1 /*****************************************************************************/
4 * stallion.c -- stallion multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /*****************************************************************************/
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/serial.h>
35 #include <linux/cd1400.h>
36 #include <linux/sc26198.h>
37 #include <linux/comstats.h>
38 #include <linux/stallion.h>
39 #include <linux/ioport.h>
40 #include <linux/init.h>
41 #include <linux/smp_lock.h>
42 #include <linux/device.h>
43 #include <linux/delay.h>
44 #include <linux/ctype.h>
47 #include <asm/uaccess.h>
49 #include <linux/pci.h>
51 /*****************************************************************************/
54 * Define different board types. Use the standard Stallion "assigned"
55 * board numbers. Boards supported in this driver are abbreviated as
56 * EIO = EasyIO and ECH = EasyConnection 8/32.
62 #define BRD_ECH64PCI 27
63 #define BRD_EASYIOPCI 28
69 unsigned long memaddr
;
74 static unsigned int stl_nrbrds
;
76 /*****************************************************************************/
79 * Define some important driver characteristics. Device major numbers
80 * allocated as per Linux Device Registry.
82 #ifndef STL_SIOMEMMAJOR
83 #define STL_SIOMEMMAJOR 28
85 #ifndef STL_SERIALMAJOR
86 #define STL_SERIALMAJOR 24
88 #ifndef STL_CALLOUTMAJOR
89 #define STL_CALLOUTMAJOR 25
93 * Set the TX buffer size. Bigger is better, but we don't want
94 * to chew too much memory with buffers!
96 #define STL_TXBUFLOW 512
97 #define STL_TXBUFSIZE 4096
99 /*****************************************************************************/
102 * Define our local driver identity first. Set up stuff to deal with
103 * all the local structures required by a serial tty driver.
105 static char *stl_drvtitle
= "Stallion Multiport Serial Driver";
106 static char *stl_drvname
= "stallion";
107 static char *stl_drvversion
= "5.6.0";
109 static struct tty_driver
*stl_serial
;
112 * Define a local default termios struct. All ports will be created
113 * with this termios initially. Basically all it defines is a raw port
114 * at 9600, 8 data bits, 1 stop bit.
116 static struct ktermios stl_deftermios
= {
117 .c_cflag
= (B9600
| CS8
| CREAD
| HUPCL
| CLOCAL
),
124 * Define global place to put buffer overflow characters.
126 static char stl_unwanted
[SC26198_RXFIFOSIZE
];
128 /*****************************************************************************/
130 static DEFINE_MUTEX(stl_brdslock
);
131 static struct stlbrd
*stl_brds
[STL_MAXBRDS
];
134 * Per board state flags. Used with the state field of the board struct.
135 * Not really much here!
137 #define BRD_FOUND 0x1
138 #define STL_PROBED 0x2
142 * Define the port structure istate flags. These set of flags are
143 * modified at interrupt time - so setting and reseting them needs
144 * to be atomic. Use the bit clear/setting routines for this.
146 #define ASYI_TXBUSY 1
148 #define ASYI_DCDCHANGE 3
149 #define ASYI_TXFLOWED 4
152 * Define an array of board names as printable strings. Handy for
153 * referencing boards when printing trace and stuff.
155 static char *stl_brdnames
[] = {
187 /*****************************************************************************/
190 * Define some string labels for arguments passed from the module
191 * load line. These allow for easy board definitions, and easy
192 * modification of the io, memory and irq resoucres.
194 static unsigned int stl_nargs
;
195 static char *board0
[4];
196 static char *board1
[4];
197 static char *board2
[4];
198 static char *board3
[4];
200 static char **stl_brdsp
[] = {
208 * Define a set of common board names, and types. This is used to
209 * parse any module arguments.
216 { "easyio", BRD_EASYIO
},
217 { "eio", BRD_EASYIO
},
218 { "20", BRD_EASYIO
},
219 { "ec8/32", BRD_ECH
},
220 { "ec8/32-at", BRD_ECH
},
221 { "ec8/32-isa", BRD_ECH
},
223 { "echat", BRD_ECH
},
225 { "ec8/32-mc", BRD_ECHMC
},
226 { "ec8/32-mca", BRD_ECHMC
},
227 { "echmc", BRD_ECHMC
},
228 { "echmca", BRD_ECHMC
},
230 { "ec8/32-pc", BRD_ECHPCI
},
231 { "ec8/32-pci", BRD_ECHPCI
},
232 { "26", BRD_ECHPCI
},
233 { "ec8/64-pc", BRD_ECH64PCI
},
234 { "ec8/64-pci", BRD_ECH64PCI
},
235 { "ech-pci", BRD_ECH64PCI
},
236 { "echpci", BRD_ECH64PCI
},
237 { "echpc", BRD_ECH64PCI
},
238 { "27", BRD_ECH64PCI
},
239 { "easyio-pc", BRD_EASYIOPCI
},
240 { "easyio-pci", BRD_EASYIOPCI
},
241 { "eio-pci", BRD_EASYIOPCI
},
242 { "eiopci", BRD_EASYIOPCI
},
243 { "28", BRD_EASYIOPCI
},
247 * Define the module agruments.
250 module_param_array(board0
, charp
, &stl_nargs
, 0);
251 MODULE_PARM_DESC(board0
, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
252 module_param_array(board1
, charp
, &stl_nargs
, 0);
253 MODULE_PARM_DESC(board1
, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
254 module_param_array(board2
, charp
, &stl_nargs
, 0);
255 MODULE_PARM_DESC(board2
, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
256 module_param_array(board3
, charp
, &stl_nargs
, 0);
257 MODULE_PARM_DESC(board3
, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
259 /*****************************************************************************/
262 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
263 * to the directly accessible io ports of these boards (not the uarts -
264 * they are in cd1400.h and sc26198.h).
266 #define EIO_8PORTRS 0x04
267 #define EIO_4PORTRS 0x05
268 #define EIO_8PORTDI 0x00
269 #define EIO_8PORTM 0x06
271 #define EIO_IDBITMASK 0x07
273 #define EIO_BRDMASK 0xf0
276 #define ID_BRD16 0x30
278 #define EIO_INTRPEND 0x08
279 #define EIO_INTEDGE 0x00
280 #define EIO_INTLEVEL 0x08
284 #define ECH_IDBITMASK 0xe0
285 #define ECH_BRDENABLE 0x08
286 #define ECH_BRDDISABLE 0x00
287 #define ECH_INTENABLE 0x01
288 #define ECH_INTDISABLE 0x00
289 #define ECH_INTLEVEL 0x02
290 #define ECH_INTEDGE 0x00
291 #define ECH_INTRPEND 0x01
292 #define ECH_BRDRESET 0x01
294 #define ECHMC_INTENABLE 0x01
295 #define ECHMC_BRDRESET 0x02
297 #define ECH_PNLSTATUS 2
298 #define ECH_PNL16PORT 0x20
299 #define ECH_PNLIDMASK 0x07
300 #define ECH_PNLXPID 0x40
301 #define ECH_PNLINTRPEND 0x80
303 #define ECH_ADDR2MASK 0x1e0
306 * Define the vector mapping bits for the programmable interrupt board
307 * hardware. These bits encode the interrupt for the board to use - it
308 * is software selectable (except the EIO-8M).
310 static unsigned char stl_vecmap
[] = {
311 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
312 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
316 * Lock ordering is that you may not take stallion_lock holding
320 static spinlock_t brd_lock
; /* Guard the board mapping */
321 static spinlock_t stallion_lock
; /* Guard the tty driver */
324 * Set up enable and disable macros for the ECH boards. They require
325 * the secondary io address space to be activated and deactivated.
326 * This way all ECH boards can share their secondary io region.
327 * If this is an ECH-PCI board then also need to set the page pointer
328 * to point to the correct page.
330 #define BRDENABLE(brdnr,pagenr) \
331 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
332 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
333 stl_brds[(brdnr)]->ioctrl); \
334 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
335 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
337 #define BRDDISABLE(brdnr) \
338 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
339 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
340 stl_brds[(brdnr)]->ioctrl);
342 #define STL_CD1400MAXBAUD 230400
343 #define STL_SC26198MAXBAUD 460800
345 #define STL_BAUDBASE 115200
346 #define STL_CLOSEDELAY (5 * HZ / 10)
348 /*****************************************************************************/
351 * Define the Stallion PCI vendor and device IDs.
353 #ifndef PCI_VENDOR_ID_STALLION
354 #define PCI_VENDOR_ID_STALLION 0x124d
356 #ifndef PCI_DEVICE_ID_ECHPCI832
357 #define PCI_DEVICE_ID_ECHPCI832 0x0000
359 #ifndef PCI_DEVICE_ID_ECHPCI864
360 #define PCI_DEVICE_ID_ECHPCI864 0x0002
362 #ifndef PCI_DEVICE_ID_EIOPCI
363 #define PCI_DEVICE_ID_EIOPCI 0x0003
367 * Define structure to hold all Stallion PCI boards.
370 static struct pci_device_id stl_pcibrds
[] = {
371 { PCI_DEVICE(PCI_VENDOR_ID_STALLION
, PCI_DEVICE_ID_ECHPCI864
),
372 .driver_data
= BRD_ECH64PCI
},
373 { PCI_DEVICE(PCI_VENDOR_ID_STALLION
, PCI_DEVICE_ID_EIOPCI
),
374 .driver_data
= BRD_EASYIOPCI
},
375 { PCI_DEVICE(PCI_VENDOR_ID_STALLION
, PCI_DEVICE_ID_ECHPCI832
),
376 .driver_data
= BRD_ECHPCI
},
377 { PCI_DEVICE(PCI_VENDOR_ID_NS
, PCI_DEVICE_ID_NS_87410
),
378 .driver_data
= BRD_ECHPCI
},
381 MODULE_DEVICE_TABLE(pci
, stl_pcibrds
);
383 /*****************************************************************************/
386 * Define macros to extract a brd/port number from a minor number.
388 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
389 #define MINOR2PORT(min) ((min) & 0x3f)
392 * Define a baud rate table that converts termios baud rate selector
393 * into the actual baud rate value. All baud rate calculations are
394 * based on the actual baud rate required.
396 static unsigned int stl_baudrates
[] = {
397 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
398 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
401 /*****************************************************************************/
404 * Declare all those functions in this driver!
407 static int stl_memioctl(struct inode
*ip
, struct file
*fp
, unsigned int cmd
, unsigned long arg
);
408 static int stl_brdinit(struct stlbrd
*brdp
);
409 static int stl_getportstats(struct stlport
*portp
, comstats_t __user
*cp
);
410 static int stl_clrportstats(struct stlport
*portp
, comstats_t __user
*cp
);
411 static int stl_waitcarrier(struct stlport
*portp
, struct file
*filp
);
414 * CD1400 uart specific handling functions.
416 static void stl_cd1400setreg(struct stlport
*portp
, int regnr
, int value
);
417 static int stl_cd1400getreg(struct stlport
*portp
, int regnr
);
418 static int stl_cd1400updatereg(struct stlport
*portp
, int regnr
, int value
);
419 static int stl_cd1400panelinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
);
420 static void stl_cd1400portinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
, struct stlport
*portp
);
421 static void stl_cd1400setport(struct stlport
*portp
, struct ktermios
*tiosp
);
422 static int stl_cd1400getsignals(struct stlport
*portp
);
423 static void stl_cd1400setsignals(struct stlport
*portp
, int dtr
, int rts
);
424 static void stl_cd1400ccrwait(struct stlport
*portp
);
425 static void stl_cd1400enablerxtx(struct stlport
*portp
, int rx
, int tx
);
426 static void stl_cd1400startrxtx(struct stlport
*portp
, int rx
, int tx
);
427 static void stl_cd1400disableintrs(struct stlport
*portp
);
428 static void stl_cd1400sendbreak(struct stlport
*portp
, int len
);
429 static void stl_cd1400flowctrl(struct stlport
*portp
, int state
);
430 static void stl_cd1400sendflow(struct stlport
*portp
, int state
);
431 static void stl_cd1400flush(struct stlport
*portp
);
432 static int stl_cd1400datastate(struct stlport
*portp
);
433 static void stl_cd1400eiointr(struct stlpanel
*panelp
, unsigned int iobase
);
434 static void stl_cd1400echintr(struct stlpanel
*panelp
, unsigned int iobase
);
435 static void stl_cd1400txisr(struct stlpanel
*panelp
, int ioaddr
);
436 static void stl_cd1400rxisr(struct stlpanel
*panelp
, int ioaddr
);
437 static void stl_cd1400mdmisr(struct stlpanel
*panelp
, int ioaddr
);
439 static inline int stl_cd1400breakisr(struct stlport
*portp
, int ioaddr
);
442 * SC26198 uart specific handling functions.
