2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
13 #include <asm/processor.h>
14 #include <asm/tlbflush.h>
15 #include <asm/sections.h>
16 #include <asm/uaccess.h>
17 #include <asm/pgalloc.h>
20 * The current flushing context - we pass it instead of 5 arguments:
31 within(unsigned long addr
, unsigned long start
, unsigned long end
)
33 return addr
>= start
&& addr
< end
;
41 * clflush_cache_range - flush a cache range with clflush
42 * @addr: virtual start address
43 * @size: number of bytes to flush
45 * clflush is an unordered instruction which needs fencing with mfence
46 * to avoid ordering issues.
48 void clflush_cache_range(void *vaddr
, unsigned int size
)
50 void *vend
= vaddr
+ size
- 1;
54 for (; vaddr
< vend
; vaddr
+= boot_cpu_data
.x86_clflush_size
)
57 * Flush any possible final partial cacheline:
64 static void __cpa_flush_all(void *arg
)
66 unsigned long cache
= (unsigned long)arg
;
69 * Flush all to work around Errata in early athlons regarding
70 * large page flushing.
74 if (cache
&& boot_cpu_data
.x86_model
>= 4)
78 static void cpa_flush_all(unsigned long cache
)
80 BUG_ON(irqs_disabled());
82 on_each_cpu(__cpa_flush_all
, (void *) cache
, 1, 1);
85 static void __cpa_flush_range(void *arg
)
88 * We could optimize that further and do individual per page
89 * tlb invalidates for a low number of pages. Caveat: we must
90 * flush the high aliases on 64bit as well.
95 static void cpa_flush_range(unsigned long start
, int numpages
, int cache
)
97 unsigned int i
, level
;
100 BUG_ON(irqs_disabled());
101 WARN_ON(PAGE_ALIGN(start
) != start
);
103 on_each_cpu(__cpa_flush_range
, NULL
, 1, 1);
109 * We only need to flush on one CPU,
110 * clflush is a MESI-coherent instruction that
111 * will cause all other CPUs to flush the same
114 for (i
= 0, addr
= start
; i
< numpages
; i
++, addr
+= PAGE_SIZE
) {
115 pte_t
*pte
= lookup_address(addr
, &level
);
118 * Only flush present addresses:
120 if (pte
&& (pte_val(*pte
) & _PAGE_PRESENT
))
121 clflush_cache_range((void *) addr
, PAGE_SIZE
);
125 #define HIGH_MAP_START __START_KERNEL_map
126 #define HIGH_MAP_END (__START_KERNEL_map + KERNEL_TEXT_SIZE)
130 * Converts a virtual address to a X86-64 highmap address
132 static unsigned long virt_to_highmap(void *address
)
135 return __pa((unsigned long)address
) + HIGH_MAP_START
- phys_base
;
137 return (unsigned long)address
;
142 * Certain areas of memory on x86 require very specific protection flags,
143 * for example the BIOS area or kernel text. Callers don't always get this
144 * right (again, ioremap() on BIOS memory is not uncommon) so this function
145 * checks and fixes these known static required protection bits.
147 static inline pgprot_t
static_protections(pgprot_t prot
, unsigned long address
)
149 pgprot_t forbidden
= __pgprot(0);
152 * The BIOS area between 640k and 1Mb needs to be executable for
153 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
155 if (within(__pa(address
), BIOS_BEGIN
, BIOS_END
))
156 pgprot_val(forbidden
) |= _PAGE_NX
;
159 * The kernel text needs to be executable for obvious reasons
160 * Does not cover __inittext since that is gone later on
162 if (within(address
, (unsigned long)_text
, (unsigned long)_etext
))
163 pgprot_val(forbidden
) |= _PAGE_NX
;
165 * Do the same for the x86-64 high kernel mapping
167 if (within(address
, virt_to_highmap(_text
), virt_to_highmap(_etext
)))
168 pgprot_val(forbidden
) |= _PAGE_NX
;
171 #ifdef CONFIG_DEBUG_RODATA
172 /* The .rodata section needs to be read-only */
173 if (within(address
, (unsigned long)__start_rodata
,
174 (unsigned long)__end_rodata
))
175 pgprot_val(forbidden
) |= _PAGE_RW
;
177 * Do the same for the x86-64 high kernel mapping
179 if (within(address
, virt_to_highmap(__start_rodata
),
180 virt_to_highmap(__end_rodata
)))
181 pgprot_val(forbidden
) |= _PAGE_RW
;
184 prot
= __pgprot(pgprot_val(prot
) & ~pgprot_val(forbidden
));
190 * Lookup the page table entry for a virtual address. Return a pointer
191 * to the entry and the level of the mapping.
