desc_write(txd
, 1, word
);
1018 rt2x00_desc_read(txd
, 5, &word
);
1019 rt2x00_set_field32(&word
, TXD_W5_PID_TYPE
, entry
->ring
->queue_idx
);
1020 rt2x00_set_field32(&word
, TXD_W5_PID_SUBTYPE
, entry
->entry_idx
);
1021 rt2x00_desc_write(txd
, 5, word
);
1023 rt2x00_desc_read(txd
, 6, &word
);
1024 rt2x00_set_field32(&word
, TXD_W6_BUFFER_PHYSICAL_ADDRESS
,
1026 rt2x00_desc_write(txd
, 6, word
);
1028 rt2x00_desc_read(txd
, 0, &word
);
1029 rt2x00_set_field32(&word
, TXD_W0_VALID
, 0);
1030 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 0);
1031 rt2x00_desc_write(txd
, 0, word
);
1034 static int rt61pci_init_rings(struct rt2x00_dev
*rt2x00dev
)
1039 * Initialize registers.
1041 rt2x00pci_register_read(rt2x00dev
, TX_RING_CSR0
, ®
);
1042 rt2x00_set_field32(®
, TX_RING_CSR0_AC0_RING_SIZE
,
1043 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA0
].stats
.limit
);
1044 rt2x00_set_field32(®
, TX_RING_CSR0_AC1_RING_SIZE
,
1045 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA1
].stats
.limit
);
1046 rt2x00_set_field32(®
, TX_RING_CSR0_AC2_RING_SIZE
,
1047 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA2
].stats
.limit
);
1048 rt2x00_set_field32(®
, TX_RING_CSR0_AC3_RING_SIZE
,
1049 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA3
].stats
.limit
);
1050 rt2x00pci_register_write(rt2x00dev
, TX_RING_CSR0
, reg
);
1052 rt2x00pci_register_read(rt2x00dev
, TX_RING_CSR1
, ®
);
1053 rt2x00_set_field32(®
, TX_RING_CSR1_MGMT_RING_SIZE
,
1054 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA4
].stats
.limit
);
1055 rt2x00_set_field32(®
, TX_RING_CSR1_TXD_SIZE
,
1056 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA0
].desc_size
/
1058 rt2x00pci_register_write(rt2x00dev
, TX_RING_CSR1
, reg
);
1060 rt2x00pci_register_read(rt2x00dev
, AC0_BASE_CSR
, ®
);
1061 rt2x00_set_field32(®
, AC0_BASE_CSR_RING_REGISTER
,
1062 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA0
].data_dma
);
1063 rt2x00pci_register_write(rt2x00dev
, AC0_BASE_CSR
, reg
);
1065 rt2x00pci_register_read(rt2x00dev
, AC1_BASE_CSR
, ®
);
1066 rt2x00_set_field32(®
, AC1_BASE_CSR_RING_REGISTER
,
1067 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA1
].data_dma
);
1068 rt2x00pci_register_write(rt2x00dev
, AC1_BASE_CSR
, reg
);
1070 rt2x00pci_register_read(rt2x00dev
, AC2_BASE_CSR
, ®
);
1071 rt2x00_set_field32(®
, AC2_BASE_CSR_RING_REGISTER
,
1072 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA2
].data_dma
);
1073 rt2x00pci_register_write(rt2x00dev
, AC2_BASE_CSR
, reg
);
1075 rt2x00pci_register_read(rt2x00dev
, AC3_BASE_CSR
, ®
);
1076 rt2x00_set_field32(®
, AC3_BASE_CSR_RING_REGISTER
,
1077 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA3
].data_dma
);
1078 rt2x00pci_register_write(rt2x00dev
, AC3_BASE_CSR
, reg
);
1080 rt2x00pci_register_read(rt2x00dev
, MGMT_BASE_CSR
, ®
);
1081 rt2x00_set_field32(®
, MGMT_BASE_CSR_RING_REGISTER
,
1082 rt2x00dev
->tx
[IEEE80211_TX_QUEUE_DATA4
].data_dma
);
1083 rt2x00pci_register_write(rt2x00dev
, MGMT_BASE_CSR
, reg
);
1085 rt2x00pci_register_read(rt2x00dev
, RX_RING_CSR
, ®
);
1086 rt2x00_set_field32(®
, RX_RING_CSR_RING_SIZE
,
1087 rt2x00dev
->rx
->stats
.limit
);
1088 rt2x00_set_field32(®
, RX_RING_CSR_RXD_SIZE
,
1089 rt2x00dev
->rx
->desc_size
/ 4);
1090 rt2x00_set_field32(®
, RX_RING_CSR_RXD_WRITEBACK_SIZE
, 4);
1091 rt2x00pci_register_write(rt2x00dev
, RX_RING_CSR
, reg
);
1093 rt2x00pci_register_read(rt2x00dev
, RX_BASE_CSR
, ®
);
1094 rt2x00_set_field32(®
, RX_BASE_CSR_RING_REGISTER
,
1095 rt2x00dev
->rx
->data_dma
);
1096 rt2x00pci_register_write(rt2x00dev
, RX_BASE_CSR
, reg
);
1098 rt2x00pci_register_read(rt2x00dev
, TX_DMA_DST_CSR
, ®
);
1099 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC0
, 2);
1100 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC1
, 2);
1101 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC2
, 2);
1102 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC3
, 2);
1103 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_MGMT
, 0);
1104 rt2x00pci_register_write(rt2x00dev
, TX_DMA_DST_CSR
, reg
);
1106 rt2x00pci_register_read(rt2x00dev
, LOAD_TX_RING_CSR
, ®
);
1107 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC0
, 1);
1108 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC1
, 1);
1109 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC2
, 1);
1110 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC3
, 1);
1111 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_MGMT
, 1);
1112 rt2x00pci_register_write(rt2x00dev
, LOAD_TX_RING_CSR
, reg
);
1114 rt2x00pci_register_read(rt2x00dev
, RX_CNTL_CSR
, ®
);
1115 rt2x00_set_field32(®
, RX_CNTL_CSR_LOAD_RXD
, 1);
1116 rt2x00pci_register_write(rt2x00dev
, RX_CNTL_CSR
, reg
);
1121 static int rt61pci_init_registers(struct rt2x00_dev
*rt2x00dev
)
1125 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
1126 rt2x00_set_field32(®
, TXRX_CSR0_AUTO_TX_SEQ
, 1);
1127 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 0);
1128 rt2x00_set_field32(®
, TXRX_CSR0_TX_WITHOUT_WAITING
, 0);
1129 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1131 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR1
, ®
);
1132 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0
, 47); /* CCK Signal */
1133 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0_VALID
, 1);
1134 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1
, 30); /* Rssi */
1135 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1_VALID
, 1);
1136 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2
, 42); /* OFDM Rate */
1137 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2_VALID
, 1);
1138 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3
, 30); /* Rssi */
1139 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3_VALID
, 1);
1140 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR1
, reg
);
1143 * CCK TXD BBP registers
1145 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
1146 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0
, 13);
1147 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0_VALID
, 1);
1148 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1
, 12);
1149 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1_VALID
, 1);
1150 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2
, 11);
1151 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2_VALID
, 1);
1152 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3
, 10);