444 static void stl_sc26198setreg(struct stlport
*portp
, int regnr
, int value
);
445 static int stl_sc26198getreg(struct stlport
*portp
, int regnr
);
446 static int stl_sc26198updatereg(struct stlport
*portp
, int regnr
, int value
);
447 static int stl_sc26198getglobreg(struct stlport
*portp
, int regnr
);
448 static int stl_sc26198panelinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
);
449 static void stl_sc26198portinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
, struct stlport
*portp
);
450 static void stl_sc26198setport(struct stlport
*portp
, struct ktermios
*tiosp
);
451 static int stl_sc26198getsignals(struct stlport
*portp
);
452 static void stl_sc26198setsignals(struct stlport
*portp
, int dtr
, int rts
);
453 static void stl_sc26198enablerxtx(struct stlport
*portp
, int rx
, int tx
);
454 static void stl_sc26198startrxtx(struct stlport
*portp
, int rx
, int tx
);
455 static void stl_sc26198disableintrs(struct stlport
*portp
);
456 static void stl_sc26198sendbreak(struct stlport
*portp
, int len
);
457 static void stl_sc26198flowctrl(struct stlport
*portp
, int state
);
458 static void stl_sc26198sendflow(struct stlport
*portp
, int state
);
459 static void stl_sc26198flush(struct stlport
*portp
);
460 static int stl_sc26198datastate(struct stlport
*portp
);
461 static void stl_sc26198wait(struct stlport
*portp
);
462 static void stl_sc26198txunflow(struct stlport
*portp
, struct tty_struct
*tty
);
463 static void stl_sc26198intr(struct stlpanel
*panelp
, unsigned int iobase
);
464 static void stl_sc26198txisr(struct stlport
*port
);
465 static void stl_sc26198rxisr(struct stlport
*port
, unsigned int iack
);
466 static void stl_sc26198rxbadch(struct stlport
*portp
, unsigned char status
, char ch
);
467 static void stl_sc26198rxbadchars(struct stlport
*portp
);
468 static void stl_sc26198otherisr(struct stlport
*port
, unsigned int iack
);
470 /*****************************************************************************/
473 * Generic UART support structure.
475 typedef struct uart
{
476 int (*panelinit
)(struct stlbrd
*brdp
, struct stlpanel
*panelp
);
477 void (*portinit
)(struct stlbrd
*brdp
, struct stlpanel
*panelp
, struct stlport
*portp
);
478 void (*setport
)(struct stlport
*portp
, struct ktermios
*tiosp
);
479 int (*getsignals
)(struct stlport
*portp
);
480 void (*setsignals
)(struct stlport
*portp
, int dtr
, int rts
);
481 void (*enablerxtx
)(struct stlport
*portp
, int rx
, int tx
);
482 void (*startrxtx
)(struct stlport
*portp
, int rx
, int tx
);
483 void (*disableintrs
)(struct stlport
*portp
);
484 void (*sendbreak
)(struct stlport
*portp
, int len
);
485 void (*flowctrl
)(struct stlport
*portp
, int state
);
486 void (*sendflow
)(struct stlport
*portp
, int state
);
487 void (*flush
)(struct stlport
*portp
);
488 int (*datastate
)(struct stlport
*portp
);
489 void (*intr
)(struct stlpanel
*panelp
, unsigned int iobase
);
493 * Define some macros to make calling these functions nice and clean.
495 #define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
496 #define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
497 #define stl_setport (* ((uart_t *) portp->uartp)->setport)
498 #define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
499 #define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
500 #define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
501 #define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
502 #define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
503 #define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
504 #define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
505 #define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
506 #define stl_flush (* ((uart_t *) portp->uartp)->flush)
507 #define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
509 /*****************************************************************************/
512 * CD1400 UART specific data initialization.
514 static uart_t stl_cd1400uart
= {
518 stl_cd1400getsignals
,
519 stl_cd1400setsignals
,
520 stl_cd1400enablerxtx
,
522 stl_cd1400disableintrs
,
532 * Define the offsets within the register bank of a cd1400 based panel.
533 * These io address offsets are common to the EasyIO board as well.
541 #define EREG_BANKSIZE 8
543 #define CD1400_CLK 25000000
544 #define CD1400_CLK8M 20000000
547 * Define the cd1400 baud rate clocks. These are used when calculating
548 * what clock and divisor to use for the required baud rate. Also
549 * define the maximum baud rate allowed, and the default base baud.
551 static int stl_cd1400clkdivs
[] = {
552 CD1400_CLK0
, CD1400_CLK1
, CD1400_CLK2
, CD1400_CLK3
, CD1400_CLK4
555 /*****************************************************************************/
558 * SC26198 UART specific data initization.
560 static uart_t stl_sc26198uart
= {
561 stl_sc26198panelinit
,
564 stl_sc26198getsignals
,
565 stl_sc26198setsignals
,
566 stl_sc26198enablerxtx
,
567 stl_sc26198startrxtx
,
568 stl_sc26198disableintrs
,
569 stl_sc26198sendbreak
,
573 stl_sc26198datastate
,
578 * Define the offsets within the register bank of a sc26198 based panel.
586 #define XP_BANKSIZE 4
589 * Define the sc26198 baud rate table. Offsets within the table
590 * represent the actual baud rate selector of sc26198 registers.
592 static unsigned int sc26198_baudtable
[] = {
593 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
594 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
595 230400, 460800, 921600
598 #define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
600 /*****************************************************************************/
603 * Define the driver info for a user level control device. Used mainly
604 * to get at port stats - only not using the port device itself.
606 static const struct file_operations stl_fsiomem
= {
607 .owner
= THIS_MODULE
,
608 .ioctl
= stl_memioctl
,
611 static struct class *stallion_class
;
614 * Check for any arguments passed in on the module load command line.
617 /*****************************************************************************/
620 * Parse the supplied argument string, into the board conf struct.
623 static int __init
stl_parsebrd(struct stlconf
*confp
, char **argp
)
628 pr_debug("stl_parsebrd(confp=%p,argp=%p)\n", confp
, argp
);
630 if ((argp
[0] == NULL
) || (*argp
[0] == 0))
633 for (sp
= argp
[0], i
= 0; (*sp
!= 0) && (i
< 25); sp
++, i
++)
636 for (i
= 0; i
< ARRAY_SIZE(stl_brdstr
); i
++)
637 if (strcmp(stl_brdstr
[i
].name
, argp
[0]) == 0)
640 if (i
== ARRAY_SIZE(stl_brdstr
)) {
641 printk("STALLION: unknown board name, %s?\n", argp
[0]);
645 confp
->brdtype
= stl_brdstr
[i
].type
;
648 if ((argp
[i
] != NULL
) && (*argp
[i
] != 0))
649 confp
->ioaddr1
= simple_strtoul(argp
[i
], NULL
, 0);
651 if (confp
->brdtype
== BRD_ECH
) {
652 if ((argp
[i
] != NULL
) && (*argp
[i
] != 0))
653 confp
->ioaddr2
= simple_strtoul(argp
[i
], NULL
, 0);
656 if ((argp
[i
] != NULL
) && (*argp
[i
] != 0))
657 confp
->irq
= simple_strtoul(argp
[i
], NULL
, 0);
661 /*****************************************************************************/
664 * Allocate a new board structure. Fill out the basic info in it.
667 static struct stlbrd
*stl_allocbrd(void)
671 brdp
= kzalloc(sizeof(struct stlbrd
), GFP_KERNEL
);
673 printk("STALLION: failed to allocate memory (size=%Zd)\n",
674 sizeof(struct stlbrd
));
678 brdp
->magic
= STL_BOARDMAGIC
;
682 /*****************************************************************************/
684 static int stl_open(struct tty_struct
*tty
, struct file
*filp
)
686 struct stlport
*portp
;
688 unsigned int minordev
, brdnr
, panelnr
;
691 pr_debug("stl_open(tty=%p,filp=%p): device=%s\n", tty
, filp
, tty
->name
);
693 minordev
= tty
->index
;
694 brdnr
= MINOR2BRD(minordev
);
695 if (brdnr
>= stl_nrbrds
)
697 brdp
= stl_brds
[brdnr
];
700 minordev
= MINOR2PORT(minordev
);
701 for (portnr
= -1, panelnr
= 0; panelnr
< STL_MAXPANELS
; panelnr
++) {
702 if (brdp
->panels
[panelnr
] == NULL
)
704 if (minordev
< brdp
->panels
[panelnr
]->nrports
) {
708 minordev
-= brdp
->panels
[panelnr
]->nrports
;
713 portp
= brdp
->panels
[panelnr
]->ports
[portnr
];
718 * On the first open of the device setup the port hardware, and
719 * initialize the per port data structure.
722 tty
->driver_data
= portp
;
725 if ((portp
->flags
& ASYNC_INITIALIZED
) == 0) {
726 if (!portp
->tx
.buf
) {
727 portp
->tx
.buf
= kmalloc(STL_TXBUFSIZE
, GFP_KERNEL
);
730 portp
->tx
.head
= portp
->tx
.buf
;
731 portp
->tx
.tail
= portp
->tx
.buf
;
733 stl_setport(portp
, tty
->termios
);
734 portp
->sigs
= stl_getsignals(portp
);
735 stl_setsignals(portp
, 1, 1);
736 stl_enablerxtx(portp
, 1, 1);
737 stl_startrxtx(portp
, 1, 0);
738 clear_bit(TTY_IO_ERROR
, &tty
->flags
);
739 portp
->flags
|= ASYNC_INITIALIZED
;
743 * Check if this port is in the middle of closing. If so then wait
744 * until it is closed then return error status, based on flag settings.
745 * The sleep here does not need interrupt protection since the wakeup
746 * for it is done with the same context.
748 if (portp
->flags
& ASYNC_CLOSING
) {
749 interruptible_sleep_on(&portp
->close_wait
);
750 if (portp
->flags
& ASYNC_HUP_NOTIFY
)
756 * Based on type of open being done check if it can overlap with any
757 * previous opens still in effect. If we are a normal serial device
758 * then also we might have to wait for carrier.
760 if (!(filp
->f_flags
& O_NONBLOCK
))
761 if ((rc
= stl_waitcarrier(portp
, filp
)) != 0)
764 portp
->flags
|= ASYNC_NORMAL_ACTIVE
;
769 /*****************************************************************************/
772 * Possibly need to wait for carrier (DCD signal) to come high. Say
773 * maybe because if we are clocal then we don't need to wait...
776 static int stl_waitcarrier(struct stlport
*portp
, struct file
*filp
)
781 pr_debug("stl_waitcarrier(portp=%p,filp=%p)\n", portp
, filp
);
786 spin_lock_irqsave(&stallion_lock
, flags
);
788 if (portp
->tty
->termios
->c_cflag
& CLOCAL
)
791 portp
->openwaitcnt
++;
792 if (! tty_hung_up_p(filp
))
796 /* Takes brd_lock internally */
797 stl_setsignals(portp
, 1, 1);
798 if (tty_hung_up_p(filp
) ||
799 ((portp
->flags
& ASYNC_INITIALIZED
) == 0)) {
800 if (portp
->flags
& ASYNC_HUP_NOTIFY
)
806 if (((portp
->flags
& ASYNC_CLOSING
) == 0) &&
807 (doclocal
|| (portp
->sigs
& TIOCM_CD
)))
809 if (signal_pending(current
)) {
814 interruptible_sleep_on(&portp
->open_wait
);
817 if (! tty_hung_up_p(filp
))
819 portp
->openwaitcnt
--;
820 spin_unlock_irqrestore(&stallion_lock
, flags
);
825 /*****************************************************************************/
827 static void stl_flushbuffer(struct tty_struct
*tty
)
829 struct stlport
*portp
;
831 pr_debug("stl_flushbuffer(tty=%p)\n", tty
);
835 portp
= tty
->driver_data
;
843 /*****************************************************************************/
845 static void stl_waituntilsent(struct tty_struct
*tty
, int timeout
)
847 struct stlport
*portp
;
850 pr_debug("stl_waituntilsent(tty=%p,timeout=%d)\n", tty
, timeout
);
854 portp
= tty
->driver_data
;
860 tend
= jiffies
+ timeout
;
862 while (stl_datastate(portp
)) {
863 if (signal_pending(current
))
865 msleep_interruptible(20);
866 if (time_after_eq(jiffies
, tend
))
871 /*****************************************************************************/
873 static void stl_close(struct tty_struct
*tty
, struct file
*filp
)
875 struct stlport
*portp
;
878 pr_debug("stl_close(tty=%p,filp=%p)\n", tty
, filp
);
880 portp
= tty
->driver_data
;
884 spin_lock_irqsave(&stallion_lock
, flags
);
885 if (tty_hung_up_p(filp
)) {
886 spin_unlock_irqrestore(&stallion_lock
, flags
);
889 if ((tty
->count
== 1) && (portp
->refcount
!= 1))
891 if (portp
->refcount
-- > 1) {
892 spin_unlock_irqrestore(&stallion_lock
, flags
);
897 portp
->flags
|= ASYNC_CLOSING
;
900 * May want to wait for any data to drain before closing. The BUSY
901 * flag keeps track of whether we are still sending or not - it is
902 * very accurate for the cd1400, not quite so for the sc26198.