193 * Note: We return pud and pmd either when the entry is marked large
194 * or when the present bit is not set. Otherwise we would return a
195 * pointer to a nonexisting mapping.
197 pte_t
*lookup_address(unsigned long address
, int *level
)
199 pgd_t
*pgd
= pgd_offset_k(address
);
203 *level
= PG_LEVEL_NONE
;
208 pud
= pud_offset(pgd
, address
);
212 *level
= PG_LEVEL_1G
;
213 if (pud_large(*pud
) || !pud_present(*pud
))
216 pmd
= pmd_offset(pud
, address
);
220 *level
= PG_LEVEL_2M
;
221 if (pmd_large(*pmd
) || !pmd_present(*pmd
))
224 *level
= PG_LEVEL_4K
;
226 return pte_offset_kernel(pmd
, address
);
230 * Set the new pmd in all the pgds we know about:
232 static void __set_pmd_pte(pte_t
*kpte
, unsigned long address
, pte_t pte
)
235 set_pte_atomic(kpte
, pte
);
237 if (!SHARED_KERNEL_PMD
) {
240 list_for_each_entry(page
, &pgd_list
, lru
) {
245 pgd
= (pgd_t
*)page_address(page
) + pgd_index(address
);
246 pud
= pud_offset(pgd
, address
);
247 pmd
= pmd_offset(pud
, address
);
248 set_pte_atomic((pte_t
*)pmd
, pte
);
255 try_preserve_large_page(pte_t
*kpte
, unsigned long address
,
256 struct cpa_data
*cpa
)
258 unsigned long nextpage_addr
, numpages
, pmask
, psize
, flags
;
259 pte_t new_pte
, old_pte
, *tmp
;
260 pgprot_t old_prot
, new_prot
;
261 int level
, do_split
= 1;
264 * An Athlon 64 X2 showed hard hangs if we tried to preserve
265 * largepages and changed the PSE entry from RW to RO.
267 * As AMD CPUs have a long series of erratas in this area,
268 * (and none of the known ones seem to explain this hang),
269 * disable this code until the hang can be debugged:
271 if (boot_cpu_data
.x86_vendor
== X86_VENDOR_AMD
)
274 spin_lock_irqsave(&pgd_lock
, flags
);
276 * Check for races, another CPU might have split this page
279 tmp
= lookup_address(address
, &level
);
285 psize
= PMD_PAGE_SIZE
;
286 pmask
= PMD_PAGE_MASK
;
290 psize
= PMD_PAGE_SIZE
;
291 pmask
= PMD_PAGE_MASK
;
300 * Calculate the number of pages, which fit into this large
301 * page starting at address:
303 nextpage_addr
= (address
+ psize
) & pmask
;
304 numpages
= (nextpage_addr
- address
) >> PAGE_SHIFT
;
305 if (numpages
< cpa
->numpages
)
306 cpa
->numpages
= numpages
;
309 * We are safe now. Check whether the new pgprot is the same:
312 old_prot
= new_prot
= pte_pgprot(old_pte
);
314 pgprot_val(new_prot
) &= ~pgprot_val(cpa
->mask_clr
);
315 pgprot_val(new_prot
) |= pgprot_val(cpa
->mask_set
);
316 new_prot
= static_protections(new_prot
, address
);
319 * If there are no changes, return. maxpages has been updated
322 if (pgprot_val(new_prot
) == pgprot_val(old_prot
)) {
328 * We need to change the attributes. Check, whether we can
329 * change the large page in one go. We request a split, when
330 * the address is not aligned and the number of pages is
331 * smaller than the number of pages in the large page. Note
332 * that we limited the number of possible pages already to
333 * the number of pages in the large page.