1153 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3_VALID
, 1);
1154 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
1157 * OFDM TXD BBP registers
1159 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR3
, ®
);
1160 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0
, 7);
1161 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0_VALID
, 1);
1162 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1
, 6);
1163 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1_VALID
, 1);
1164 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2
, 5);
1165 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2_VALID
, 1);
1166 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR3
, reg
);
1168 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR7
, ®
);
1169 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_6MBS
, 59);
1170 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_9MBS
, 53);
1171 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_12MBS
, 49);
1172 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_18MBS
, 46);
1173 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR7
, reg
);
1175 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR8
, ®
);
1176 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_24MBS
, 44);
1177 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_36MBS
, 42);
1178 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_48MBS
, 42);
1179 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_54MBS
, 42);
1180 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR8
, reg
);
1182 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR15
, 0x0000000f);
1184 rt2x00pci_register_write(rt2x00dev
, MAC_CSR6
, 0x00000fff);
1186 rt2x00pci_register_read(rt2x00dev
, MAC_CSR9
, ®
);
1187 rt2x00_set_field32(®
, MAC_CSR9_CW_SELECT
, 0);
1188 rt2x00pci_register_write(rt2x00dev
, MAC_CSR9
, reg
);
1190 rt2x00pci_register_write(rt2x00dev
, MAC_CSR10
, 0x0000071c);
1192 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
1195 rt2x00pci_register_write(rt2x00dev
, MAC_CSR13
, 0x0000e000);
1198 * Invalidate all Shared Keys (SEC_CSR0),
1199 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1201 rt2x00pci_register_write(rt2x00dev
, SEC_CSR0
, 0x00000000);
1202 rt2x00pci_register_write(rt2x00dev
, SEC_CSR1
, 0x00000000);
1203 rt2x00pci_register_write(rt2x00dev
, SEC_CSR5
, 0x00000000);
1205 rt2x00pci_register_write(rt2x00dev
, PHY_CSR1
, 0x000023b0);
1206 rt2x00pci_register_write(rt2x00dev
, PHY_CSR5
, 0x060a100c);
1207 rt2x00pci_register_write(rt2x00dev
, PHY_CSR6
, 0x00080606);
1208 rt2x00pci_register_write(rt2x00dev
, PHY_CSR7
, 0x00000a08);
1210 rt2x00pci_register_write(rt2x00dev
, PCI_CFG_CSR
, 0x28ca4404);
1212 rt2x00pci_register_write(rt2x00dev
, TEST_MODE_CSR
, 0x00000200);
1214 rt2x00pci_register_write(rt2x00dev
, M2H_CMD_DONE_CSR
, 0xffffffff);
1216 rt2x00pci_register_read(rt2x00dev
, AC_TXOP_CSR0
, ®
);
1217 rt2x00_set_field32(®
, AC_TXOP_CSR0_AC0_TX_OP
, 0);
1218 rt2x00_set_field32(®
, AC_TXOP_CSR0_AC1_TX_OP
, 0);
1219 rt2x00pci_register_write(rt2x00dev
, AC_TXOP_CSR0
, reg
);
1221 rt2x00pci_register_read(rt2x00dev
, AC_TXOP_CSR1
, ®
);
1222 rt2x00_set_field32(®
, AC_TXOP_CSR1_AC2_TX_OP
, 192);
1223 rt2x00_set_field32(®
, AC_TXOP_CSR1_AC3_TX_OP
, 48);
1224 rt2x00pci_register_write(rt2x00dev
, AC_TXOP_CSR1
, reg
);
1227 * We must clear the error counters.
1228 * These registers are cleared on read,
1229 * so we may pass a useless variable to store the value.
1231 rt2x00pci_register_read(rt2x00dev
, STA_CSR0
, ®
);
1232 rt2x00pci_register_read(rt2x00dev
, STA_CSR1
, ®
);
1233 rt2x00pci_register_read(rt2x00dev
, STA_CSR2
, ®
);
1236 * Reset MAC and BBP registers.
1238 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1239 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 1);
1240 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 1);
1241 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1243 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1244 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 0);
1245 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 0);
1246 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1248 rt2x00pci_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1249 rt2x00_set_field32(®
, MAC_CSR1_HOST_READY
, 1);
1250 rt2x00pci_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1255 static int rt61pci_init_bbp(struct rt2x00_dev
*rt2x00dev
)
1262 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1263 rt61pci_bbp_read(rt2x00dev
, 0, &value
);
1264 if ((value
!= 0xff) && (value
!= 0x00))
1265 goto continue_csr_init
;
1266 NOTICE(rt2x00dev
, "Waiting for BBP register.\n");
1267 udelay(REGISTER_BUSY_DELAY
);
1270 ERROR(rt2x00dev
, "BBP register access failed, aborting.\n");
1274 rt61pci_bbp_write(rt2x00dev
, 3, 0x00);
1275 rt61pci_bbp_write(rt2x00dev
, 15, 0x30);
1276 rt61pci_bbp_write(rt2x00dev
, 21, 0xc8);
1277 rt61pci_bbp_write(rt2x00dev
, 22, 0x38);
1278 rt61pci_bbp_write(rt2x00dev
, 23, 0x06);
1279 rt61pci_bbp_write(rt2x00dev
, 24, 0xfe);
1280 rt61pci_bbp_write(rt2x00dev
, 25, 0x0a);
1281 rt61pci_bbp_write(rt2x00dev
, 26, 0x0d);
1282 rt61pci_bbp_write(rt2x00dev
, 34, 0x12);
1283 rt61pci_bbp_write(rt2x00dev
, 37, 0x07);
1284 rt61pci_bbp_write(rt2x00dev
, 39, 0xf8);
1285 rt61pci_bbp_write(rt2x00dev
, 41, 0x60);
1286 rt61pci_bbp_write(rt2x00dev
, 53, 0x10);
1287 rt61pci_bbp_write(rt2x00dev
, 54, 0x18);
1288 rt61pci_bbp_write(rt2x00dev
, 60, 0x10);
1289 rt61pci_bbp_write(rt2x00dev
, 61, 0x04);
1290 rt61pci_bbp_write(rt2x00dev
, 62, 0x04);
1291 rt61pci_bbp_write(rt2x00dev
, 75, 0xfe);
1292 rt61pci_bbp_write(rt2x00dev
, 86, 0xfe);
1293 rt61pci_bbp_write(rt2x00dev
, 88, 0xfe);
1294 rt61pci_bbp_write(rt2x00dev
, 90, 0x0f);
1295 rt61pci_bbp_write(rt2x00dev
, 99, 0x00);
1296 rt61pci_bbp_write(rt2x00dev
, 102, 0x16);
1297 rt61pci_bbp_write(rt2x00dev
, 107, 0x04);
1299 DEBUG(rt2x00dev
, "Start initialization from EEPROM...\n");
1300 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
1301 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
, &eeprom
);
1303 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
1304 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
1305 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
1306 DEBUG(rt2x00dev
, "BBP: 0x%02x, value: 0x%02x.\n",
1308 rt61pci_bbp_write(rt2x00dev
, reg_id
, value
);
1311 DEBUG(rt2x00dev
, "...End initialization from EEPROM.\n");
1317 * Device state switch handlers.