903 * (The sc26198 has no "end-of-data" interrupt only empty FIFO)
907 spin_unlock_irqrestore(&stallion_lock
, flags
);
909 if (portp
->closing_wait
!= ASYNC_CLOSING_WAIT_NONE
)
910 tty_wait_until_sent(tty
, portp
->closing_wait
);
911 stl_waituntilsent(tty
, (HZ
/ 2));
914 spin_lock_irqsave(&stallion_lock
, flags
);
915 portp
->flags
&= ~ASYNC_INITIALIZED
;
916 spin_unlock_irqrestore(&stallion_lock
, flags
);
918 stl_disableintrs(portp
);
919 if (tty
->termios
->c_cflag
& HUPCL
)
920 stl_setsignals(portp
, 0, 0);
921 stl_enablerxtx(portp
, 0, 0);
922 stl_flushbuffer(tty
);
924 if (portp
->tx
.buf
!= NULL
) {
925 kfree(portp
->tx
.buf
);
926 portp
->tx
.buf
= NULL
;
927 portp
->tx
.head
= NULL
;
928 portp
->tx
.tail
= NULL
;
930 set_bit(TTY_IO_ERROR
, &tty
->flags
);
931 tty_ldisc_flush(tty
);
936 if (portp
->openwaitcnt
) {
937 if (portp
->close_delay
)
938 msleep_interruptible(jiffies_to_msecs(portp
->close_delay
));
939 wake_up_interruptible(&portp
->open_wait
);
942 portp
->flags
&= ~(ASYNC_NORMAL_ACTIVE
|ASYNC_CLOSING
);
943 wake_up_interruptible(&portp
->close_wait
);
946 /*****************************************************************************/
949 * Write routine. Take data and stuff it in to the TX ring queue.
950 * If transmit interrupts are not running then start them.
953 static int stl_write(struct tty_struct
*tty
, const unsigned char *buf
, int count
)
955 struct stlport
*portp
;
956 unsigned int len
, stlen
;
957 unsigned char *chbuf
;
960 pr_debug("stl_write(tty=%p,buf=%p,count=%d)\n", tty
, buf
, count
);
962 portp
= tty
->driver_data
;
965 if (portp
->tx
.buf
== NULL
)
969 * If copying direct from user space we must cater for page faults,
970 * causing us to "sleep" here for a while. To handle this copy in all
971 * the data we need now, into a local buffer. Then when we got it all
972 * copy it into the TX buffer.
974 chbuf
= (unsigned char *) buf
;
976 head
= portp
->tx
.head
;
977 tail
= portp
->tx
.tail
;
979 len
= STL_TXBUFSIZE
- (head
- tail
) - 1;
980 stlen
= STL_TXBUFSIZE
- (head
- portp
->tx
.buf
);
982 len
= tail
- head
- 1;
986 len
= min(len
, (unsigned int)count
);
989 stlen
= min(len
, stlen
);
990 memcpy(head
, chbuf
, stlen
);
995 if (head
>= (portp
->tx
.buf
+ STL_TXBUFSIZE
)) {
996 head
= portp
->tx
.buf
;
1000 portp
->tx
.head
= head
;
1002 clear_bit(ASYI_TXLOW
, &portp
->istate
);
1003 stl_startrxtx(portp
, -1, 1);
1008 /*****************************************************************************/
1010 static void stl_putchar(struct tty_struct
*tty
, unsigned char ch
)
1012 struct stlport
*portp
;
1016 pr_debug("stl_putchar(tty=%p,ch=%x)\n", tty
, ch
);
1020 portp
= tty
->driver_data
;
1023 if (portp
->tx
.buf
== NULL
)
1026 head
= portp
->tx
.head
;
1027 tail
= portp
->tx
.tail
;
1029 len
= (head
>= tail
) ? (STL_TXBUFSIZE
- (head
- tail
)) : (tail
- head
);
1034 if (head
>= (portp
->tx
.buf
+ STL_TXBUFSIZE
))
1035 head
= portp
->tx
.buf
;
1037 portp
->tx
.head
= head
;
1040 /*****************************************************************************/
1043 * If there are any characters in the buffer then make sure that TX
1044 * interrupts are on and get'em out. Normally used after the putchar
1045 * routine has been called.
1048 static void stl_flushchars(struct tty_struct
*tty
)
1050 struct stlport
*portp
;
1052 pr_debug("stl_flushchars(tty=%p)\n", tty
);
1056 portp
= tty
->driver_data
;
1059 if (portp
->tx
.buf
== NULL
)
1062 stl_startrxtx(portp
, -1, 1);
1065 /*****************************************************************************/
1067 static int stl_writeroom(struct tty_struct
*tty
)
1069 struct stlport
*portp
;
1072 pr_debug("stl_writeroom(tty=%p)\n", tty
);
1076 portp
= tty
->driver_data
;
1079 if (portp
->tx
.buf
== NULL
)
1082 head
= portp
->tx
.head
;
1083 tail
= portp
->tx
.tail
;
1084 return (head
>= tail
) ? (STL_TXBUFSIZE
- (head
- tail
) - 1) : (tail
- head
- 1);
1087 /*****************************************************************************/
1090 * Return number of chars in the TX buffer. Normally we would just
1091 * calculate the number of chars in the buffer and return that, but if
1092 * the buffer is empty and TX interrupts are still on then we return
1093 * that the buffer still has 1 char in it. This way whoever called us
1094 * will not think that ALL chars have drained - since the UART still
1095 * must have some chars in it (we are busy after all).
1098 static int stl_charsinbuffer(struct tty_struct
*tty
)
1100 struct stlport
*portp
;
1104 pr_debug("stl_charsinbuffer(tty=%p)\n", tty
);
1108 portp
= tty
->driver_data
;
1111 if (portp
->tx
.buf
== NULL
)
1114 head
= portp
->tx
.head
;
1115 tail
= portp
->tx
.tail
;
1116 size
= (head
>= tail
) ? (head
- tail
) : (STL_TXBUFSIZE
- (tail
- head
));
1117 if ((size
== 0) && test_bit(ASYI_TXBUSY
, &portp
->istate
))
1122 /*****************************************************************************/
1125 * Generate the serial struct info.
1128 static int stl_getserial(struct stlport
*portp
, struct serial_struct __user
*sp
)
1130 struct serial_struct sio
;
1131 struct stlbrd
*brdp
;
1133 pr_debug("stl_getserial(portp=%p,sp=%p)\n", portp
, sp
);
1135 memset(&sio
, 0, sizeof(struct serial_struct
));
1136 sio
.line
= portp
->portnr
;
1137 sio
.port
= portp
->ioaddr
;
1138 sio
.flags
= portp
->flags
;
1139 sio
.baud_base
= portp
->baud_base
;
1140 sio
.close_delay
= portp
->close_delay
;
1141 sio
.closing_wait
= portp
->closing_wait
;
1142 sio
.custom_divisor
= portp
->custom_divisor
;
1144 if (portp
->uartp
== &stl_cd1400uart
) {
1145 sio
.type
= PORT_CIRRUS
;
1146 sio
.xmit_fifo_size
= CD1400_TXFIFOSIZE
;
1148 sio
.type
= PORT_UNKNOWN
;
1149 sio
.xmit_fifo_size
= SC26198_TXFIFOSIZE
;
1152 brdp
= stl_brds
[portp
->brdnr
];
1154 sio
.irq
= brdp
->irq
;
1156 return copy_to_user(sp
, &sio
, sizeof(struct serial_struct
)) ? -EFAULT
: 0;
1159 /*****************************************************************************/
1162 * Set port according to the serial struct info.
1163 * At this point we do not do any auto-configure stuff, so we will
1164 * just quietly ignore any requests to change irq, etc.
1167 static int stl_setserial(struct stlport
*portp
, struct serial_struct __user
*sp
)
1169 struct serial_struct sio
;
1171 pr_debug("stl_setserial(portp=%p,sp=%p)\n", portp
, sp
);
1173 if (copy_from_user(&sio
, sp
, sizeof(struct serial_struct
)))
1175 if (!capable(CAP_SYS_ADMIN
)) {
1176 if ((sio
.baud_base
!= portp
->baud_base
) ||
1177 (sio
.close_delay
!= portp
->close_delay
) ||
1178 ((sio
.flags
& ~ASYNC_USR_MASK
) !=
1179 (portp
->flags
& ~ASYNC_USR_MASK
)))
1183 portp
->flags
= (portp
->flags
& ~ASYNC_USR_MASK
) |
1184 (sio
.flags
& ASYNC_USR_MASK
);
1185 portp
->baud_base
= sio
.baud_base
;
1186 portp
->close_delay
= sio
.close_delay
;
1187 portp
->closing_wait
= sio
.closing_wait
;
1188 portp
->custom_divisor
= sio
.custom_divisor
;
1189 stl_setport(portp
, portp
->tty
->termios
);
1193 /*****************************************************************************/
1195 static int stl_tiocmget(struct tty_struct
*tty
, struct file
*file
)
1197 struct stlport
*portp
;
1201 portp
= tty
->driver_data
;
1204 if (tty
->flags
& (1 << TTY_IO_ERROR
))
1207 return stl_getsignals(portp
);
1210 static int stl_tiocmset(struct tty_struct
*tty
, struct file
*file
,
1211 unsigned int set
, unsigned int clear
)
1213 struct stlport
*portp
;
1214 int rts
= -1, dtr
= -1;
1218 portp
= tty
->driver_data
;
1221 if (tty
->flags
& (1 << TTY_IO_ERROR
))
1224 if (set
& TIOCM_RTS
)
1226 if (set
& TIOCM_DTR
)
1228 if (clear
& TIOCM_RTS
)
1230 if (clear
& TIOCM_DTR
)
1233 stl_setsignals(portp
, dtr
, rts
);
1237 static int stl_ioctl(struct tty_struct
*tty
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
1239 struct stlport
*portp
;
1242 void __user
*argp
= (void __user
*)arg
;
1244 pr_debug("stl_ioctl(tty=%p,file=%p,cmd=%x,arg=%lx)\n", tty
, file
, cmd
,
1249 portp
= tty
->driver_data
;
1253 if ((cmd
!= TIOCGSERIAL
) && (cmd
!= TIOCSSERIAL
) &&
1254 (cmd
!= COM_GETPORTSTATS
) && (cmd
!= COM_CLRPORTSTATS
))
1255 if (tty
->flags
& (1 << TTY_IO_ERROR
))
1262 rc
= put_user(((tty
->termios
->c_cflag
& CLOCAL
) ? 1 : 0),
1263 (unsigned __user
*) argp
);
1266 if (get_user(ival
, (unsigned int __user
*) arg
))
1268 tty
->termios
->c_cflag
=
1269 (tty
->termios
->c_cflag
& ~CLOCAL
) |
1270 (ival
? CLOCAL
: 0);
1273 rc
= stl_getserial(portp
, argp
);
1276 rc
= stl_setserial(portp
, argp
);
1278 case COM_GETPORTSTATS
:
1279 rc
= stl_getportstats(portp
, argp
);
1281 case COM_CLRPORTSTATS
:
1282 rc
= stl_clrportstats(portp
, argp
);
1288 case TIOCSERGSTRUCT
:
1289 case TIOCSERGETMULTI
:
1290 case TIOCSERSETMULTI
:
1299 /*****************************************************************************/
1302 * Start the transmitter again. Just turn TX interrupts back on.
1305 static void stl_start(struct tty_struct
*tty
)
1307 struct stlport
*portp
;
1309 pr_debug("stl_start(tty=%p)\n", tty
);
1313 portp
= tty
->driver_data
;
1316 stl_startrxtx(portp
, -1, 1);
1319 /*****************************************************************************/
1321 static void stl_settermios(struct tty_struct
*tty
, struct ktermios
*old
)
1323 struct stlport
*portp
;
1324 struct ktermios
*tiosp
;
1326 pr_debug("stl_settermios(tty=%p,old=%p)\n", tty
, old
);
1330 portp
= tty
->driver_data
;
1334 tiosp
= tty
->termios
;
1335 if ((tiosp
->c_cflag
== old
->c_cflag
) &&
1336 (tiosp
->c_iflag
== old
->c_iflag
))
1339 stl_setport(portp
, tiosp
);
1340 stl_setsignals(portp
, ((tiosp
->c_cflag
& (CBAUD
& ~CBAUDEX
)) ? 1 : 0),
1342 if ((old
->c_cflag
& CRTSCTS
) && ((tiosp
->c_cflag
& CRTSCTS
) == 0)) {
1343 tty
->hw_stopped
= 0;
1346 if (((old
->c_cflag
& CLOCAL
) == 0) && (tiosp
->c_cflag
& CLOCAL
))
1347 wake_up_interruptible(&portp
->open_wait
);
1350 /*****************************************************************************/
1353 * Attempt to flow control who ever is sending us data. Based on termios
1354 * settings use software or/and hardware flow control.
