x86: arch/x86/mm/init_32.c cleanup
[wrt350n-kernel.git] / drivers / edac / i3000_edac.c
blobe895f9f887abb8dbda0c45706e649a8cff8fd9c8
1 /*
2 * Intel 3000/3010 Memory Controller kernel module
3 * Copyright (C) 2007 Akamai Technologies, Inc.
4 * Shamelessly copied from:
5 * Intel D82875P Memory Controller kernel module
6 * (C) 2003 Linux Networx (http://lnxi.com)
8 * This file may be distributed under the terms of the
9 * GNU General Public License.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/pci_ids.h>
16 #include <linux/slab.h>
17 #include "edac_core.h"
19 #define I3000_REVISION "1.1"
21 #define EDAC_MOD_STR "i3000_edac"
23 #define I3000_RANKS 8
24 #define I3000_RANKS_PER_CHANNEL 4
25 #define I3000_CHANNELS 2
27 /* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
29 #define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */
30 #define I3000_MCHBAR_MASK 0xffffc000
31 #define I3000_MMR_WINDOW_SIZE 16384
33 #define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b)
35 * 7:1 reserved
36 * 0 bit 32 of address
38 #define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b)
40 * 31:7 address
41 * 6:1 reserved
42 * 0 Error channel 0/1
44 #define I3000_DEAP_GRAIN (1 << 7)
45 #define I3000_DEAP_PFN(edeap, deap) ((((edeap) & 1) << (32 - PAGE_SHIFT)) | \
46 ((deap) >> PAGE_SHIFT))
47 #define I3000_DEAP_OFFSET(deap) ((deap) & ~(I3000_DEAP_GRAIN-1) & ~PAGE_MASK)
48 #define I3000_DEAP_CHANNEL(deap) ((deap) & 1)
50 #define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b)
52 * 7:0 DRAM ECC Syndrome
55 #define I3000_ERRSTS 0xc8 /* Error Status Register (16b)
57 * 15:12 reserved
58 * 11 MCH Thermal Sensor Event for SMI/SCI/SERR
59 * 10 reserved
60 * 9 LOCK to non-DRAM Memory Flag (LCKF)
61 * 8 Received Refresh Timeout Flag (RRTOF)
62 * 7:2 reserved
63 * 1 Multiple-bit DRAM ECC Error Flag (DMERR)
64 * 0 Single-bit DRAM ECC Error Flag (DSERR)
66 #define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */
67 #define I3000_ERRSTS_UE 0x0002
68 #define I3000_ERRSTS_CE 0x0001
70 #define I3000_ERRCMD 0xca /* Error Command (16b)
72 * 15:12 reserved
73 * 11 SERR on MCH Thermal Sensor Event (TSESERR)
74 * 10 reserved
75 * 9 SERR on LOCK to non-DRAM Memory (LCKERR)
76 * 8 SERR on DRAM Refresh Timeout (DRTOERR)
77 * 7:2 reserved
78 * 1 SERR Multiple-Bit DRAM ECC Error (DMERR)
79 * 0 SERR on Single-Bit ECC Error (DSERR)
82 /* Intel MMIO register space - device 0 function 0 - MMR space */
84 #define I3000_DRB_SHIFT 25 /* 32MiB grain */
86 #define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4)
88 * 7:0 Channel 0 DRAM Rank Boundary Address
90 #define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4)
92 * 7:0 Channel 1 DRAM Rank Boundary Address
95 #define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2)
97 * 7 reserved
98 * 6:4 DRAM odd Rank Attribute
99 * 3 reserved
100 * 2:0 DRAM even Rank Attribute
102 * Each attribute defines the page
103 * size of the corresponding rank:
104 * 000: unpopulated
105 * 001: reserved
106 * 010: 4 KB
107 * 011: 8 KB
108 * 100: 16 KB
109 * Others: reserved
111 #define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */
112 #define ODD_RANK_ATTRIB(dra) (((dra) & 0x70) >> 4)
113 #define EVEN_RANK_ATTRIB(dra) ((dra) & 0x07)
115 #define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b)
117 * 31:30 reserved
118 * 29 Initialization Complete (IC)
119 * 28:11 reserved
120 * 10:8 Refresh Mode Select (RMS)
121 * 7 reserved
122 * 6:4 Mode Select (SMS)
123 * 3:2 reserved
124 * 1:0 DRAM Type (DT)
127 #define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b)
129 * 31 Enhanced Addressing Enable (ENHADE)
130 * 30:0 reserved
133 enum i3000p_chips {
134 I3000 = 0,
137 struct i3000_dev_info {
138 const char *ctl_name;
141 struct i3000_error_info {
142 u16 errsts;
143 u8 derrsyn;
144 u8 edeap;
145 u32 deap;
146 u16 errsts2;
149 static const struct i3000_dev_info i3000_devs[] = {
150 [I3000] = {
151 .ctl_name = "i3000"},
154 static struct pci_dev *mci_pdev;
155 static int i3000_registered = 1;
156 static struct edac_pci_ctl_info *i3000_pci;
158 static void i3000_get_error_info(struct mem_ctl_info *mci,
159 struct i3000_error_info *info)
161 struct pci_dev *pdev;
163 pdev = to_pci_dev(mci->dev);
166 * This is a mess because there is no atomic way to read all the
167 * registers at once and the registers can transition from CE being
168 * overwritten by UE.