1319 static void rt61pci_toggle_rx(struct rt2x00_dev
*rt2x00dev
,
1320 enum dev_state state
)
1324 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
1325 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
,
1326 state
== STATE_RADIO_RX_OFF
);
1327 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1330 static void rt61pci_toggle_irq(struct rt2x00_dev
*rt2x00dev
,
1331 enum dev_state state
)
1333 int mask
= (state
== STATE_RADIO_IRQ_OFF
);
1337 * When interrupts are being enabled, the interrupt registers
1338 * should clear the register to assure a clean state.
1340 if (state
== STATE_RADIO_IRQ_ON
) {
1341 rt2x00pci_register_read(rt2x00dev
, INT_SOURCE_CSR
, ®
);
1342 rt2x00pci_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
1344 rt2x00pci_register_read(rt2x00dev
, MCU_INT_SOURCE_CSR
, ®
);
1345 rt2x00pci_register_write(rt2x00dev
, MCU_INT_SOURCE_CSR
, reg
);
1349 * Only toggle the interrupts bits we are going to use.
1350 * Non-checked interrupt bits are disabled by default.
1352 rt2x00pci_register_read(rt2x00dev
, INT_MASK_CSR
, ®
);
1353 rt2x00_set_field32(®
, INT_MASK_CSR_TXDONE
, mask
);
1354 rt2x00_set_field32(®
, INT_MASK_CSR_RXDONE
, mask
);
1355 rt2x00_set_field32(®
, INT_MASK_CSR_ENABLE_MITIGATION
, mask
);
1356 rt2x00_set_field32(®
, INT_MASK_CSR_MITIGATION_PERIOD
, 0xff);
1357 rt2x00pci_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
1359 rt2x00pci_register_read(rt2x00dev
, MCU_INT_MASK_CSR
, ®
);
1360 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_0
, mask
);
1361 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_1
, mask
);
1362 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_2
, mask
);
1363 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_3
, mask
);
1364 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_4
, mask
);
1365 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_5
, mask
);
1366 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_6
, mask
);
1367 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_7
, mask
);
1368 rt2x00pci_register_write(rt2x00dev
, MCU_INT_MASK_CSR
, reg
);
1371 static int rt61pci_enable_radio(struct rt2x00_dev
*rt2x00dev
)
1376 * Initialize all registers.
1378 if (rt61pci_init_rings(rt2x00dev
) ||
1379 rt61pci_init_registers(rt2x00dev
) ||
1380 rt61pci_init_bbp(rt2x00dev
)) {
1381 ERROR(rt2x00dev
, "Register initialization failed.\n");
1386 * Enable interrupts.
1388 rt61pci_toggle_irq(rt2x00dev
, STATE_RADIO_IRQ_ON
);
1393 rt2x00pci_register_read(rt2x00dev
, RX_CNTL_CSR
, ®
);
1394 rt2x00_set_field32(®
, RX_CNTL_CSR_ENABLE_RX_DMA
, 1);
1395 rt2x00pci_register_write(rt2x00dev
, RX_CNTL_CSR
, reg
);
1400 rt61pci_enable_led(rt2x00dev
);
1405 static void rt61pci_disable_radio(struct rt2x00_dev
*rt2x00dev
)
1412 rt61pci_disable_led(rt2x00dev
);
1414 rt2x00pci_register_write(rt2x00dev
, MAC_CSR10
, 0x00001818);
1417 * Disable synchronisation.
1419 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, 0);
1424 rt2x00pci_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1425 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC0
, 1);
1426 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC1
, 1);
1427 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC2
, 1);
1428 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC3
, 1);
1429 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_MGMT
, 1);
1430 rt2x00pci_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1433 * Disable interrupts.
1435 rt61pci_toggle_irq(rt2x00dev
, STATE_RADIO_IRQ_OFF
);
1438 static int rt61pci_set_state(struct rt2x00_dev
*rt2x00dev
, enum dev_state state
)
1445 put_to_sleep
= (state
!= STATE_AWAKE
);
1447 rt2x00pci_register_read(rt2x00dev
, MAC_CSR12
, ®
);
1448 rt2x00_set_field32(®
, MAC_CSR12_FORCE_WAKEUP
, !put_to_sleep
);
1449 rt2x00_set_field32(®
, MAC_CSR12_PUT_TO_SLEEP
, put_to_sleep
);
1450 rt2x00pci_register_write(rt2x00dev
, MAC_CSR12
, reg
);
1453 * Device is not guaranteed to be in the requested state yet.
1454 * We must wait until the register indicates that the
1455 * device has entered the correct state.
1457 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1458 rt2x00pci_register_read(rt2x00dev
, MAC_CSR12
, ®
);
1460 rt2x00_get_field32(reg
, MAC_CSR12_BBP_CURRENT_STATE
);
1461 if (current_state
== !put_to_sleep
)
1466 NOTICE(rt2x00dev
, "Device failed to enter state %d, "
1467 "current device state %d.\n", !put_to_sleep
, current_state
);
1472 static int rt61pci_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1473 enum dev_state state
)
1478 case STATE_RADIO_ON
:
1479 retval
= rt61pci_enable_radio(rt2x00dev
);
1481 case STATE_RADIO_OFF
:
1482 rt61pci_disable_radio(rt2x00dev
);
1484 case STATE_RADIO_RX_ON
:
1485 case STATE_RADIO_RX_ON_LINK
:
1486 rt61pci_toggle_rx(rt2x00dev
, STATE_RADIO_RX_ON
);
1488 case STATE_RADIO_RX_OFF
:
1489 case STATE_RADIO_RX_OFF_LINK
:
1490 rt61pci_toggle_rx(rt2x00dev
, STATE_RADIO_RX_OFF
);
1492 case STATE_DEEP_SLEEP
:
1496 retval
= rt61pci_set_state(rt2x00dev
, state
);
1507 * TX descriptor initialization
1509 static void rt61pci_write_tx_desc(struct rt2x00_dev
*rt2x00dev
,
1510 struct sk_buff
*skb
,
1511 struct txdata_entry_desc
*desc
,
1512 struct ieee80211_tx_control
*control
)
1514 struct skb_desc
*skbdesc
= get_skb_desc(skb
);
1515 __le32
*txd
= skbdesc
->desc
;
1519 * Start writing the descriptor words.