335 if (address
== (nextpage_addr
- psize
) && cpa
->numpages
== numpages
) {
337 * The address is aligned and the number of pages
338 * covers the full page.
340 new_pte
= pfn_pte(pte_pfn(old_pte
), canon_pgprot(new_prot
));
341 __set_pmd_pte(kpte
, address
, new_pte
);
347 spin_unlock_irqrestore(&pgd_lock
, flags
);
352 static int split_large_page(pte_t
*kpte
, unsigned long address
)
354 unsigned long flags
, addr
, pfn
, pfninc
= 1;
355 gfp_t gfp_flags
= GFP_KERNEL
;
356 unsigned int i
, level
;
361 #ifdef CONFIG_DEBUG_PAGEALLOC
362 gfp_flags
= GFP_ATOMIC
| __GFP_NOWARN
;
364 base
= alloc_pages(gfp_flags
, 0);
368 spin_lock_irqsave(&pgd_lock
, flags
);
370 * Check for races, another CPU might have split this page
373 tmp
= lookup_address(address
, &level
);
377 address
= __pa(address
);
378 addr
= address
& PMD_PAGE_MASK
;
379 pbase
= (pte_t
*)page_address(base
);
381 paravirt_alloc_pt(&init_mm
, page_to_pfn(base
));
383 ref_prot
= pte_pgprot(pte_clrhuge(*kpte
));
386 if (level
== PG_LEVEL_1G
) {
387 pfninc
= PMD_PAGE_SIZE
>> PAGE_SHIFT
;
388 pgprot_val(ref_prot
) |= _PAGE_PSE
;
389 addr
&= PUD_PAGE_MASK
;
394 * Get the target pfn from the original entry:
396 pfn
= pte_pfn(*kpte
);
397 for (i
= 0; i
< PTRS_PER_PTE
; i
++, pfn
+= pfninc
)
398 set_pte(&pbase
[i
], pfn_pte(pfn
, ref_prot
));
401 * Install the new, split up pagetable. Important details here:
403 * On Intel the NX bit of all levels must be cleared to make a
404 * page executable. See section 4.13.2 of Intel 64 and IA-32
405 * Architectures Software Developer's Manual).
407 * Mark the entry present. The current mapping might be
408 * set to not present, which we preserved above.
410 ref_prot
= pte_pgprot(pte_mkexec(pte_clrhuge(*kpte
)));
411 pgprot_val(ref_prot
) |= _PAGE_PRESENT
;
412 __set_pmd_pte(kpte
, address
, mk_pte(base
, ref_prot
));
416 spin_unlock_irqrestore(&pgd_lock
, flags
);
419 __free_pages(base
, 0);
424 static int __change_page_attr(unsigned long address
, struct cpa_data
*cpa
)
426 int level
, do_split
, err
;
427 struct page
*kpte_page
;
431 kpte
= lookup_address(address
, &level
);
435 kpte_page
= virt_to_page(kpte
);
436 BUG_ON(PageLRU(kpte_page
));
437 BUG_ON(PageCompound(kpte_page
));
439 if (level
== PG_LEVEL_4K
) {
440 pte_t new_pte
, old_pte
= *kpte
;
441 pgprot_t new_prot
= pte_pgprot(old_pte
);
443 if(!pte_val(old_pte
)) {
444 printk(KERN_WARNING
"CPA: called for zero pte. "
445 "vaddr = %lx cpa->vaddr = %lx\n", address
,
451 pgprot_val(new_prot
) &= ~pgprot_val(cpa
->mask_clr
);
452 pgprot_val(new_prot
) |= pgprot_val(cpa
->mask_set
);
454 new_prot
= static_protections(new_prot
, address
);
457 * We need to keep the pfn from the existing PTE,
458 * after all we're only going to change it's attributes
459 * not the memory it points to
461 new_pte
= pfn_pte(pte_pfn(old_pte
), canon_pgprot(new_prot
));
464 * Do we really change anything ?
466 if (pte_val(old_pte
) != pte_val(new_pte
)) {
467 set_pte_atomic(kpte
, new_pte
);
475 * Check, whether we can keep the large page intact
476 * and just change the pte:
478 do_split
= try_preserve_large_page(kpte
, address
, cpa
);
480 * When the range fits into the existing large page,
481 * return. cp->numpages and cpa->tlbflush have been updated in
488 * We have to split the large page:
490 err
= split_large_page(kpte
, address
);
500 * change_page_attr_addr - Change page table attributes in linear mapping
501 * @address: Virtual address in linear mapping.