1357 static void stl_throttle(struct tty_struct
*tty
)
1359 struct stlport
*portp
;
1361 pr_debug("stl_throttle(tty=%p)\n", tty
);
1365 portp
= tty
->driver_data
;
1368 stl_flowctrl(portp
, 0);
1371 /*****************************************************************************/
1374 * Unflow control the device sending us data...
1377 static void stl_unthrottle(struct tty_struct
*tty
)
1379 struct stlport
*portp
;
1381 pr_debug("stl_unthrottle(tty=%p)\n", tty
);
1385 portp
= tty
->driver_data
;
1388 stl_flowctrl(portp
, 1);
1391 /*****************************************************************************/
1394 * Stop the transmitter. Basically to do this we will just turn TX
1398 static void stl_stop(struct tty_struct
*tty
)
1400 struct stlport
*portp
;
1402 pr_debug("stl_stop(tty=%p)\n", tty
);
1406 portp
= tty
->driver_data
;
1409 stl_startrxtx(portp
, -1, 0);
1412 /*****************************************************************************/
1415 * Hangup this port. This is pretty much like closing the port, only
1416 * a little more brutal. No waiting for data to drain. Shutdown the
1417 * port and maybe drop signals.
1420 static void stl_hangup(struct tty_struct
*tty
)
1422 struct stlport
*portp
;
1424 pr_debug("stl_hangup(tty=%p)\n", tty
);
1428 portp
= tty
->driver_data
;
1432 portp
->flags
&= ~ASYNC_INITIALIZED
;
1433 stl_disableintrs(portp
);
1434 if (tty
->termios
->c_cflag
& HUPCL
)
1435 stl_setsignals(portp
, 0, 0);
1436 stl_enablerxtx(portp
, 0, 0);
1437 stl_flushbuffer(tty
);
1439 set_bit(TTY_IO_ERROR
, &tty
->flags
);
1440 if (portp
->tx
.buf
!= NULL
) {
1441 kfree(portp
->tx
.buf
);
1442 portp
->tx
.buf
= NULL
;
1443 portp
->tx
.head
= NULL
;
1444 portp
->tx
.tail
= NULL
;
1447 portp
->flags
&= ~ASYNC_NORMAL_ACTIVE
;
1448 portp
->refcount
= 0;
1449 wake_up_interruptible(&portp
->open_wait
);
1452 /*****************************************************************************/
1454 static void stl_breakctl(struct tty_struct
*tty
, int state
)
1456 struct stlport
*portp
;
1458 pr_debug("stl_breakctl(tty=%p,state=%d)\n", tty
, state
);
1462 portp
= tty
->driver_data
;
1466 stl_sendbreak(portp
, ((state
== -1) ? 1 : 2));
1469 /*****************************************************************************/
1471 static void stl_sendxchar(struct tty_struct
*tty
, char ch
)
1473 struct stlport
*portp
;
1475 pr_debug("stl_sendxchar(tty=%p,ch=%x)\n", tty
, ch
);
1479 portp
= tty
->driver_data
;
1483 if (ch
== STOP_CHAR(tty
))
1484 stl_sendflow(portp
, 0);
1485 else if (ch
== START_CHAR(tty
))
1486 stl_sendflow(portp
, 1);
1488 stl_putchar(tty
, ch
);
1491 /*****************************************************************************/
1496 * Format info for a specified port. The line is deliberately limited
1497 * to 80 characters. (If it is too long it will be truncated, if too
1498 * short then padded with spaces).
1501 static int stl_portinfo(struct stlport
*portp
, int portnr
, char *pos
)
1507 sp
+= sprintf(sp
, "%d: uart:%s tx:%d rx:%d",
1508 portnr
, (portp
->hwid
== 1) ? "SC26198" : "CD1400",
1509 (int) portp
->stats
.txtotal
, (int) portp
->stats
.rxtotal
);
1511 if (portp
->stats
.rxframing
)
1512 sp
+= sprintf(sp
, " fe:%d", (int) portp
->stats
.rxframing
);
1513 if (portp
->stats
.rxparity
)
1514 sp
+= sprintf(sp
, " pe:%d", (int) portp
->stats
.rxparity
);
1515 if (portp
->stats
.rxbreaks
)
1516 sp
+= sprintf(sp
, " brk:%d", (int) portp
->stats
.rxbreaks
);
1517 if (portp
->stats
.rxoverrun
)
1518 sp
+= sprintf(sp
, " oe:%d", (int) portp
->stats
.rxoverrun
);
1520 sigs
= stl_getsignals(portp
);
1521 cnt
= sprintf(sp
, "%s%s%s%s%s ",
1522 (sigs
& TIOCM_RTS
) ? "|RTS" : "",
1523 (sigs
& TIOCM_CTS
) ? "|CTS" : "",
1524 (sigs
& TIOCM_DTR
) ? "|DTR" : "",
1525 (sigs
& TIOCM_CD
) ? "|DCD" : "",
1526 (sigs
& TIOCM_DSR
) ? "|DSR" : "");
1530 for (cnt
= sp
- pos
; cnt
< (MAXLINE
- 1); cnt
++)
1533 pos
[(MAXLINE
- 2)] = '+';
1534 pos
[(MAXLINE
- 1)] = '\n';
1539 /*****************************************************************************/
1542 * Port info, read from the /proc file system.
1545 static int stl_readproc(char *page
, char **start
, off_t off
, int count
, int *eof
, void *data
)
1547 struct stlbrd
*brdp
;
1548 struct stlpanel
*panelp
;
1549 struct stlport
*portp
;
1550 unsigned int brdnr
, panelnr
, portnr
;
1551 int totalport
, curoff
, maxoff
;
1554 pr_debug("stl_readproc(page=%p,start=%p,off=%lx,count=%d,eof=%p,"
1555 "data=%p\n", page
, start
, off
, count
, eof
, data
);
1562 pos
+= sprintf(pos
, "%s: version %s", stl_drvtitle
,
1564 while (pos
< (page
+ MAXLINE
- 1))
1571 * We scan through for each board, panel and port. The offset is
1572 * calculated on the fly, and irrelevant ports are skipped.
1574 for (brdnr
= 0; brdnr
< stl_nrbrds
; brdnr
++) {
1575 brdp
= stl_brds
[brdnr
];
1578 if (brdp
->state
== 0)
1581 maxoff
= curoff
+ (brdp
->nrports
* MAXLINE
);
1582 if (off
>= maxoff
) {
1587 totalport
= brdnr
* STL_MAXPORTS
;
1588 for (panelnr
= 0; panelnr
< brdp
->nrpanels
; panelnr
++) {
1589 panelp
= brdp
->panels
[panelnr
];
1593 maxoff
= curoff
+ (panelp
->nrports
* MAXLINE
);
1594 if (off
>= maxoff
) {
1596 totalport
+= panelp
->nrports
;
1600 for (portnr
= 0; portnr
< panelp
->nrports
; portnr
++,
1602 portp
= panelp
->ports
[portnr
];
1605 if (off
>= (curoff
+= MAXLINE
))
1607 if ((pos
- page
+ MAXLINE
) > count
)
1609 pos
+= stl_portinfo(portp
, totalport
, pos
);
1621 /*****************************************************************************/
1624 * All board interrupts are vectored through here first. This code then
1625 * calls off to the approrpriate board interrupt handlers.
1628 static irqreturn_t
stl_intr(int irq
, void *dev_id
)
1630 struct stlbrd
*brdp
= dev_id
;
1632 pr_debug("stl_intr(brdp=%p,irq=%d)\n", brdp
, irq
);
1634 return IRQ_RETVAL((* brdp
->isr
)(brdp
));
1637 /*****************************************************************************/
1640 * Interrupt service routine for EasyIO board types.
1643 static int stl_eiointr(struct stlbrd
*brdp
)
1645 struct stlpanel
*panelp
;
1646 unsigned int iobase
;
1649 spin_lock(&brd_lock
);
1650 panelp
= brdp
->panels
[0];
1651 iobase
= panelp
->iobase
;
1652 while (inb(brdp
->iostatus
) & EIO_INTRPEND
) {
1654 (* panelp
->isr
)(panelp
, iobase
);
1656 spin_unlock(&brd_lock
);
1660 /*****************************************************************************/
1663 * Interrupt service routine for ECH-AT board types.
1666 static int stl_echatintr(struct stlbrd
*brdp
)
1668 struct stlpanel
*panelp
;
1669 unsigned int ioaddr
, bnknr
;
1672 outb((brdp
->ioctrlval
| ECH_BRDENABLE
), brdp
->ioctrl
);
1674 while (inb(brdp
->iostatus
) & ECH_INTRPEND
) {
1676 for (bnknr
= 0; bnknr
< brdp
->nrbnks
; bnknr
++) {
1677 ioaddr
= brdp
->bnkstataddr
[bnknr
];
1678 if (inb(ioaddr
) & ECH_PNLINTRPEND
) {
1679 panelp
= brdp
->bnk2panel
[bnknr
];
1680 (* panelp
->isr
)(panelp
, (ioaddr
& 0xfffc));
1685 outb((brdp
->ioctrlval
| ECH_BRDDISABLE
), brdp
->ioctrl
);
1690 /*****************************************************************************/
1693 * Interrupt service routine for ECH-MCA board types.
1696 static int stl_echmcaintr(struct stlbrd
*brdp
)
1698 struct stlpanel
*panelp
;
1699 unsigned int ioaddr
, bnknr
;
1702 while (inb(brdp
->iostatus
) & ECH_INTRPEND
) {
1704 for (bnknr
= 0; bnknr
< brdp
->nrbnks
; bnknr
++) {
1705 ioaddr
= brdp
->bnkstataddr
[bnknr
];
1706 if (inb(ioaddr
) & ECH_PNLINTRPEND
) {
1707 panelp
= brdp
->bnk2panel
[bnknr
];
1708 (* panelp
->isr
)(panelp
, (ioaddr
& 0xfffc));
1715 /*****************************************************************************/
1718 * Interrupt service routine for ECH-PCI board types.
1721 static int stl_echpciintr(struct stlbrd
*brdp
)
1723 struct stlpanel
*panelp
;
1724 unsigned int ioaddr
, bnknr
, recheck
;
1729 for (bnknr
= 0; bnknr
< brdp
->nrbnks
; bnknr
++) {
1730 outb(brdp
->bnkpageaddr
[bnknr
], brdp
->ioctrl
);
1731 ioaddr
= brdp
->bnkstataddr
[bnknr
];
1732 if (inb(ioaddr
) & ECH_PNLINTRPEND
) {
1733 panelp
= brdp
->bnk2panel
[bnknr
];
1734 (* panelp
->isr
)(panelp
, (ioaddr
& 0xfffc));
1745 /*****************************************************************************/
1748 * Interrupt service routine for ECH-8/64-PCI board types.
1751 static int stl_echpci64intr(struct stlbrd
*brdp
)
1753 struct stlpanel
*panelp
;
1754 unsigned int ioaddr
, bnknr
;
1757 while (inb(brdp
->ioctrl
) & 0x1) {
1759 for (bnknr
= 0; bnknr
< brdp
->nrbnks
; bnknr
++) {
1760 ioaddr
= brdp
->bnkstataddr
[bnknr
];
1761 if (inb(ioaddr
) & ECH_PNLINTRPEND
) {
1762 panelp
= brdp
->bnk2panel
[bnknr
];
1763 (* panelp
->isr
)(panelp
, (ioaddr
& 0xfffc));
1771 /*****************************************************************************/
1774 * Service an off-level request for some channel.
1776 static void stl_offintr(struct work_struct
*work
)
1778 struct stlport
*portp
= container_of(work
, struct stlport
, tqueue
);
1779 struct tty_struct
*tty
;
1780 unsigned int oldsigs
;
1782 pr_debug("stl_offintr(portp=%p)\n", portp
);
1791 if (test_bit(ASYI_TXLOW
, &portp
->istate
))
1794 if (test_bit(ASYI_DCDCHANGE
, &portp
->istate
)) {
1795 clear_bit(ASYI_DCDCHANGE
, &portp
->istate
);
1796 oldsigs
= portp
->sigs
;
1797 portp
->sigs
= stl_getsignals(portp
);
1798 if ((portp
->sigs
& TIOCM_CD
) && ((oldsigs
& TIOCM_CD
) == 0))
1799 wake_up_interruptible(&portp
->open_wait
);
1800 if ((oldsigs
& TIOCM_CD
) && ((portp
->sigs
& TIOCM_CD
) == 0))
1801 if (portp
->flags
& ASYNC_CHECK_CD
)
1802 tty_hangup(tty
); /* FIXME: module removal race here - AKPM */
1806 /*****************************************************************************/
1809 * Initialize all the ports on a panel.
1812 static int __devinit
stl_initports(struct stlbrd
*brdp
, struct stlpanel
*panelp
)
1814 struct stlport
*portp
;
1818 pr_debug("stl_initports(brdp=%p,panelp=%p)\n", brdp
, panelp
);
1820 chipmask
= stl_panelinit(brdp
, panelp
);
1823 * All UART's are initialized (if found!). Now go through and setup
1824 * each ports data structures.