1521 rt2x00_desc_read(txd
, 1, &word
);
1522 rt2x00_set_field32(&word
, TXD_W1_HOST_Q_ID
, desc
->queue
);
1523 rt2x00_set_field32(&word
, TXD_W1_AIFSN
, desc
->aifs
);
1524 rt2x00_set_field32(&word
, TXD_W1_CWMIN
, desc
->cw_min
);
1525 rt2x00_set_field32(&word
, TXD_W1_CWMAX
, desc
->cw_max
);
1526 rt2x00_set_field32(&word
, TXD_W1_IV_OFFSET
, IEEE80211_HEADER
);
1527 rt2x00_set_field32(&word
, TXD_W1_HW_SEQUENCE
, 1);
1528 rt2x00_desc_write(txd
, 1, word
);
1530 rt2x00_desc_read(txd
, 2, &word
);
1531 rt2x00_set_field32(&word
, TXD_W2_PLCP_SIGNAL
, desc
->signal
);
1532 rt2x00_set_field32(&word
, TXD_W2_PLCP_SERVICE
, desc
->service
);
1533 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_LOW
, desc
->length_low
);
1534 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_HIGH
, desc
->length_high
);
1535 rt2x00_desc_write(txd
, 2, word
);
1537 rt2x00_desc_read(txd
, 5, &word
);
1538 rt2x00_set_field32(&word
, TXD_W5_TX_POWER
,
1539 TXPOWER_TO_DEV(control
->power_level
));
1540 rt2x00_set_field32(&word
, TXD_W5_WAITING_DMA_DONE_INT
, 1);
1541 rt2x00_desc_write(txd
, 5, word
);
1543 rt2x00_desc_read(txd
, 11, &word
);
1544 rt2x00_set_field32(&word
, TXD_W11_BUFFER_LENGTH0
, skbdesc
->data_len
);
1545 rt2x00_desc_write(txd
, 11, word
);
1547 rt2x00_desc_read(txd
, 0, &word
);
1548 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 1);
1549 rt2x00_set_field32(&word
, TXD_W0_VALID
, 1);
1550 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1551 test_bit(ENTRY_TXD_MORE_FRAG
, &desc
->flags
));
1552 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1553 test_bit(ENTRY_TXD_ACK
, &desc
->flags
));
1554 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1555 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &desc
->flags
));
1556 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1557 test_bit(ENTRY_TXD_OFDM_RATE
, &desc
->flags
));
1558 rt2x00_set_field32(&word
, TXD_W0_IFS
, desc
->ifs
);
1559 rt2x00_set_field32(&word
, TXD_W0_RETRY_MODE
,
1561 IEEE80211_TXCTL_LONG_RETRY_LIMIT
));
1562 rt2x00_set_field32(&word
, TXD_W0_TKIP_MIC
, 0);
1563 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, skbdesc
->data_len
);
1564 rt2x00_set_field32(&word
, TXD_W0_BURST
,
1565 test_bit(ENTRY_TXD_BURST
, &desc
->flags
));
1566 rt2x00_set_field32(&word
, TXD_W0_CIPHER_ALG
, CIPHER_NONE
);
1567 rt2x00_desc_write(txd
, 0, word
);
1571 * TX data initialization
1573 static void rt61pci_kick_tx_queue(struct rt2x00_dev
*rt2x00dev
,
1578 if (queue
== IEEE80211_TX_QUEUE_BEACON
) {
1580 * For Wi-Fi faily generated beacons between participating
1581 * stations. Set TBTT phase adaptive adjustment step to 8us.
1583 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR10
, 0x00001008);
1585 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1586 if (!rt2x00_get_field32(reg
, TXRX_CSR9_BEACON_GEN
)) {
1587 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 1);
1588 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1593 rt2x00pci_register_read(rt2x00dev
, TX_CNTL_CSR
, ®
);
1594 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC0
,
1595 (queue
== IEEE80211_TX_QUEUE_DATA0
));
1596 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC1
,
1597 (queue
== IEEE80211_TX_QUEUE_DATA1
));
1598 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC2
,
1599 (queue
== IEEE80211_TX_QUEUE_DATA2
));
1600 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC3
,
1601 (queue
== IEEE80211_TX_QUEUE_DATA3
));
1602 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_MGMT
,
1603 (queue
== IEEE80211_TX_QUEUE_DATA4
));
1604 rt2x00pci_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1608 * RX control handlers
1610 static int rt61pci_agc_to_rssi(struct rt2x00_dev
*rt2x00dev
, int rxd_w1
)
1616 lna
= rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_LNA
);
1631 if (rt2x00dev
->rx_status
.phymode
== MODE_IEEE80211A
) {
1632 if (test_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
))
1635 if (lna
== 3 || lna
== 2)
1638 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, &eeprom
);
1639 offset
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_A_1
);
1641 if (test_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
))
1644 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, &eeprom
);
1645 offset
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_BG_1
);
1648 return rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_AGC
) * 2 - offset
;
1651 static void rt61pci_fill_rxdone(struct data_entry
*entry
,
1652 struct rxdata_entry_desc
*desc
)
1654 __le32
*rxd
= entry
->priv
;
1658 rt2x00_desc_read(rxd
, 0, &word0
);
1659 rt2x00_desc_read(rxd
, 1, &word1
);
1662 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1663 desc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1666 * Obtain the status about this packet.
1668 desc
->signal
= rt2x00_get_field32(word1
, RXD_W1_SIGNAL
);
1669 desc
->rssi
= rt61pci_agc_to_rssi(entry
->ring
->rt2x00dev
, word1
);
1670 desc
->ofdm
= rt2x00_get_field32(word0
, RXD_W0_OFDM
);
1671 desc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1672 desc
->my_bss
= !!rt2x00_get_field32(word0
, RXD_W0_MY_BSS
);
1676 * Interrupt functions.
1678 static void rt61pci_txdone(struct rt2x00_dev
*rt2x00dev
)
1680 struct data_ring
*ring
;
1681 struct data_entry
*entry
;
1682 struct data_entry
*entry_done
;
1693 * During each loop we will compare the freshly read
1694 * STA_CSR4 register value with the value read from
1695 * the previous loop. If the 2 values are equal then
1696 * we should stop processing because the chance it
1697 * quite big that the device has been unplugged and
1698 * we risk going into an endless loop.
1703 rt2x00pci_register_read(rt2x00dev
, STA_CSR4
, ®
);
1704 if (!rt2x00_get_field32(reg
, STA_CSR4_VALID
))
1712 * Skip this entry when it contains an invalid
1713 * ring identication number.