502 * @prot: New page table attribute (PAGE_*)
504 * Change page attributes of a page in the direct mapping. This is a variant
505 * of change_page_attr() that also works on memory holes that do not have
506 * mem_map entry (pfn_valid() is false).
508 * See change_page_attr() documentation for more details.
510 * Modules and drivers should use the set_memory_* APIs instead.
512 static int change_page_attr_addr(struct cpa_data
*cpa
)
515 unsigned long address
= cpa
->vaddr
;
518 unsigned long phys_addr
= __pa(address
);
521 * If we are inside the high mapped kernel range, then we
522 * fixup the low mapping first. __va() returns the virtual
523 * address in the linear mapping:
525 if (within(address
, HIGH_MAP_START
, HIGH_MAP_END
))
526 address
= (unsigned long) __va(phys_addr
);
529 err
= __change_page_attr(address
, cpa
);
535 * If the physical address is inside the kernel map, we need
536 * to touch the high mapped kernel as well:
538 if (within(phys_addr
, 0, KERNEL_TEXT_SIZE
)) {
540 * Calc the high mapping address. See __phys_addr()
541 * for the non obvious details.
543 * Note that NX and other required permissions are
544 * checked in static_protections().
546 address
= phys_addr
+ HIGH_MAP_START
- phys_base
;
549 * Our high aliases are imprecise, because we check
550 * everything between 0 and KERNEL_TEXT_SIZE, so do
551 * not propagate lookup failures back to users:
553 __change_page_attr(address
, cpa
);
559 static int __change_page_attr_set_clr(struct cpa_data
*cpa
)
561 int ret
, numpages
= cpa
->numpages
;
565 * Store the remaining nr of pages for the large page
566 * preservation check.
568 cpa
->numpages
= numpages
;
569 ret
= change_page_attr_addr(cpa
);
574 * Adjust the number of pages with the result of the
575 * CPA operation. Either a large page has been
576 * preserved or a single page update happened.
578 BUG_ON(cpa
->numpages
> numpages
);
579 numpages
-= cpa
->numpages
;
580 cpa
->vaddr
+= cpa
->numpages
* PAGE_SIZE
;
585 static inline int cache_attr(pgprot_t attr
)
587 return pgprot_val(attr
) &
588 (_PAGE_PAT
| _PAGE_PAT_LARGE
| _PAGE_PWT
| _PAGE_PCD
);
591 static int change_page_attr_set_clr(unsigned long addr
, int numpages
,
592 pgprot_t mask_set
, pgprot_t mask_clr
)
598 * Check, if we are requested to change a not supported
601 mask_set
= canon_pgprot(mask_set
);
602 mask_clr
= canon_pgprot(mask_clr
);
603 if (!pgprot_val(mask_set
) && !pgprot_val(mask_clr
))
607 cpa
.numpages
= numpages
;
608 cpa
.mask_set
= mask_set
;
609 cpa
.mask_clr
= mask_clr
;
612 ret
= __change_page_attr_set_clr(&cpa
);
615 * Check whether we really changed something:
621 * No need to flush, when we did not set any of the caching
624 cache
= cache_attr(mask_set
);
627 * On success we use clflush, when the CPU supports it to
628 * avoid the wbindv. If the CPU does not support it and in the
629 * error case we fall back to cpa_flush_all (which uses
632 if (!ret
&& cpu_has_clflush
)
633 cpa_flush_range(addr
, numpages
, cache
);
635 cpa_flush_all(cache
);
640 static inline int change_page_attr_set(unsigned long addr
, int numpages
,
643 return change_page_attr_set_clr(addr
, numpages
, mask
, __pgprot(0));
646 static inline int change_page_attr_clear(unsigned long addr
, int numpages
,
649 return change_page_attr_set_clr(addr
, numpages
, __pgprot(0), mask
);
652 int set_memory_uc(unsigned long addr
, int numpages
)
654 return change_page_attr_set(addr
, numpages
,
655 __pgprot(_PAGE_PCD
| _PAGE_PWT