1826 for (i
= 0; i
< panelp
->nrports
; i
++) {
1827 portp
= kzalloc(sizeof(struct stlport
), GFP_KERNEL
);
1829 printk("STALLION: failed to allocate memory "
1830 "(size=%Zd)\n", sizeof(struct stlport
));
1834 portp
->magic
= STL_PORTMAGIC
;
1836 portp
->brdnr
= panelp
->brdnr
;
1837 portp
->panelnr
= panelp
->panelnr
;
1838 portp
->uartp
= panelp
->uartp
;
1839 portp
->clk
= brdp
->clk
;
1840 portp
->baud_base
= STL_BAUDBASE
;
1841 portp
->close_delay
= STL_CLOSEDELAY
;
1842 portp
->closing_wait
= 30 * HZ
;
1843 INIT_WORK(&portp
->tqueue
, stl_offintr
);
1844 init_waitqueue_head(&portp
->open_wait
);
1845 init_waitqueue_head(&portp
->close_wait
);
1846 portp
->stats
.brd
= portp
->brdnr
;
1847 portp
->stats
.panel
= portp
->panelnr
;
1848 portp
->stats
.port
= portp
->portnr
;
1849 panelp
->ports
[i
] = portp
;
1850 stl_portinit(brdp
, panelp
, portp
);
1856 static void stl_cleanup_panels(struct stlbrd
*brdp
)
1858 struct stlpanel
*panelp
;
1859 struct stlport
*portp
;
1862 for (j
= 0; j
< STL_MAXPANELS
; j
++) {
1863 panelp
= brdp
->panels
[j
];
1866 for (k
= 0; k
< STL_PORTSPERPANEL
; k
++) {
1867 portp
= panelp
->ports
[k
];
1870 if (portp
->tty
!= NULL
)
1871 stl_hangup(portp
->tty
);
1872 kfree(portp
->tx
.buf
);
1879 /*****************************************************************************/
1882 * Try to find and initialize an EasyIO board.
1885 static int __devinit
stl_initeio(struct stlbrd
*brdp
)
1887 struct stlpanel
*panelp
;
1888 unsigned int status
;
1892 pr_debug("stl_initeio(brdp=%p)\n", brdp
);
1894 brdp
->ioctrl
= brdp
->ioaddr1
+ 1;
1895 brdp
->iostatus
= brdp
->ioaddr1
+ 2;
1897 status
= inb(brdp
->iostatus
);
1898 if ((status
& EIO_IDBITMASK
) == EIO_MK3
)
1902 * Handle board specific stuff now. The real difference is PCI
1905 if (brdp
->brdtype
== BRD_EASYIOPCI
) {
1906 brdp
->iosize1
= 0x80;
1907 brdp
->iosize2
= 0x80;
1908 name
= "serial(EIO-PCI)";
1909 outb(0x41, (brdp
->ioaddr2
+ 0x4c));
1912 name
= "serial(EIO)";
1913 if ((brdp
->irq
< 0) || (brdp
->irq
> 15) ||
1914 (stl_vecmap
[brdp
->irq
] == (unsigned char) 0xff)) {
1915 printk("STALLION: invalid irq=%d for brd=%d\n",
1916 brdp
->irq
, brdp
->brdnr
);
1920 outb((stl_vecmap
[brdp
->irq
] | EIO_0WS
|
1921 ((brdp
->irqtype
) ? EIO_INTLEVEL
: EIO_INTEDGE
)),
1926 if (!request_region(brdp
->ioaddr1
, brdp
->iosize1
, name
)) {
1927 printk(KERN_WARNING
"STALLION: Warning, board %d I/O address "
1928 "%x conflicts with another device\n", brdp
->brdnr
,
1933 if (brdp
->iosize2
> 0)
1934 if (!request_region(brdp
->ioaddr2
, brdp
->iosize2
, name
)) {
1935 printk(KERN_WARNING
"STALLION: Warning, board %d I/O "
1936 "address %x conflicts with another device\n",
1937 brdp
->brdnr
, brdp
->ioaddr2
);
1938 printk(KERN_WARNING
"STALLION: Warning, also "
1939 "releasing board %d I/O address %x \n",
1940 brdp
->brdnr
, brdp
->ioaddr1
);
1945 * Everything looks OK, so let's go ahead and probe for the hardware.
1947 brdp
->clk
= CD1400_CLK
;
1948 brdp
->isr
= stl_eiointr
;
1951 switch (status
& EIO_IDBITMASK
) {
1953 brdp
->clk
= CD1400_CLK8M
;
1963 switch (status
& EIO_BRDMASK
) {
1982 * We have verified that the board is actually present, so now we
1983 * can complete the setup.
1986 panelp
= kzalloc(sizeof(struct stlpanel
), GFP_KERNEL
);
1988 printk(KERN_WARNING
"STALLION: failed to allocate memory "
1989 "(size=%Zd)\n", sizeof(struct stlpanel
));
1994 panelp
->magic
= STL_PANELMAGIC
;
1995 panelp
->brdnr
= brdp
->brdnr
;
1996 panelp
->panelnr
= 0;
1997 panelp
->nrports
= brdp
->nrports
;
1998 panelp
->iobase
= brdp
->ioaddr1
;
1999 panelp
->hwid
= status
;
2000 if ((status
& EIO_IDBITMASK
) == EIO_MK3
) {
2001 panelp
->uartp
= &stl_sc26198uart
;
2002 panelp
->isr
= stl_sc26198intr
;
2004 panelp
->uartp
= &stl_cd1400uart
;
2005 panelp
->isr
= stl_cd1400eiointr
;
2008 brdp
->panels
[0] = panelp
;
2010 brdp
->state
|= BRD_FOUND
;
2011 brdp
->hwid
= status
;
2012 if (request_irq(brdp
->irq
, stl_intr
, IRQF_SHARED
, name
, brdp
) != 0) {
2013 printk("STALLION: failed to register interrupt "
2014 "routine for %s irq=%d\n", name
, brdp
->irq
);
2021 stl_cleanup_panels(brdp
);
2023 if (brdp
->iosize2
> 0)
2024 release_region(brdp
->ioaddr2
, brdp
->iosize2
);
2026 release_region(brdp
->ioaddr1
, brdp
->iosize1
);
2031 /*****************************************************************************/
2034 * Try to find an ECH board and initialize it. This code is capable of
2035 * dealing with all types of ECH board.
2038 static int __devinit
stl_initech(struct stlbrd
*brdp
)
2040 struct stlpanel
*panelp
;
2041 unsigned int status
, nxtid
, ioaddr
, conflict
, panelnr
, banknr
, i
;
2045 pr_debug("stl_initech(brdp=%p)\n", brdp
);
2051 * Set up the initial board register contents for boards. This varies a
2052 * bit between the different board types. So we need to handle each
2053 * separately. Also do a check that the supplied IRQ is good.
2055 switch (brdp
->brdtype
) {
2058 brdp
->isr
= stl_echatintr
;
2059 brdp
->ioctrl
= brdp
->ioaddr1
+ 1;
2060 brdp
->iostatus
= brdp
->ioaddr1
+ 1;
2061 status
= inb(brdp
->iostatus
);
2062 if ((status
& ECH_IDBITMASK
) != ECH_ID
) {
2066 if ((brdp
->irq
< 0) || (brdp
->irq
> 15) ||
2067 (stl_vecmap
[brdp
->irq
] == (unsigned char) 0xff)) {
2068 printk("STALLION: invalid irq=%d for brd=%d\n",
2069 brdp
->irq
, brdp
->brdnr
);
2073 status
= ((brdp
->ioaddr2
& ECH_ADDR2MASK
) >> 1);
2074 status
|= (stl_vecmap
[brdp
->irq
] << 1);
2075 outb((status
| ECH_BRDRESET
), brdp
->ioaddr1
);
2076 brdp
->ioctrlval
= ECH_INTENABLE
|
2077 ((brdp
->irqtype
) ? ECH_INTLEVEL
: ECH_INTEDGE
);
2078 for (i
= 0; i
< 10; i
++)
2079 outb((brdp
->ioctrlval
| ECH_BRDENABLE
), brdp
->ioctrl
);
2082 name
= "serial(EC8/32)";
2083 outb(status
, brdp
->ioaddr1
);
2087 brdp
->isr
= stl_echmcaintr
;
2088 brdp
->ioctrl
= brdp
->ioaddr1
+ 0x20;
2089 brdp
->iostatus
= brdp
->ioctrl
;
2090 status
= inb(brdp
->iostatus
);
2091 if ((status
& ECH_IDBITMASK
) != ECH_ID
) {
2095 if ((brdp
->irq
< 0) || (brdp
->irq
> 15) ||
2096 (stl_vecmap
[brdp
->irq
] == (unsigned char) 0xff)) {
2097 printk("STALLION: invalid irq=%d for brd=%d\n",
2098 brdp
->irq
, brdp
->brdnr
);
2102 outb(ECHMC_BRDRESET
, brdp
->ioctrl
);
2103 outb(ECHMC_INTENABLE
, brdp
->ioctrl
);
2105 name
= "serial(EC8/32-MC)";
2109 brdp
->isr
= stl_echpciintr
;
2110 brdp
->ioctrl
= brdp
->ioaddr1
+ 2;
2113 name
= "serial(EC8/32-PCI)";
2117 brdp
->isr
= stl_echpci64intr
;
2118 brdp
->ioctrl
= brdp
->ioaddr2
+ 0x40;
2119 outb(0x43, (brdp
->ioaddr1
+ 0x4c));
2120 brdp
->iosize1
= 0x80;
2121 brdp
->iosize2
= 0x80;
2122 name
= "serial(EC8/64-PCI)";
2126 printk("STALLION: unknown board type=%d\n", brdp
->brdtype
);
2132 * Check boards for possible IO address conflicts and return fail status
2133 * if an IO conflict found.
2136 if (!request_region(brdp
->ioaddr1
, brdp
->iosize1
, name
)) {
2137 printk(KERN_WARNING
"STALLION: Warning, board %d I/O address "
2138 "%x conflicts with another device\n", brdp
->brdnr
,
2143 if (brdp
->iosize2
> 0)
2144 if (!request_region(brdp
->ioaddr2
, brdp
->iosize2
, name
)) {
2145 printk(KERN_WARNING
"STALLION: Warning, board %d I/O "
2146 "address %x conflicts with another device\n",
2147 brdp
->brdnr
, brdp
->ioaddr2
);
2148 printk(KERN_WARNING
"STALLION: Warning, also "
2149 "releasing board %d I/O address %x \n",
2150 brdp
->brdnr
, brdp
->ioaddr1
);
2155 * Scan through the secondary io address space looking for panels.
2156 * As we find'em allocate and initialize panel structures for each.
2158 brdp
->clk
= CD1400_CLK
;
2159 brdp
->hwid
= status
;
2161 ioaddr
= brdp
->ioaddr2
;
2166 for (i
= 0; i
< STL_MAXPANELS
; i
++) {
2167 if (brdp
->brdtype
== BRD_ECHPCI
) {
2168 outb(nxtid
, brdp
->ioctrl
);
2169 ioaddr
= brdp
->ioaddr2
;
2171 status
= inb(ioaddr
+ ECH_PNLSTATUS
);
2172 if ((status
& ECH_PNLIDMASK
) != nxtid
)
2174 panelp
= kzalloc(sizeof(struct stlpanel
), GFP_KERNEL
);
2176 printk("STALLION: failed to allocate memory "
2177 "(size=%Zd)\n", sizeof(struct stlpanel
));
2181 panelp
->magic
= STL_PANELMAGIC
;
2182 panelp
->brdnr
= brdp
->brdnr
;
2183 panelp
->panelnr
= panelnr
;
2184 panelp
->iobase
= ioaddr
;
2185 panelp
->pagenr
= nxtid
;
2186 panelp
->hwid
= status
;
2187 brdp
->bnk2panel
[banknr
] = panelp
;
2188 brdp
->bnkpageaddr
[banknr
] = nxtid
;
2189 brdp
->bnkstataddr
[banknr
++] = ioaddr
+ ECH_PNLSTATUS
;
2191 if (status
& ECH_PNLXPID
) {
2192 panelp
->uartp
= &stl_sc26198uart
;
2193 panelp
->isr
= stl_sc26198intr
;
2194 if (status
& ECH_PNL16PORT
) {
2195 panelp
->nrports
= 16;
2196 brdp
->bnk2panel
[banknr
] = panelp
;
2197 brdp
->bnkpageaddr
[banknr
] = nxtid
;
2198 brdp
->bnkstataddr
[banknr
++] = ioaddr
+ 4 +
2201 panelp
->nrports
= 8;
2203 panelp
->uartp
= &stl_cd1400uart
;
2204 panelp
->isr
= stl_cd1400echintr
;
2205 if (status
& ECH_PNL16PORT
) {
2206 panelp
->nrports
= 16;
2207 panelp
->ackmask
= 0x80;
2208 if (brdp
->brdtype
!= BRD_ECHPCI
)
2209 ioaddr
+= EREG_BANKSIZE
;
2210 brdp
->bnk2panel
[banknr
] = panelp
;
2211 brdp
->bnkpageaddr
[banknr
] = ++nxtid
;
2212 brdp
->bnkstataddr
[banknr
++] = ioaddr
+
2215 panelp
->nrports
= 8;
2216 panelp
->ackmask
= 0xc0;
2221 ioaddr
+= EREG_BANKSIZE
;
2222 brdp
->nrports
+= panelp
->nrports
;
2223 brdp
->panels
[panelnr
++] = panelp
;
2224 if ((brdp
->brdtype
!= BRD_ECHPCI
) &&
2225 (ioaddr
>= (brdp
->ioaddr2
+ brdp
->iosize2
))) {
2231 brdp
->nrpanels
= panelnr
;
2232 brdp
->nrbnks
= banknr
;
2233 if (brdp
->brdtype
== BRD_ECH
)
2234 outb((brdp
->ioctrlval
| ECH_BRDDISABLE
), brdp
->ioctrl
);
2236 brdp
->state
|= BRD_FOUND
;
2237 if (request_irq(brdp
->irq
, stl_intr
, IRQF_SHARED
, name
, brdp
) != 0) {
2238 printk("STALLION: failed to register interrupt "
2239 "routine for %s irq=%d\n", name
, brdp
->irq
);
2246 stl_cleanup_panels(brdp
);
2247 if (brdp
->iosize2
> 0)
2248 release_region(brdp
->ioaddr2
, brdp
->iosize2
);
2250 release_region(brdp
->ioaddr1
, brdp
->iosize1
);
2255 /*****************************************************************************/
2258 * Initialize and configure the specified board.