1715 type
= rt2x00_get_field32(reg
, STA_CSR4_PID_TYPE
);
1716 ring
= rt2x00lib_get_ring(rt2x00dev
, type
);
1717 if (unlikely(!ring
))
1721 * Skip this entry when it contains an invalid
1724 index
= rt2x00_get_field32(reg
, STA_CSR4_PID_SUBTYPE
);
1725 if (unlikely(index
>= ring
->stats
.limit
))
1728 entry
= &ring
->entry
[index
];
1730 rt2x00_desc_read(txd
, 0, &word
);
1732 if (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
1733 !rt2x00_get_field32(word
, TXD_W0_VALID
))
1736 entry_done
= rt2x00_get_data_entry_done(ring
);
1737 while (entry
!= entry_done
) {
1738 /* Catch up. Just report any entries we missed as
1741 "TX status report missed for entry %p\n",
1743 rt2x00pci_txdone(rt2x00dev
, entry_done
, TX_FAIL_OTHER
,
1745 entry_done
= rt2x00_get_data_entry_done(ring
);
1749 * Obtain the status about this packet.
1751 tx_status
= rt2x00_get_field32(reg
, STA_CSR4_TX_RESULT
);
1752 retry
= rt2x00_get_field32(reg
, STA_CSR4_RETRY_COUNT
);
1754 rt2x00pci_txdone(rt2x00dev
, entry
, tx_status
, retry
);
1758 static irqreturn_t
rt61pci_interrupt(int irq
, void *dev_instance
)
1760 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
1765 * Get the interrupt sources & saved to local variable.
1766 * Write register value back to clear pending interrupts.
1768 rt2x00pci_register_read(rt2x00dev
, MCU_INT_SOURCE_CSR
, ®_mcu
);
1769 rt2x00pci_register_write(rt2x00dev
, MCU_INT_SOURCE_CSR
, reg_mcu
);
1771 rt2x00pci_register_read(rt2x00dev
, INT_SOURCE_CSR
, ®
);
1772 rt2x00pci_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
1774 if (!reg
&& !reg_mcu
)
1777 if (!test_bit(DEVICE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1781 * Handle interrupts, walk through all bits
1782 * and run the tasks, the bits are checked in order of
1787 * 1 - Rx ring done interrupt.
1789 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_RXDONE
))
1790 rt2x00pci_rxdone(rt2x00dev
);
1793 * 2 - Tx ring done interrupt.
1795 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_TXDONE
))
1796 rt61pci_txdone(rt2x00dev
);
1799 * 3 - Handle MCU command done.
1802 rt2x00pci_register_write(rt2x00dev
,
1803 M2H_CMD_DONE_CSR
, 0xffffffff);
1809 * Device probe functions.
1811 static int rt61pci_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1813 struct eeprom_93cx6 eeprom
;
1819 rt2x00pci_register_read(rt2x00dev
, E2PROM_CSR
, ®
);
1821 eeprom
.data
= rt2x00dev
;
1822 eeprom
.register_read
= rt61pci_eepromregister_read
;
1823 eeprom
.register_write
= rt61pci_eepromregister_write
;
1824 eeprom
.width
= rt2x00_get_field32(reg
, E2PROM_CSR_TYPE_93C46
) ?
1825 PCI_EEPROM_WIDTH_93C46
: PCI_EEPROM_WIDTH_93C66
;
1826 eeprom
.reg_data_in
= 0;
1827 eeprom
.reg_data_out
= 0;
1828 eeprom
.reg_data_clock
= 0;
1829 eeprom
.reg_chip_select
= 0;
1831 eeprom_93cx6_multiread(&eeprom
, EEPROM_BASE
, rt2x00dev
->eeprom
,
1832 EEPROM_SIZE
/ sizeof(u16
));
1835 * Start validation of the data that has been read.
1837 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1838 if (!is_valid_ether_addr(mac
)) {
1839 DECLARE_MAC_BUF(macbuf
);
1841 random_ether_addr(mac
);
1842 EEPROM(rt2x00dev
, "MAC: %s\n", print_mac(macbuf
, mac
));
1845 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &word
);
1846 if (word
== 0xffff) {
1847 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
1848 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
1850 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
1852 rt2x00_set_field16(&word
, EEPROM_ANTENNA_FRAME_TYPE
, 0);
1853 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
1854 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
1855 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF5225
);
1856 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
1857 EEPROM(rt2x00dev
, "Antenna: 0x%04x\n", word
);
1860 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &word
);
1861 if (word
== 0xffff) {
1862 rt2x00_set_field16(&word
, EEPROM_NIC_ENABLE_DIVERSITY
, 0);
1863 rt2x00_set_field16(&word
, EEPROM_NIC_TX_DIVERSITY
, 0);
1864 rt2x00_set_field16(&word
, EEPROM_NIC_TX_RX_FIXED
, 0);
1865 rt2x00_set_field16(&word
, EEPROM_NIC_EXTERNAL_LNA_BG
, 0);
1866 rt2x00_set_field16(&word
, EEPROM_NIC_CARDBUS_ACCEL
, 0);
1867 rt2x00_set_field16(&word
, EEPROM_NIC_EXTERNAL_LNA_A
, 0);
1868 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
1869 EEPROM(rt2x00dev
, "NIC: 0x%04x\n", word
);
1872 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
, &word
);
1873 if (word
== 0xffff) {
1874 rt2x00_set_field16(&word
, EEPROM_LED_LED_MODE
,
1876 rt2x00_eeprom_write(rt2x00dev
, EEPROM_LED
, word
);
1877 EEPROM(rt2x00dev
, "Led: 0x%04x\n", word
);
1880 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &word
);
1881 if (word
== 0xffff) {
1882 rt2x00_set_field16(&word
, EEPROM_FREQ_OFFSET
, 0);
1883 rt2x00_set_field16(&word
, EEPROM_FREQ_SEQ
, 0);
1884 rt2x00_eeprom_write(rt2x00dev
, EEPROM_FREQ
, word
);
1885 EEPROM(rt2x00dev
, "Freq: 0x%04x\n", word
);
1888 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, &word
);
1889 if (word
== 0xffff) {
1890 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
1891 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
1892 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
1893 EEPROM(rt2x00dev
, "RSSI OFFSET BG: 0x%04x\n", word
);
1895 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_1
);
1896 if (value
< -10 || value
> 10)
1897 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
1898 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_2
);
1899 if (value
< -10 || value
> 10)
1900 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
1901 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
1904 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, &word
);
1905 if (word
== 0xffff) {
1906 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
1907 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
1908 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
1909 EEPROM(rt2x00dev
, "RSSI OFFSET BG: 0x%04x\n", word
);
1911 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_1
);
1912 if (value
< -10 || value
> 10)
1913 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
1914 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_2
);
1915 if (value
< -10 || value
> 10)
1916 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
1917 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
1923 static int rt61pci_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1931 * Read EEPROM word for configuration.