170 pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
171 if (!(info->errsts & I3000_ERRSTS_BITS))
172 return;
173 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
174 pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
175 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
176 pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
179 * If the error is the same for both reads then the first set
180 * of reads is valid. If there is a change then there is a CE
181 * with no info and the second set of reads is valid and
182 * should be UE info.
184 if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
185 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
186 pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
187 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
190 /* Clear any error bits.
191 * (Yes, we really clear bits by writing 1 to them.)
193 pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
194 I3000_ERRSTS_BITS);
197 static int i3000_process_error_info(struct mem_ctl_info *mci,
198 struct i3000_error_info *info,
199 int handle_errors)
201 int row, multi_chan;
202 int pfn, offset, channel;
204 multi_chan = mci->csrows[0].nr_channels - 1;
206 if (!(info->errsts & I3000_ERRSTS_BITS))
207 return 0;
209 if (!handle_errors)
210 return 1;
212 if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
213 edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
214 info->errsts = info->errsts2;
217 pfn = I3000_DEAP_PFN(info->edeap, info->deap);
218 offset = I3000_DEAP_OFFSET(info->deap);
219 channel = I3000_DEAP_CHANNEL(info->deap);
221 row = edac_mc_find_csrow_by_page(mci, pfn);
223 if (info->errsts & I3000_ERRSTS_UE)
224 edac_mc_handle_ue(mci, pfn, offset, row, "i3000 UE");
225 else
226 edac_mc_handle_ce(mci, pfn, offset, info->derrsyn, row,
227 multi_chan ? channel : 0, "i3000 CE");
229 return 1;
232 static void i3000_check(struct mem_ctl_info *mci)
234 struct i3000_error_info info;
236 debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
237 i3000_get_error_info(mci, &info);
238 i3000_process_error_info(mci, &info, 1);
241 static int i3000_is_interleaved(const unsigned char *c0dra,
242 const unsigned char *c1dra,
243 const unsigned char *c0drb,
244 const unsigned char *c1drb)
246 int i;
248 /* If the channels aren't populated identically then
249 * we're not interleaved.
251 for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
252 if (ODD_RANK_ATTRIB(c0dra[i]) != ODD_RANK_ATTRIB(c1dra[i]) ||
253 EVEN_RANK_ATTRIB(c0dra[i]) !=
254 EVEN_RANK_ATTRIB(c1dra[i]))
255 return 0;
257 /* If the rank boundaries for the two channels are different
258 * then we're not interleaved.
260 for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
261 if (c0drb[i] != c1drb[i])
262 return 0;
264 return 1;
267 static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
269 int rc;
270 int i;
271 struct mem_ctl_info *mci = NULL;
272 unsigned long last_cumul_size;
273 int interleaved, nr_channels;
274 unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
275 unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
276 unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
277 unsigned long mchbar;
278 void __iomem *window;
280 debugf0("MC: %s()\n", __func__);
282 pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
283 mchbar &= I3000_MCHBAR_MASK;
284 window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
285 if (!window) {
286 printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
287 mchbar);
288 return -ENODEV;
291 c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */
292 c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */
293 c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */
294 c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */
296 for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
297 c0drb[i] = readb(window + I3000_C0DRB + i);
298 c1drb[i] = readb(window + I3000_C1DRB + i);
301 iounmap(window);
303 /* Figure out how many channels we have.
305 * If we have what the datasheet calls "asymmetric channels"
306 * (essentially the same as what was called "virtual single
307 * channel mode" in the i82875) then it's a single channel as
308 * far as EDAC is concerned.
310 interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
311 nr_channels = interleaved ? 2 : 1;
312 mci = edac_mc_alloc(0, I3000_RANKS / nr_channels, nr_channels, 0);
313 if (!mci)
314 return -ENOMEM;
316 debugf3("MC: %s(): init mci\n", __func__);
318 mci->dev = &pdev->dev;
319 mci->mtype_cap = MEM_FLAG_DDR2;
321 mci->edac_ctl_cap = EDAC_FLAG_SECDED;
322 mci->edac_cap = EDAC_FLAG_SECDED;
324 mci->mod_name = EDAC_MOD_STR;
325 mci->mod_ver = I3000_REVISION;
326 mci->ctl_name = i3000_devs[dev_idx].ctl_name;
327 mci->dev_name = pci_name(pdev);
328 mci->edac_check = i3000_check;
329 mci->ctl_page_to_phys = NULL;
332 * The dram rank boundary (DRB) reg values are boundary addresses
333 * for each DRAM rank with a granularity of 32MB. DRB regs are
334 * cumulative; the last one will contain the total memory
335 * contained in all ranks.