));
657 EXPORT_SYMBOL(set_memory_uc
);
659 int set_memory_wb(unsigned long addr
, int numpages
)
661 return change_page_attr_clear(addr
, numpages
,
662 __pgprot(_PAGE_PCD
| _PAGE_PWT
));
664 EXPORT_SYMBOL(set_memory_wb
);
666 int set_memory_x(unsigned long addr
, int numpages
)
668 return change_page_attr_clear(addr
, numpages
, __pgprot(_PAGE_NX
));
670 EXPORT_SYMBOL(set_memory_x
);
672 int set_memory_nx(unsigned long addr
, int numpages
)
674 return change_page_attr_set(addr
, numpages
, __pgprot(_PAGE_NX
));
676 EXPORT_SYMBOL(set_memory_nx
);
678 int set_memory_ro(unsigned long addr
, int numpages
)
680 return change_page_attr_clear(addr
, numpages
, __pgprot(_PAGE_RW
));
683 int set_memory_rw(unsigned long addr
, int numpages
)
685 return change_page_attr_set(addr
, numpages
, __pgprot(_PAGE_RW
));
688 int set_memory_np(unsigned long addr
, int numpages
)
690 return change_page_attr_clear(addr
, numpages
, __pgprot(_PAGE_PRESENT
));
693 int set_pages_uc(struct page
*page
, int numpages
)
695 unsigned long addr
= (unsigned long)page_address(page
);
697 return set_memory_uc(addr
, numpages
);
699 EXPORT_SYMBOL(set_pages_uc
);
701 int set_pages_wb(struct page
*page
, int numpages
)
703 unsigned long addr
= (unsigned long)page_address(page
);
705 return set_memory_wb(addr
, numpages
);
707 EXPORT_SYMBOL(set_pages_wb
);
709 int set_pages_x(struct page
*page
, int numpages
)
711 unsigned long addr
= (unsigned long)page_address(page
);
713 return set_memory_x(addr
, numpages
);
715 EXPORT_SYMBOL(set_pages_x
);
717 int set_pages_nx(struct page
*page
, int numpages
)
719 unsigned long addr
= (unsigned long)page_address(page
);
721 return set_memory_nx(addr
, numpages
);
723 EXPORT_SYMBOL(set_pages_nx
);
725 int set_pages_ro(struct page
*page
, int numpages
)
727 unsigned long addr
= (unsigned long)page_address(page
);
729 return set_memory_ro(addr
, numpages
);
732 int set_pages_rw(struct page
*page
, int numpages
)
734 unsigned long addr
= (unsigned long)page_address(page
);
736 return set_memory_rw(addr
, numpages
);
739 #ifdef CONFIG_DEBUG_PAGEALLOC
741 static int __set_pages_p(struct page
*page
, int numpages
)
743 struct cpa_data cpa
= { .vaddr
= (unsigned long) page_address(page
),
744 .numpages
= numpages
,
745 .mask_set
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
746 .mask_clr
= __pgprot(0)};
748 return __change_page_attr_set_clr(&cpa
);
751 static int __set_pages_np(struct page
*page
, int numpages
)
753 struct cpa_data cpa
= { .vaddr
= (unsigned long) page_address(page
),
754 .numpages
= numpages
,
755 .mask_set
= __pgprot(0),
756 .mask_clr
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
)};
758 return __change_page_attr_set_clr(&cpa
);
761 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
763 if (PageHighMem(page
))
766 debug_check_no_locks_freed(page_address(page
),
767 numpages
* PAGE_SIZE
);
771 * If page allocator is not up yet then do not call c_p_a():
773 if (!debug_pagealloc_enabled
)
777 * The return value is ignored - the calls cannot fail,
778 * large pages are disabled at boot time:
781 __set_pages_p(page
, numpages
);
783 __set_pages_np(page
, numpages
);
786 * We should perform an IPI and flush all tlbs,
787 * but that can deadlock->flush only current cpu:
794 * The testcases use internal knowledge of the implementation that shouldn't
795 * be exposed to the rest of the kernel. Include these directly here.
797 #ifdef CONFIG_CPA_DEBUG
798 #include "pageattr-test.c"