1933 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &eeprom
);
1936 * Identify RF chipset.
1937 * To determine the RT chip we have to read the
1938 * PCI header of the device.
1940 pci_read_config_word(rt2x00dev_pci(rt2x00dev
),
1941 PCI_CONFIG_HEADER_DEVICE
, &device
);
1942 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1943 rt2x00pci_register_read(rt2x00dev
, MAC_CSR0
, ®
);
1944 rt2x00_set_chip(rt2x00dev
, device
, value
, reg
);
1946 if (!rt2x00_rf(&rt2x00dev
->chip
, RF5225
) &&
1947 !rt2x00_rf(&rt2x00dev
->chip
, RF5325
) &&
1948 !rt2x00_rf(&rt2x00dev
->chip
, RF2527
) &&
1949 !rt2x00_rf(&rt2x00dev
->chip
, RF2529
)) {
1950 ERROR(rt2x00dev
, "Invalid RF chipset detected.\n");
1955 * Determine number of antenna's.
1957 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_NUM
) == 2)
1958 __set_bit(CONFIG_DOUBLE_ANTENNA
, &rt2x00dev
->flags
);
1961 * Identify default antenna configuration.
1963 rt2x00dev
->default_ant
.tx
=
1964 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1965 rt2x00dev
->default_ant
.rx
=
1966 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1969 * Read the Frame type.
1971 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_FRAME_TYPE
))
1972 __set_bit(CONFIG_FRAME_TYPE
, &rt2x00dev
->flags
);
1975 * Detect if this device has an hardware controlled radio.
1977 #ifdef CONFIG_RT61PCI_RFKILL
1978 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
1979 __set_bit(CONFIG_SUPPORT_HW_BUTTON
, &rt2x00dev
->flags
);
1980 #endif /* CONFIG_RT61PCI_RFKILL */
1983 * Read frequency offset and RF programming sequence.
1985 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &eeprom
);
1986 if (rt2x00_get_field16(eeprom
, EEPROM_FREQ_SEQ
))
1987 __set_bit(CONFIG_RF_SEQUENCE
, &rt2x00dev
->flags
);
1989 rt2x00dev
->freq_offset
= rt2x00_get_field16(eeprom
, EEPROM_FREQ_OFFSET
);
1992 * Read external LNA informations.
1994 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &eeprom
);
1996 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_EXTERNAL_LNA_A
))
1997 __set_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
);
1998 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_EXTERNAL_LNA_BG
))
1999 __set_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
);
2002 * When working with a RF2529 chip without double antenna
2003 * the antenna settings should be gathered from the NIC
2006 if (rt2x00_rf(&rt2x00dev
->chip
, RF2529
) &&
2007 !test_bit(CONFIG_DOUBLE_ANTENNA
, &rt2x00dev
->flags
)) {
2008 switch (rt2x00_get_field16(eeprom
, EEPROM_NIC_TX_RX_FIXED
)) {
2010 rt2x00dev
->default_ant
.tx
= ANTENNA_B
;
2011 rt2x00dev
->default_ant
.rx
= ANTENNA_A
;
2014 rt2x00dev
->default_ant
.tx
= ANTENNA_B
;
2015 rt2x00dev
->default_ant
.rx
= ANTENNA_B
;
2018 rt2x00dev
->default_ant
.tx
= ANTENNA_A
;
2019 rt2x00dev
->default_ant
.rx
= ANTENNA_A
;
2022 rt2x00dev
->default_ant
.tx
= ANTENNA_A
;
2023 rt2x00dev
->default_ant
.rx
= ANTENNA_B
;
2027 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_TX_DIVERSITY
))
2028 rt2x00dev
->default_ant
.tx
= ANTENNA_SW_DIVERSITY
;
2029 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_ENABLE_DIVERSITY
))
2030 rt2x00dev
->default_ant
.rx
= ANTENNA_SW_DIVERSITY
;
2034 * Store led settings, for correct led behaviour.
2035 * If the eeprom value is invalid,
2036 * switch to default led mode.
2038 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
, &eeprom
);
2040 rt2x00dev
->led_mode
= rt2x00_get_field16(eeprom
, EEPROM_LED_LED_MODE
);
2042 rt2x00_set_field16(&rt2x00dev
->led_reg
, MCU_LEDCS_LED_MODE
,
2043 rt2x00dev
->led_mode
);
2044 rt2x00_set_field16(&rt2x00dev
->led_reg
, MCU_LEDCS_POLARITY_GPIO_0
,
2045 rt2x00_get_field16(eeprom
,
2046 EEPROM_LED_POLARITY_GPIO_0
));
2047 rt2x00_set_field16(&rt2x00dev
->led_reg
, MCU_LEDCS_POLARITY_GPIO_1
,
2048 rt2x00_get_field16(eeprom
,
2049 EEPROM_LED_POLARITY_GPIO_1
));
2050 rt2x00_set_field16(&rt2x00dev
->led_reg
, MCU_LEDCS_POLARITY_GPIO_2
,
2051 rt2x00_get_field16(eeprom
,
2052 EEPROM_LED_POLARITY_GPIO_2
));
2053 rt2x00_set_field16(&rt2x00dev
->led_reg
, MCU_LEDCS_POLARITY_GPIO_3
,
2054 rt2x00_get_field16(eeprom
,
2055 EEPROM_LED_POLARITY_GPIO_3
));
2056 rt2x00_set_field16(&rt2x00dev
->led_reg
, MCU_LEDCS_POLARITY_GPIO_4
,
2057 rt2x00_get_field16(eeprom
,
2058 EEPROM_LED_POLARITY_GPIO_4
));
2059 rt2x00_set_field16(&rt2x00dev
->led_reg
, MCU_LEDCS_POLARITY_ACT
,
2060 rt2x00_get_field16(eeprom
, EEPROM_LED_POLARITY_ACT
));
2061 rt2x00_set_field16(&rt2x00dev
->led_reg
, MCU_LEDCS_POLARITY_READY_BG
,
2062 rt2x00_get_field16(eeprom
,
2063 EEPROM_LED_POLARITY_RDY_G
));
2064 rt2x00_set_field16(&rt2x00dev
->led_reg
, MCU_LEDCS_POLARITY_READY_A
,
2065 rt2x00_get_field16(eeprom
,
2066 EEPROM_LED_POLARITY_RDY_A
));
2072 * RF value list for RF5225 & RF5325
2073 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2075 static const struct rf_channel rf_vals_noseq
[] = {
2076 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2077 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2078 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2079 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2080 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2081 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2082 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2083 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2084 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2085 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2086 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2087 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2088 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2089 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2091 /* 802.11 UNI / HyperLan 2 */
2092 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2093 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2094 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2095 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2096 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2097 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2098 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2099 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2101 /* 802.11 HyperLan 2 */
2102 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2103 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2104 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2105 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2106 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2107 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2108 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2109 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2110 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2111 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2114 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2115 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2116 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2117 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2118 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2119 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2121 /* MMAC(Japan)J52 ch 34,38,42,46 */
2122 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2123 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2124 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2125 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2129 * RF value list for RF5225 & RF5325
2130 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2132 static const struct rf_channel rf_vals_seq
[] = {
2133 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2134 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2135 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2136 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2137 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2138 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2139 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2140 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2141 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2142 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2143 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2144 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2145 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2146 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2148 /* 802.11 UNI / HyperLan 2 */
2149 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2150 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2151 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2152 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2153 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2154 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2155 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2156 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2158 /* 802.11 HyperLan 2 */
2159 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2160 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2161 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2162 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2163 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2164 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2165 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2166 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2167 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2168 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2171 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2172 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2173 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2174 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2175 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2176 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2178 /* MMAC(Japan)J52 ch 34,38,42,46 */
2179 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2180 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2181 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2182 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2185 static void rt61pci_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
2187 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
2192 * Initialize all hw fields.