2259 * Scan through all the boards in the configuration and see what we
2260 * can find. Handle EIO and the ECH boards a little differently here
2261 * since the initial search and setup is very different.
2264 static int __devinit
stl_brdinit(struct stlbrd
*brdp
)
2268 pr_debug("stl_brdinit(brdp=%p)\n", brdp
);
2270 switch (brdp
->brdtype
) {
2273 retval
= stl_initeio(brdp
);
2281 retval
= stl_initech(brdp
);
2286 printk("STALLION: board=%d is unknown board type=%d\n",
2287 brdp
->brdnr
, brdp
->brdtype
);
2292 if ((brdp
->state
& BRD_FOUND
) == 0) {
2293 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2294 stl_brdnames
[brdp
->brdtype
], brdp
->brdnr
,
2295 brdp
->ioaddr1
, brdp
->irq
);
2299 for (i
= 0; i
< STL_MAXPANELS
; i
++)
2300 if (brdp
->panels
[i
] != NULL
)
2301 stl_initports(brdp
, brdp
->panels
[i
]);
2303 printk("STALLION: %s found, board=%d io=%x irq=%d "
2304 "nrpanels=%d nrports=%d\n", stl_brdnames
[brdp
->brdtype
],
2305 brdp
->brdnr
, brdp
->ioaddr1
, brdp
->irq
, brdp
->nrpanels
,
2310 free_irq(brdp
->irq
, brdp
);
2312 stl_cleanup_panels(brdp
);
2314 release_region(brdp
->ioaddr1
, brdp
->iosize1
);
2315 if (brdp
->iosize2
> 0)
2316 release_region(brdp
->ioaddr2
, brdp
->iosize2
);
2321 /*****************************************************************************/
2324 * Find the next available board number that is free.
2327 static int __devinit
stl_getbrdnr(void)
2331 for (i
= 0; i
< STL_MAXBRDS
; i
++)
2332 if (stl_brds
[i
] == NULL
) {
2333 if (i
>= stl_nrbrds
)
2341 /*****************************************************************************/
2343 * We have a Stallion board. Allocate a board structure and
2344 * initialize it. Read its IO and IRQ resources from PCI
2345 * configuration space.
2348 static int __devinit
stl_pciprobe(struct pci_dev
*pdev
,
2349 const struct pci_device_id
*ent
)
2351 struct stlbrd
*brdp
;
2352 unsigned int i
, brdtype
= ent
->driver_data
;
2353 int brdnr
, retval
= -ENODEV
;
2355 if ((pdev
->class >> 8) == PCI_CLASS_STORAGE_IDE
)
2358 retval
= pci_enable_device(pdev
);
2361 brdp
= stl_allocbrd();
2366 mutex_lock(&stl_brdslock
);
2367 brdnr
= stl_getbrdnr();
2369 dev_err(&pdev
->dev
, "too many boards found, "
2370 "maximum supported %d\n", STL_MAXBRDS
);
2371 mutex_unlock(&stl_brdslock
);
2375 brdp
->brdnr
= (unsigned int)brdnr
;
2376 stl_brds
[brdp
->brdnr
] = brdp
;
2377 mutex_unlock(&stl_brdslock
);
2379 brdp
->brdtype
= brdtype
;
2380 brdp
->state
|= STL_PROBED
;
2383 * We have all resources from the board, so let's setup the actual
2384 * board structure now.
2388 brdp
->ioaddr2
= pci_resource_start(pdev
, 0);
2389 brdp
->ioaddr1
= pci_resource_start(pdev
, 1);
2392 brdp
->ioaddr2
= pci_resource_start(pdev
, 2);
2393 brdp
->ioaddr1
= pci_resource_start(pdev
, 1);
2396 brdp
->ioaddr1
= pci_resource_start(pdev
, 2);
2397 brdp
->ioaddr2
= pci_resource_start(pdev
, 1);
2400 dev_err(&pdev
->dev
, "unknown PCI board type=%u\n", brdtype
);
2404 brdp
->irq
= pdev
->irq
;
2405 retval
= stl_brdinit(brdp
);
2409 pci_set_drvdata(pdev
, brdp
);
2411 for (i
= 0; i
< brdp
->nrports
; i
++)
2412 tty_register_device(stl_serial
,
2413 brdp
->brdnr
* STL_MAXPORTS
+ i
, &pdev
->dev
);
2417 stl_brds
[brdp
->brdnr
] = NULL
;
2424 static void __devexit
stl_pciremove(struct pci_dev
*pdev
)
2426 struct stlbrd
*brdp
= pci_get_drvdata(pdev
);
2429 free_irq(brdp
->irq
, brdp
);
2431 stl_cleanup_panels(brdp
);
2433 release_region(brdp
->ioaddr1
, brdp
->iosize1
);
2434 if (brdp
->iosize2
> 0)
2435 release_region(brdp
->ioaddr2
, brdp
->iosize2
);
2437 for (i
= 0; i
< brdp
->nrports
; i
++)
2438 tty_unregister_device(stl_serial
,
2439 brdp
->brdnr
* STL_MAXPORTS
+ i
);
2441 stl_brds
[brdp
->brdnr
] = NULL
;
2445 static struct pci_driver stl_pcidriver
= {
2447 .id_table
= stl_pcibrds
,
2448 .probe
= stl_pciprobe
,
2449 .remove
= __devexit_p(stl_pciremove
)
2452 /*****************************************************************************/
2455 * Return the board stats structure to user app.
2458 static int stl_getbrdstats(combrd_t __user
*bp
)
2460 combrd_t stl_brdstats
;
2461 struct stlbrd
*brdp
;
2462 struct stlpanel
*panelp
;
2465 if (copy_from_user(&stl_brdstats
, bp
, sizeof(combrd_t
)))
2467 if (stl_brdstats
.brd
>= STL_MAXBRDS
)
2469 brdp
= stl_brds
[stl_brdstats
.brd
];
2473 memset(&stl_brdstats
, 0, sizeof(combrd_t
));
2474 stl_brdstats
.brd
= brdp
->brdnr
;
2475 stl_brdstats
.type
= brdp
->brdtype
;
2476 stl_brdstats
.hwid
= brdp
->hwid
;
2477 stl_brdstats
.state
= brdp
->state
;
2478 stl_brdstats
.ioaddr
= brdp
->ioaddr1
;
2479 stl_brdstats
.ioaddr2
= brdp
->ioaddr2
;
2480 stl_brdstats
.irq
= brdp
->irq
;
2481 stl_brdstats
.nrpanels
= brdp
->nrpanels
;
2482 stl_brdstats
.nrports
= brdp
->nrports
;
2483 for (i
= 0; i
< brdp
->nrpanels
; i
++) {
2484 panelp
= brdp
->panels
[i
];
2485 stl_brdstats
.panels
[i
].panel
= i
;
2486 stl_brdstats
.panels
[i
].hwid
= panelp
->hwid
;
2487 stl_brdstats
.panels
[i
].nrports
= panelp
->nrports
;
2490 return copy_to_user(bp
, &stl_brdstats
, sizeof(combrd_t
)) ? -EFAULT
: 0;
2493 /*****************************************************************************/
2496 * Resolve the referenced port number into a port struct pointer.
2499 static struct stlport
*stl_getport(int brdnr
, int panelnr
, int portnr
)
2501 struct stlbrd
*brdp
;
2502 struct stlpanel
*panelp
;
2504 if (brdnr
< 0 || brdnr
>= STL_MAXBRDS
)
2506 brdp
= stl_brds
[brdnr
];
2509 if (panelnr
< 0 || (unsigned int)panelnr
>= brdp
->nrpanels
)
2511 panelp
= brdp
->panels
[panelnr
];
2514 if (portnr
< 0 || (unsigned int)portnr
>= panelp
->nrports
)
2516 return panelp
->ports
[portnr
];
2519 /*****************************************************************************/
2522 * Return the port stats structure to user app. A NULL port struct
2523 * pointer passed in means that we need to find out from the app
2524 * what port to get stats for (used through board control device).
2527 static int stl_getportstats(struct stlport
*portp
, comstats_t __user
*cp
)
2529 comstats_t stl_comstats
;
2530 unsigned char *head
, *tail
;
2531 unsigned long flags
;
2534 if (copy_from_user(&stl_comstats
, cp
, sizeof(comstats_t
)))
2536 portp
= stl_getport(stl_comstats
.brd
, stl_comstats
.panel
,
2542 portp
->stats
.state
= portp
->istate
;
2543 portp
->stats
.flags
= portp
->flags
;
2544 portp
->stats
.hwid
= portp
->hwid
;
2546 portp
->stats
.ttystate
= 0;
2547 portp
->stats
.cflags
= 0;
2548 portp
->stats
.iflags
= 0;
2549 portp
->stats
.oflags
= 0;
2550 portp
->stats
.lflags
= 0;
2551 portp
->stats
.rxbuffered
= 0;
2553 spin_lock_irqsave(&stallion_lock
, flags
);
2554 if (portp
->tty
!= NULL
)
2555 if (portp
->tty
->driver_data
== portp
) {
2556 portp
->stats
.ttystate
= portp
->tty
->flags
;
2557 /* No longer available as a statistic */
2558 portp
->stats
.rxbuffered
= 1; /*portp->tty->flip.count; */
2559 if (portp
->tty
->termios
!= NULL
) {
2560 portp
->stats
.cflags
= portp
->tty
->termios
->c_cflag
;
2561 portp
->stats
.iflags
= portp
->tty
->termios
->c_iflag
;
2562 portp
->stats
.oflags
= portp
->tty
->termios
->c_oflag
;
2563 portp
->stats
.lflags
= portp
->tty
->termios
->c_lflag
;
2566 spin_unlock_irqrestore(&stallion_lock
, flags
);
2568 head
= portp
->tx
.head
;
2569 tail
= portp
->tx
.tail
;
2570 portp
->stats
.txbuffered
= (head
>= tail
) ? (head
- tail
) :
2571 (STL_TXBUFSIZE
- (tail
- head
));
2573 portp
->stats
.signals
= (unsigned long) stl_getsignals(portp
);
2575 return copy_to_user(cp
, &portp
->stats
,
2576 sizeof(comstats_t
)) ? -EFAULT
: 0;
2579 /*****************************************************************************/
2582 * Clear the port stats structure. We also return it zeroed out...
2585 static int stl_clrportstats(struct stlport
*portp
, comstats_t __user
*cp
)
2587 comstats_t stl_comstats
;
2590 if (copy_from_user(&stl_comstats
, cp
, sizeof(comstats_t
)))
2592 portp
= stl_getport(stl_comstats
.brd
, stl_comstats
.panel
,
2598 memset(&portp
->stats
, 0, sizeof(comstats_t
));
2599 portp
->stats
.brd
= portp
->brdnr
;
2600 portp
->stats
.panel
= portp
->panelnr
;
2601 portp
->stats
.port
= portp
->portnr
;
2602 return copy_to_user(cp
, &portp
->stats
,
2603 sizeof(comstats_t
)) ? -EFAULT
: 0;
2606 /*****************************************************************************/
2609 * Return the entire driver ports structure to a user app.