337 * If we're in interleaved mode then we're only walking through
338 * the ranks of controller 0, so we double all the values we see.
340 for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
341 u8 value;
342 u32 cumul_size;
343 struct csrow_info *csrow = &mci->csrows[i];
345 value = drb[i];
346 cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
347 if (interleaved)
348 cumul_size <<= 1;
349 debugf3("MC: %s(): (%d) cumul_size 0x%x\n",
350 __func__, i, cumul_size);
351 if (cumul_size == last_cumul_size) {
352 csrow->mtype = MEM_EMPTY;
353 continue;
356 csrow->first_page = last_cumul_size;
357 csrow->last_page = cumul_size - 1;
358 csrow->nr_pages = cumul_size - last_cumul_size;
359 last_cumul_size = cumul_size;
360 csrow->grain = I3000_DEAP_GRAIN;
361 csrow->mtype = MEM_DDR2;
362 csrow->dtype = DEV_UNKNOWN;
363 csrow->edac_mode = EDAC_UNKNOWN;
366 /* Clear any error bits.
367 * (Yes, we really clear bits by writing 1 to them.)
369 pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
370 I3000_ERRSTS_BITS);
372 rc = -ENODEV;
373 if (edac_mc_add_mc(mci)) {
374 debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
375 goto fail;
378 /* allocating generic PCI control info */
379 i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
380 if (!i3000_pci) {
381 printk(KERN_WARNING
382 "%s(): Unable to create PCI control\n",
383 __func__);
384 printk(KERN_WARNING
385 "%s(): PCI error report via EDAC not setup\n",
386 __func__);
389 /* get this far and it's successful */
390 debugf3("MC: %s(): success\n", __func__);
391 return 0;
393 fail:
394 if (mci)
395 edac_mc_free(mci);
397 return rc;
400 /* returns count (>= 0), or negative on error */
401 static int __devinit i3000_init_one(struct pci_dev *pdev,
402 const struct pci_device_id *ent)
404 int rc;
406 debugf0("MC: %s()\n", __func__);
408 if (pci_enable_device(pdev) < 0)
409 return -EIO;
411 rc = i3000_probe1(pdev, ent->driver_data);
412 if (mci_pdev == NULL)
413 mci_pdev = pci_dev_get(pdev);
415 return rc;
418 static void __devexit i3000_remove_one(struct pci_dev *pdev)
420 struct mem_ctl_info *mci;
422 debugf0("%s()\n", __func__);
424 if (i3000_pci)
425 edac_pci_release_generic_ctl(i3000_pci);
427 if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
428 return;
430 edac_mc_free(mci);
433 static const struct pci_device_id i3000_pci_tbl[] __devinitdata = {
435 PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
436 I3000},
439 } /* 0 terminated list. */
442 MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
444 static struct pci_driver i3000_driver = {
445 .name = EDAC_MOD_STR,
446 .probe = i3000_init_one,
447 .remove = __devexit_p(i3000_remove_one),
448 .id_table = i3000_pci_tbl,
451 static int __init i3000_init(void)
453 int pci_rc;
455 debugf3("MC: %s()\n", __func__);
456 pci_rc = pci_register_driver(&i3000_driver);
457 if (pci_rc < 0)
458 goto fail0;
460 if (mci_pdev == NULL) {
461 i3000_registered = 0;
462 mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
463 PCI_DEVICE_ID_INTEL_3000_HB, NULL);
464 if (!mci_pdev) {
465 debugf0("i3000 pci_get_device fail\n");
466 pci_rc = -ENODEV;
467 goto fail1;
470 pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
471 if (pci_rc < 0) {
472 debugf0("i3000 init fail\n");
473 pci_rc = -ENODEV;
474 goto fail1;
478 return 0;
480 fail1:
481 pci_unregister_driver(&i3000_driver);
483 fail0:
484 if (mci_pdev)
485 pci_dev_put(mci_pdev);
487 return pci_rc;
490 static void __exit i3000_exit(void)
492 debugf3("MC: %s()\n", __func__);
494 pci_unregister_driver(&i3000_driver);
495 if (!i3000_registered) {
496 i3000_remove_one(mci_pdev);
497 pci_dev_put(mci_pdev);
501 module_init(i3000_init);
502 module_exit(i3000_exit);
504 MODULE_LICENSE("GPL");
505 MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
506 MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");