2194 rt2x00dev
->hw
->flags
=
2195 IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE
|
2196 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
;
2197 rt2x00dev
->hw
->extra_tx_headroom
= 0;
2198 rt2x00dev
->hw
->max_signal
= MAX_SIGNAL
;
2199 rt2x00dev
->hw
->max_rssi
= MAX_RX_SSI
;
2200 rt2x00dev
->hw
->queues
= 5;
2202 SET_IEEE80211_DEV(rt2x00dev
->hw
, &rt2x00dev_pci(rt2x00dev
)->dev
);
2203 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
2204 rt2x00_eeprom_addr(rt2x00dev
,
2205 EEPROM_MAC_ADDR_0
));
2208 * Convert tx_power array in eeprom.
2210 txpower
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_G_START
);
2211 for (i
= 0; i
< 14; i
++)
2212 txpower
[i
] = TXPOWER_FROM_DEV(txpower
[i
]);
2215 * Initialize hw_mode information.
2217 spec
->num_modes
= 2;
2218 spec
->num_rates
= 12;
2219 spec
->tx_power_a
= NULL
;
2220 spec
->tx_power_bg
= txpower
;
2221 spec
->tx_power_default
= DEFAULT_TXPOWER
;
2223 if (!test_bit(CONFIG_RF_SEQUENCE
, &rt2x00dev
->flags
)) {
2224 spec
->num_channels
= 14;
2225 spec
->channels
= rf_vals_noseq
;
2227 spec
->num_channels
= 14;
2228 spec
->channels
= rf_vals_seq
;
2231 if (rt2x00_rf(&rt2x00dev
->chip
, RF5225
) ||
2232 rt2x00_rf(&rt2x00dev
->chip
, RF5325
)) {
2233 spec
->num_modes
= 3;
2234 spec
->num_channels
= ARRAY_SIZE(rf_vals_seq
);
2236 txpower
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_A_START
);
2237 for (i
= 0; i
< 14; i
++)
2238 txpower
[i
] = TXPOWER_FROM_DEV(txpower
[i
]);
2240 spec
->tx_power_a
= txpower
;
2244 static int rt61pci_probe_hw(struct rt2x00_dev
*rt2x00dev
)
2249 * Allocate eeprom data.
2251 retval
= rt61pci_validate_eeprom(rt2x00dev
);
2255 retval
= rt61pci_init_eeprom(rt2x00dev
);
2260 * Initialize hw specifications.
2262 rt61pci_probe_hw_mode(rt2x00dev
);
2265 * This device requires firmware
2267 __set_bit(DRIVER_REQUIRE_FIRMWARE
, &rt2x00dev
->flags
);
2270 * Set the rssi offset.
2272 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
2278 * IEEE80211 stack callback functions.
2280 static void rt61pci_configure_filter(struct ieee80211_hw
*hw
,
2281 unsigned int changed_flags
,
2282 unsigned int *total_flags
,
2284 struct dev_addr_list
*mc_list
)
2286 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2290 * Mask off any flags we are going to ignore from
2291 * the total_flags field.
2302 * Apply some rules to the filters:
2303 * - Some filters imply different filters to be set.
2304 * - Some things we can't filter out at all.
2305 * - Multicast filter seems to kill broadcast traffic so never use it.
2307 *total_flags
|= FIF_ALLMULTI
;
2308 if (*total_flags
& FIF_OTHER_BSS
||
2309 *total_flags
& FIF_PROMISC_IN_BSS
)
2310 *total_flags
|= FIF_PROMISC_IN_BSS
| FIF_OTHER_BSS
;
2313 * Check if there is any work left for us.
2315 if (rt2x00dev
->packet_filter
== *total_flags
)
2317 rt2x00dev
->packet_filter
= *total_flags
;
2320 * Start configuration steps.
2321 * Note that the version error will always be dropped
2322 * and broadcast frames will always be accepted since
2323 * there is no filter for it at this time.
2325 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
2326 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CRC
,
2327 !(*total_flags
& FIF_FCSFAIL
));
2328 rt2x00_set_field32(®
, TXRX_CSR0_DROP_PHYSICAL
,
2329 !(*total_flags
& FIF_PLCPFAIL
));
2330 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CONTROL
,
2331 !(*total_flags
& FIF_CONTROL
));
2332 rt2x00_set_field32(®
, TXRX_CSR0_DROP_NOT_TO_ME
,
2333 !(*total_flags
& FIF_PROMISC_IN_BSS
));
2334 rt2x00_set_field32(®
, TXRX_CSR0_DROP_TO_DS
,
2335 !(*total_flags
& FIF_PROMISC_IN_BSS
));
2336 rt2x00_set_field32(®
, TXRX_CSR0_DROP_VERSION_ERROR
, 1);
2337 rt2x00_set_field32(®
, TXRX_CSR0_DROP_MULTICAST
,
2338 !(*total_flags
& FIF_ALLMULTI
));
2339 rt2x00_set_field32(®
, TXRX_CSR0_DROP_BORADCAST
, 0);
2340 rt2x00_set_field32(®
, TXRX_CSR0_DROP_ACK_CTS
, 1);
2341 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
2344 static int rt61pci_set_retry_limit(struct ieee80211_hw
*hw
,
2345 u32 short_retry
, u32 long_retry
)
2347 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2350 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR4
, ®
);
2351 rt2x00_set_field32(®
, TXRX_CSR4_LONG_RETRY_LIMIT
, long_retry
);
2352 rt2x00_set_field32(®
, TXRX_CSR4_SHORT_RETRY_LIMIT
, short_retry
);
2353 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
2358 static u64
rt61pci_get_tsf(struct ieee80211_hw
*hw
)
2360 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2364 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR13
, ®
);
2365 tsf
= (u64
) rt2x00_get_field32(reg
, TXRX_CSR13_HIGH_TSFTIMER
) << 32;
2366 rt2x00pci_register_read(rt2x00dev
, TXRX_CSR12
, ®
);
2367 tsf
|= rt2x00_get_field32(reg
, TXRX_CSR12_LOW_TSFTIMER
);
2372 static void rt61pci_reset_tsf(struct ieee80211_hw
*hw
)
2374 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2376 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR12
, 0);
2377 rt2x00pci_register_write(rt2x00dev
, TXRX_CSR13
, 0);
2380 static int rt61pci_beacon_update(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
2381 struct ieee80211_tx_control
*control
)
2383 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2384 struct skb_desc
*desc
;
2385 struct data_ring
*ring
;
2386 struct data_entry
*entry
;
2389 * Just in case the ieee80211 doesn't set this,
2390 * but we need this queue set for the descriptor
2393 control
->queue
= IEEE80211_TX_QUEUE_BEACON
;
2394 ring
= rt2x00lib_get_ring(rt2x00dev
, control
->queue
);
2395 entry
= rt2x00_get_data_entry(ring
);
2398 * We need to append the descriptor in front of the
2401 if (skb_headroom(skb
) < TXD_DESC_SIZE
) {
2402 if (pskb_expand_head(skb
, TXD_DESC_SIZE
, 0, GFP_ATOMIC
)) {
2409 * Add the descriptor in front of the skb.