2612 static int stl_getportstruct(struct stlport __user
*arg
)
2614 struct stlport stl_dummyport
;
2615 struct stlport
*portp
;
2617 if (copy_from_user(&stl_dummyport
, arg
, sizeof(struct stlport
)))
2619 portp
= stl_getport(stl_dummyport
.brdnr
, stl_dummyport
.panelnr
,
2620 stl_dummyport
.portnr
);
2623 return copy_to_user(arg
, portp
, sizeof(struct stlport
)) ? -EFAULT
: 0;
2626 /*****************************************************************************/
2629 * Return the entire driver board structure to a user app.
2632 static int stl_getbrdstruct(struct stlbrd __user
*arg
)
2634 struct stlbrd stl_dummybrd
;
2635 struct stlbrd
*brdp
;
2637 if (copy_from_user(&stl_dummybrd
, arg
, sizeof(struct stlbrd
)))
2639 if (stl_dummybrd
.brdnr
>= STL_MAXBRDS
)
2641 brdp
= stl_brds
[stl_dummybrd
.brdnr
];
2644 return copy_to_user(arg
, brdp
, sizeof(struct stlbrd
)) ? -EFAULT
: 0;
2647 /*****************************************************************************/
2650 * The "staliomem" device is also required to do some special operations
2651 * on the board and/or ports. In this driver it is mostly used for stats
2655 static int stl_memioctl(struct inode
*ip
, struct file
*fp
, unsigned int cmd
, unsigned long arg
)
2658 void __user
*argp
= (void __user
*)arg
;
2660 pr_debug("stl_memioctl(ip=%p,fp=%p,cmd=%x,arg=%lx)\n", ip
, fp
, cmd
,arg
);
2663 if (brdnr
>= STL_MAXBRDS
)
2668 case COM_GETPORTSTATS
:
2669 rc
= stl_getportstats(NULL
, argp
);
2671 case COM_CLRPORTSTATS
:
2672 rc
= stl_clrportstats(NULL
, argp
);
2674 case COM_GETBRDSTATS
:
2675 rc
= stl_getbrdstats(argp
);
2678 rc
= stl_getportstruct(argp
);
2681 rc
= stl_getbrdstruct(argp
);
2691 static const struct tty_operations stl_ops
= {
2695 .put_char
= stl_putchar
,
2696 .flush_chars
= stl_flushchars
,
2697 .write_room
= stl_writeroom
,
2698 .chars_in_buffer
= stl_charsinbuffer
,
2700 .set_termios
= stl_settermios
,
2701 .throttle
= stl_throttle
,
2702 .unthrottle
= stl_unthrottle
,
2705 .hangup
= stl_hangup
,
2706 .flush_buffer
= stl_flushbuffer
,
2707 .break_ctl
= stl_breakctl
,
2708 .wait_until_sent
= stl_waituntilsent
,
2709 .send_xchar
= stl_sendxchar
,
2710 .read_proc
= stl_readproc
,
2711 .tiocmget
= stl_tiocmget
,
2712 .tiocmset
= stl_tiocmset
,
2715 /*****************************************************************************/
2716 /* CD1400 HARDWARE FUNCTIONS */
2717 /*****************************************************************************/
2720 * These functions get/set/update the registers of the cd1400 UARTs.
2721 * Access to the cd1400 registers is via an address/data io port pair.
2722 * (Maybe should make this inline...)
2725 static int stl_cd1400getreg(struct stlport
*portp
, int regnr
)
2727 outb((regnr
+ portp
->uartaddr
), portp
->ioaddr
);
2728 return inb(portp
->ioaddr
+ EREG_DATA
);
2731 static void stl_cd1400setreg(struct stlport
*portp
, int regnr
, int value
)
2733 outb(regnr
+ portp
->uartaddr
, portp
->ioaddr
);
2734 outb(value
, portp
->ioaddr
+ EREG_DATA
);
2737 static int stl_cd1400updatereg(struct stlport
*portp
, int regnr
, int value
)
2739 outb(regnr
+ portp
->uartaddr
, portp
->ioaddr
);
2740 if (inb(portp
->ioaddr
+ EREG_DATA
) != value
) {
2741 outb(value
, portp
->ioaddr
+ EREG_DATA
);
2747 /*****************************************************************************/
2750 * Inbitialize the UARTs in a panel. We don't care what sort of board
2751 * these ports are on - since the port io registers are almost
2752 * identical when dealing with ports.
2755 static int stl_cd1400panelinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
)
2759 int nrchips
, uartaddr
, ioaddr
;
2760 unsigned long flags
;
2762 pr_debug("stl_panelinit(brdp=%p,panelp=%p)\n", brdp
, panelp
);
2764 spin_lock_irqsave(&brd_lock
, flags
);
2765 BRDENABLE(panelp
->brdnr
, panelp
->pagenr
);
2768 * Check that each chip is present and started up OK.
2771 nrchips
= panelp
->nrports
/ CD1400_PORTS
;
2772 for (i
= 0; i
< nrchips
; i
++) {
2773 if (brdp
->brdtype
== BRD_ECHPCI
) {
2774 outb((panelp
->pagenr
+ (i
>> 1)), brdp
->ioctrl
);
2775 ioaddr
= panelp
->iobase
;
2777 ioaddr
= panelp
->iobase
+ (EREG_BANKSIZE
* (i
>> 1));
2778 uartaddr
= (i
& 0x01) ? 0x080 : 0;
2779 outb((GFRCR
+ uartaddr
), ioaddr
);
2780 outb(0, (ioaddr
+ EREG_DATA
));
2781 outb((CCR
+ uartaddr
), ioaddr
);
2782 outb(CCR_RESETFULL
, (ioaddr
+ EREG_DATA
));
2783 outb(CCR_RESETFULL
, (ioaddr
+ EREG_DATA
));
2784 outb((GFRCR
+ uartaddr
), ioaddr
);
2785 for (j
= 0; j
< CCR_MAXWAIT
; j
++)
2786 if ((gfrcr
= inb(ioaddr
+ EREG_DATA
)) != 0)
2789 if ((j
>= CCR_MAXWAIT
) || (gfrcr
< 0x40) || (gfrcr
> 0x60)) {
2790 printk("STALLION: cd1400 not responding, "
2791 "brd=%d panel=%d chip=%d\n",
2792 panelp
->brdnr
, panelp
->panelnr
, i
);
2795 chipmask
|= (0x1 << i
);
2796 outb((PPR
+ uartaddr
), ioaddr
);
2797 outb(PPR_SCALAR
, (ioaddr
+ EREG_DATA
));
2800 BRDDISABLE(panelp
->brdnr
);
2801 spin_unlock_irqrestore(&brd_lock
, flags
);
2805 /*****************************************************************************/
2808 * Initialize hardware specific port registers.
2811 static void stl_cd1400portinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
, struct stlport
*portp
)
2813 unsigned long flags
;
2814 pr_debug("stl_cd1400portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp
,
2817 if ((brdp
== NULL
) || (panelp
== NULL
) ||
2821 spin_lock_irqsave(&brd_lock
, flags
);
2822 portp
->ioaddr
= panelp
->iobase
+ (((brdp
->brdtype
== BRD_ECHPCI
) ||
2823 (portp
->portnr
< 8)) ? 0 : EREG_BANKSIZE
);
2824 portp
->uartaddr
= (portp
->portnr
& 0x04) << 5;
2825 portp
->pagenr
= panelp
->pagenr
+ (portp
->portnr
>> 3);
2827 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
2828 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
2829 stl_cd1400setreg(portp
, LIVR
, (portp
->portnr
<< 3));
2830 portp
->hwid
= stl_cd1400getreg(portp
, GFRCR
);
2831 BRDDISABLE(portp
->brdnr
);
2832 spin_unlock_irqrestore(&brd_lock
, flags
);
2835 /*****************************************************************************/
2838 * Wait for the command register to be ready. We will poll this,
2839 * since it won't usually take too long to be ready.
2842 static void stl_cd1400ccrwait(struct stlport
*portp
)
2846 for (i
= 0; i
< CCR_MAXWAIT
; i
++)
2847 if (stl_cd1400getreg(portp
, CCR
) == 0)
2850 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
2851 portp
->portnr
, portp
->panelnr
, portp
->brdnr
);
2854 /*****************************************************************************/
2857 * Set up the cd1400 registers for a port based on the termios port
2861 static void stl_cd1400setport(struct stlport
*portp
, struct ktermios
*tiosp
)
2863 struct stlbrd
*brdp
;
2864 unsigned long flags
;
2865 unsigned int clkdiv
, baudrate
;
2866 unsigned char cor1
, cor2
, cor3
;
2867 unsigned char cor4
, cor5
, ccr
;
2868 unsigned char srer
, sreron
, sreroff
;
2869 unsigned char mcor1
, mcor2
, rtpr
;
2870 unsigned char clk
, div
;
2886 brdp
= stl_brds
[portp
->brdnr
];
2891 * Set up the RX char ignore mask with those RX error types we
2892 * can ignore. We can get the cd1400 to help us out a little here,
2893 * it will ignore parity errors and breaks for us.
2895 portp
->rxignoremsk
= 0;
2896 if (tiosp
->c_iflag
& IGNPAR
) {
2897 portp
->rxignoremsk
|= (ST_PARITY
| ST_FRAMING
| ST_OVERRUN
);
2898 cor1
|= COR1_PARIGNORE
;
2900 if (tiosp
->c_iflag
& IGNBRK
) {
2901 portp
->rxignoremsk
|= ST_BREAK
;
2902 cor4
|= COR4_IGNBRK
;
2905 portp
->rxmarkmsk
= ST_OVERRUN
;
2906 if (tiosp
->c_iflag
& (INPCK
| PARMRK
))
2907 portp
->rxmarkmsk
|= (ST_PARITY
| ST_FRAMING
);
2908 if (tiosp
->c_iflag
& BRKINT
)
2909 portp
->rxmarkmsk
|= ST_BREAK
;
2912 * Go through the char size, parity and stop bits and set all the
2913 * option register appropriately.
2915 switch (tiosp
->c_cflag
& CSIZE
) {
2930 if (tiosp
->c_cflag
& CSTOPB
)
2935 if (tiosp
->c_cflag
& PARENB
) {
2936 if (tiosp
->c_cflag
& PARODD
)
2937 cor1
|= (COR1_PARENB
| COR1_PARODD
);
2939 cor1
|= (COR1_PARENB
| COR1_PAREVEN
);
2941 cor1
|= COR1_PARNONE
;
2945 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
2946 * space for hardware flow control and the like. This should be set to
2947 * VMIN. Also here we will set the RX data timeout to 10ms - this should
2948 * really be based on VTIME.
2950 cor3
|= FIFO_RXTHRESHOLD
;
2954 * Calculate the baud rate timers. For now we will just assume that
2955 * the input and output baud are the same. Could have used a baud
2956 * table here, but this way we can generate virtually any baud rate
2959 baudrate
= tiosp
->c_cflag
& CBAUD
;
2960 if (baudrate
& CBAUDEX
) {
2961 baudrate
&= ~CBAUDEX
;
2962 if ((baudrate
< 1) || (baudrate
> 4))
2963 tiosp
->c_cflag
&= ~CBAUDEX
;
2967 baudrate
= stl_baudrates
[baudrate
];
2968 if ((tiosp
->c_cflag
& CBAUD
) == B38400
) {
2969 if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_HI
)
2971 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_VHI
)
2973 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_SHI
)
2975 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_WARP
)
2977 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_CUST
)
2978 baudrate
= (portp
->baud_base
/ portp
->custom_divisor
);
2980 if (baudrate
> STL_CD1400MAXBAUD
)
2981 baudrate
= STL_CD1400MAXBAUD
;
2984 for (clk
= 0; clk
< CD1400_NUMCLKS
; clk
++) {
2985 clkdiv
= (portp
->clk
/ stl_cd1400clkdivs
[clk
]) / baudrate
;
2989 div
= (unsigned char) clkdiv
;
2993 * Check what form of modem signaling is required and set it up.
2995 if ((tiosp
->c_cflag
& CLOCAL
) == 0) {
2998 sreron
|= SRER_MODEM
;
2999 portp
->flags
|= ASYNC_CHECK_CD
;
3001 portp
->flags
&= ~ASYNC_CHECK_CD
;
3004 * Setup cd1400 enhanced modes if we can. In particular we want to
3005 * handle as much of the flow control as possible automatically. As
3006 * well as saving a few CPU cycles it will also greatly improve flow
3007 * control reliability.