2411 skb_push(skb
, ring
->desc_size
);
2412 memset(skb
->data
, 0, ring
->desc_size
);
2415 * Fill in skb descriptor
2417 desc
= get_skb_desc(skb
);
2418 desc
->desc_len
= ring
->desc_size
;
2419 desc
->data_len
= skb
->len
- ring
->desc_size
;
2420 desc
->desc
= skb
->data
;
2421 desc
->data
= skb
->data
+ ring
->desc_size
;
2423 desc
->entry
= entry
;
2425 rt2x00lib_write_tx_desc(rt2x00dev
, skb
, control
);
2428 * Write entire beacon with descriptor to register,
2429 * and kick the beacon generator.
2431 rt2x00pci_register_multiwrite(rt2x00dev
, HW_BEACON_BASE0
,
2432 skb
->data
, skb
->len
);
2433 rt61pci_kick_tx_queue(rt2x00dev
, IEEE80211_TX_QUEUE_BEACON
);
2438 static const struct ieee80211_ops rt61pci_mac80211_ops
= {
2440 .start
= rt2x00mac_start
,
2441 .stop
= rt2x00mac_stop
,
2442 .add_interface
= rt2x00mac_add_interface
,
2443 .remove_interface
= rt2x00mac_remove_interface
,
2444 .config
= rt2x00mac_config
,
2445 .config_interface
= rt2x00mac_config_interface
,
2446 .configure_filter
= rt61pci_configure_filter
,
2447 .get_stats
= rt2x00mac_get_stats
,
2448 .set_retry_limit
= rt61pci_set_retry_limit
,
2449 .bss_info_changed
= rt2x00mac_bss_info_changed
,
2450 .conf_tx
= rt2x00mac_conf_tx
,
2451 .get_tx_stats
= rt2x00mac_get_tx_stats
,
2452 .get_tsf
= rt61pci_get_tsf
,
2453 .reset_tsf
= rt61pci_reset_tsf
,
2454 .beacon_update
= rt61pci_beacon_update
,
2457 static const struct rt2x00lib_ops rt61pci_rt2x00_ops
= {
2458 .irq_handler
= rt61pci_interrupt
,
2459 .probe_hw
= rt61pci_probe_hw
,
2460 .get_firmware_name
= rt61pci_get_firmware_name
,
2461 .load_firmware
= rt61pci_load_firmware
,
2462 .initialize
= rt2x00pci_initialize
,
2463 .uninitialize
= rt2x00pci_uninitialize
,
2464 .init_rxentry
= rt61pci_init_rxentry
,
2465 .init_txentry
= rt61pci_init_txentry
,
2466 .set_device_state
= rt61pci_set_device_state
,
2467 .rfkill_poll
= rt61pci_rfkill_poll
,
2468 .link_stats
= rt61pci_link_stats
,
2469 .reset_tuner
= rt61pci_reset_tuner
,
2470 .link_tuner
= rt61pci_link_tuner
,
2471 .write_tx_desc
= rt61pci_write_tx_desc
,
2472 .write_tx_data
= rt2x00pci_write_tx_data
,
2473 .kick_tx_queue
= rt61pci_kick_tx_queue
,
2474 .fill_rxdone
= rt61pci_fill_rxdone
,
2475 .config_mac_addr
= rt61pci_config_mac_addr
,
2476 .config_bssid
= rt61pci_config_bssid
,
2477 .config_type
= rt61pci_config_type
,
2478 .config_preamble
= rt61pci_config_preamble
,
2479 .config
= rt61pci_config
,
2482 static const struct rt2x00_ops rt61pci_ops
= {
2483 .name
= KBUILD_MODNAME
,
2484 .rxd_size
= RXD_DESC_SIZE
,
2485 .txd_size
= TXD_DESC_SIZE
,
2486 .eeprom_size
= EEPROM_SIZE
,
2488 .lib
= &rt61pci_rt2x00_ops
,
2489 .hw
= &rt61pci_mac80211_ops
,
2490 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2491 .debugfs
= &rt61pci_rt2x00debug
,
2492 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2496 * RT61pci module information.
2498 static struct pci_device_id rt61pci_device_table
[] = {
2500 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops
) },
2502 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops
) },
2504 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops
) },
2508 MODULE_AUTHOR(DRV_PROJECT
);
2509 MODULE_VERSION(DRV_VERSION
);
2510 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2511 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2512 "PCI & PCMCIA chipset based cards");
2513 MODULE_DEVICE_TABLE(pci
, rt61pci_device_table
);
2514 MODULE_FIRMWARE(FIRMWARE_RT2561
);
2515 MODULE_FIRMWARE(FIRMWARE_RT2561s
);
2516 MODULE_FIRMWARE(FIRMWARE_RT2661
);
2517 MODULE_LICENSE("GPL");
2519 static struct pci_driver rt61pci_driver
= {
2520 .name
= KBUILD_MODNAME
,
2521 .id_table
= rt61pci_device_table
,
2522 .probe
= rt2x00pci_probe
,
2523 .remove
= __devexit_p(rt2x00pci_remove
),
2524 .suspend
= rt2x00pci_suspend
,
2525 .resume
= rt2x00pci_resume
,
2528 static int __init
rt61pci_init(void)
2530 return pci_register_driver(&rt61pci_driver
);
2533 static void __exit
rt61pci_exit(void)
2535 pci_unregister_driver(&rt61pci_driver
);
2538 module_init(rt61pci_init
);
2539 module_exit(rt61pci_exit
);