3009 if (tiosp
->c_iflag
& IXON
) {
3012 if (tiosp
->c_iflag
& IXANY
)
3016 if (tiosp
->c_cflag
& CRTSCTS
) {
3018 mcor1
|= FIFO_RTSTHRESHOLD
;
3022 * All cd1400 register values calculated so go through and set
3026 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3027 portp
->portnr
, portp
->panelnr
, portp
->brdnr
);
3028 pr_debug(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
3029 cor1
, cor2
, cor3
, cor4
, cor5
);
3030 pr_debug(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
3031 mcor1
, mcor2
, rtpr
, sreron
, sreroff
);
3032 pr_debug(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk
, div
, clk
, div
);
3033 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3034 tiosp
->c_cc
[VSTART
], tiosp
->c_cc
[VSTOP
],
3035 tiosp
->c_cc
[VSTART
], tiosp
->c_cc
[VSTOP
]);
3037 spin_lock_irqsave(&brd_lock
, flags
);
3038 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3039 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x3));
3040 srer
= stl_cd1400getreg(portp
, SRER
);
3041 stl_cd1400setreg(portp
, SRER
, 0);
3042 if (stl_cd1400updatereg(portp
, COR1
, cor1
))
3044 if (stl_cd1400updatereg(portp
, COR2
, cor2
))
3046 if (stl_cd1400updatereg(portp
, COR3
, cor3
))
3049 stl_cd1400ccrwait(portp
);
3050 stl_cd1400setreg(portp
, CCR
, CCR_CORCHANGE
);
3052 stl_cd1400setreg(portp
, COR4
, cor4
);
3053 stl_cd1400setreg(portp
, COR5
, cor5
);
3054 stl_cd1400setreg(portp
, MCOR1
, mcor1
);
3055 stl_cd1400setreg(portp
, MCOR2
, mcor2
);
3057 stl_cd1400setreg(portp
, TCOR
, clk
);
3058 stl_cd1400setreg(portp
, TBPR
, div
);
3059 stl_cd1400setreg(portp
, RCOR
, clk
);
3060 stl_cd1400setreg(portp
, RBPR
, div
);
3062 stl_cd1400setreg(portp
, SCHR1
, tiosp
->c_cc
[VSTART
]);
3063 stl_cd1400setreg(portp
, SCHR2
, tiosp
->c_cc
[VSTOP
]);
3064 stl_cd1400setreg(portp
, SCHR3
, tiosp
->c_cc
[VSTART
]);
3065 stl_cd1400setreg(portp
, SCHR4
, tiosp
->c_cc
[VSTOP
]);
3066 stl_cd1400setreg(portp
, RTPR
, rtpr
);
3067 mcor1
= stl_cd1400getreg(portp
, MSVR1
);
3068 if (mcor1
& MSVR1_DCD
)
3069 portp
->sigs
|= TIOCM_CD
;
3071 portp
->sigs
&= ~TIOCM_CD
;
3072 stl_cd1400setreg(portp
, SRER
, ((srer
& ~sreroff
) | sreron
));
3073 BRDDISABLE(portp
->brdnr
);
3074 spin_unlock_irqrestore(&brd_lock
, flags
);
3077 /*****************************************************************************/
3080 * Set the state of the DTR and RTS signals.
3083 static void stl_cd1400setsignals(struct stlport
*portp
, int dtr
, int rts
)
3085 unsigned char msvr1
, msvr2
;
3086 unsigned long flags
;
3088 pr_debug("stl_cd1400setsignals(portp=%p,dtr=%d,rts=%d)\n",
3098 spin_lock_irqsave(&brd_lock
, flags
);
3099 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3100 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3102 stl_cd1400setreg(portp
, MSVR2
, msvr2
);
3104 stl_cd1400setreg(portp
, MSVR1
, msvr1
);
3105 BRDDISABLE(portp
->brdnr
);
3106 spin_unlock_irqrestore(&brd_lock
, flags
);
3109 /*****************************************************************************/
3112 * Return the state of the signals.
3115 static int stl_cd1400getsignals(struct stlport
*portp
)
3117 unsigned char msvr1
, msvr2
;
3118 unsigned long flags
;
3121 pr_debug("stl_cd1400getsignals(portp=%p)\n", portp
);
3123 spin_lock_irqsave(&brd_lock
, flags
);
3124 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3125 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3126 msvr1
= stl_cd1400getreg(portp
, MSVR1
);
3127 msvr2
= stl_cd1400getreg(portp
, MSVR2
);
3128 BRDDISABLE(portp
->brdnr
);
3129 spin_unlock_irqrestore(&brd_lock
, flags
);
3132 sigs
|= (msvr1
& MSVR1_DCD
) ? TIOCM_CD
: 0;
3133 sigs
|= (msvr1
& MSVR1_CTS
) ? TIOCM_CTS
: 0;
3134 sigs
|= (msvr1
& MSVR1_DTR
) ? TIOCM_DTR
: 0;
3135 sigs
|= (msvr2
& MSVR2_RTS
) ? TIOCM_RTS
: 0;
3137 sigs
|= (msvr1
& MSVR1_RI
) ? TIOCM_RI
: 0;
3138 sigs
|= (msvr1
& MSVR1_DSR
) ? TIOCM_DSR
: 0;
3145 /*****************************************************************************/
3148 * Enable/Disable the Transmitter and/or Receiver.
3151 static void stl_cd1400enablerxtx(struct stlport
*portp
, int rx
, int tx
)
3154 unsigned long flags
;
3156 pr_debug("stl_cd1400enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp
, rx
, tx
);
3161 ccr
|= CCR_TXDISABLE
;
3163 ccr
|= CCR_TXENABLE
;
3165 ccr
|= CCR_RXDISABLE
;
3167 ccr
|= CCR_RXENABLE
;
3169 spin_lock_irqsave(&brd_lock
, flags
);
3170 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3171 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3172 stl_cd1400ccrwait(portp
);
3173 stl_cd1400setreg(portp
, CCR
, ccr
);
3174 stl_cd1400ccrwait(portp
);
3175 BRDDISABLE(portp
->brdnr
);
3176 spin_unlock_irqrestore(&brd_lock
, flags
);
3179 /*****************************************************************************/
3182 * Start/stop the Transmitter and/or Receiver.
3185 static void stl_cd1400startrxtx(struct stlport
*portp
, int rx
, int tx
)
3187 unsigned char sreron
, sreroff
;
3188 unsigned long flags
;
3190 pr_debug("stl_cd1400startrxtx(portp=%p,rx=%d,tx=%d)\n", portp
, rx
, tx
);
3195 sreroff
|= (SRER_TXDATA
| SRER_TXEMPTY
);
3197 sreron
|= SRER_TXDATA
;
3199 sreron
|= SRER_TXEMPTY
;
3201 sreroff
|= SRER_RXDATA
;
3203 sreron
|= SRER_RXDATA
;
3205 spin_lock_irqsave(&brd_lock
, flags
);
3206 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3207 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3208 stl_cd1400setreg(portp
, SRER
,
3209 ((stl_cd1400getreg(portp
, SRER
) & ~sreroff
) | sreron
));
3210 BRDDISABLE(portp
->brdnr
);
3212 set_bit(ASYI_TXBUSY
, &portp
->istate
);
3213 spin_unlock_irqrestore(&brd_lock
, flags
);
3216 /*****************************************************************************/
3219 * Disable all interrupts from this port.
3222 static void stl_cd1400disableintrs(struct stlport
*portp
)
3224 unsigned long flags
;
3226 pr_debug("stl_cd1400disableintrs(portp=%p)\n", portp
);
3228 spin_lock_irqsave(&brd_lock
, flags
);
3229 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3230 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3231 stl_cd1400setreg(portp
, SRER
, 0);
3232 BRDDISABLE(portp
->brdnr
);
3233 spin_unlock_irqrestore(&brd_lock
, flags
);
3236 /*****************************************************************************/
3238 static void stl_cd1400sendbreak(struct stlport
*portp
, int len
)
3240 unsigned long flags
;
3242 pr_debug("stl_cd1400sendbreak(portp=%p,len=%d)\n", portp
, len
);
3244 spin_lock_irqsave(&brd_lock
, flags
);
3245 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3246 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3247 stl_cd1400setreg(portp
, SRER
,
3248 ((stl_cd1400getreg(portp
, SRER
) & ~SRER_TXDATA
) |
3250 BRDDISABLE(portp
->brdnr
);
3251 portp
->brklen
= len
;
3253 portp
->stats
.txbreaks
++;
3254 spin_unlock_irqrestore(&brd_lock
, flags
);
3257 /*****************************************************************************/
3260 * Take flow control actions...
3263 static void stl_cd1400flowctrl(struct stlport
*portp
, int state
)
3265 struct tty_struct
*tty
;
3266 unsigned long flags
;
3268 pr_debug("stl_cd1400flowctrl(portp=%p,state=%x)\n", portp
, state
);
3276 spin_lock_irqsave(&brd_lock
, flags
);
3277 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3278 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3281 if (tty
->termios
->c_iflag
& IXOFF
) {
3282 stl_cd1400ccrwait(portp
);
3283 stl_cd1400setreg(portp
, CCR
, CCR_SENDSCHR1
);
3284 portp
->stats
.rxxon
++;
3285 stl_cd1400ccrwait(portp
);
3288 * Question: should we return RTS to what it was before? It may
3289 * have been set by an ioctl... Suppose not, since if you have
3290 * hardware flow control set then it is pretty silly to go and
3291 * set the RTS line by hand.
3293 if (tty
->termios
->c_cflag
& CRTSCTS
) {
3294 stl_cd1400setreg(portp
, MCOR1
,
3295 (stl_cd1400getreg(portp
, MCOR1
) |
3296 FIFO_RTSTHRESHOLD
));
3297 stl_cd1400setreg(portp
, MSVR2
, MSVR2_RTS
);
3298 portp
->stats
.rxrtson
++;
3301 if (tty
->termios
->c_iflag
& IXOFF
) {
3302 stl_cd1400ccrwait(portp
);
3303 stl_cd1400setreg(portp
, CCR
, CCR_SENDSCHR2
);
3304 portp
->stats
.rxxoff
++;
3305 stl_cd1400ccrwait(portp
);
3307 if (tty
->termios
->c_cflag
& CRTSCTS
) {
3308 stl_cd1400setreg(portp
, MCOR1
,
3309 (stl_cd1400getreg(portp
, MCOR1
) & 0xf0));
3310 stl_cd1400setreg(portp
, MSVR2
, 0);
3311 portp
->stats
.rxrtsoff
++;
3315 BRDDISABLE(portp
->brdnr
);
3316 spin_unlock_irqrestore(&brd_lock
, flags
);
3319 /*****************************************************************************/
3322 * Send a flow control character...
3325 static void stl_cd1400sendflow(struct stlport
*portp
, int state
)
3327 struct tty_struct
*tty
;
3328 unsigned long flags
;
3330 pr_debug("stl_cd1400sendflow(portp=%p,state=%x)\n", portp
, state
);
3338 spin_lock_irqsave(&brd_lock
, flags
);
3339 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3340 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3342 stl_cd1400ccrwait(portp
);
3343 stl_cd1400setreg(portp
, CCR
, CCR_SENDSCHR1
);
3344 portp
->stats
.rxxon
++;
3345 stl_cd1400ccrwait(portp
);
3347 stl_cd1400ccrwait(portp
);
3348 stl_cd1400setreg(portp
, CCR
, CCR_SENDSCHR2
);
3349 portp
->stats
.rxxoff
++;
3350 stl_cd1400ccrwait(portp
);
3352 BRDDISABLE(portp
->brdnr
);
3353 spin_unlock_irqrestore(&brd_lock
, flags
);
3356 /*****************************************************************************/
3358 static void stl_cd1400flush(struct stlport
*portp
)
3360 unsigned long flags
;
3362 pr_debug("stl_cd1400flush(portp=%p)\n", portp
);
3367 spin_lock_irqsave(&brd_lock
, flags
);
3368 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3369 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3370 stl_cd1400ccrwait(portp
);
3371 stl_cd1400setreg(portp
, CCR
, CCR_TXFLUSHFIFO
);
3372 stl_cd1400ccrwait(portp
);
3373 portp
->tx
.tail
= portp
->tx
.head
;
3374 BRDDISABLE(portp
->brdnr
);
3375 spin_unlock_irqrestore(&brd_lock
, flags
);
3378 /*****************************************************************************/
3381 * Return the current state of data flow on this port. This is only
3382 * really interresting when determining if data has fully completed
3383 * transmission or not... This is easy for the cd1400, it accurately
3384 * maintains the busy port flag.
3387 static int stl_cd1400datastate(struct stlport
*portp
)
3389 pr_debug("stl_cd1400datastate(portp=%p)\n", portp
);
3394 return test_bit(ASYI_TXBUSY
, &portp
->istate
) ? 1 : 0;
3397 /*****************************************************************************/
3400 * Interrupt service routine for cd1400 EasyIO boards.
3403 static void stl_cd1400eiointr(struct stlpanel
*panelp
, unsigned int iobase
)
3405 unsigned char svrtype
;
3407 pr_debug("stl_cd1400eiointr(panelp=%p,iobase=%x)\n", panelp
, iobase
);
3409 spin_lock(&brd_lock
);
3411 svrtype
= inb(iobase
+ EREG_DATA
);
3412 if (panelp
->nrports
> 4) {
3413 outb((SVRR
+ 0x80), iobase
);
3414 svrtype
|= inb(iobase
+ EREG_DATA
);
3417 if (svrtype
& SVRR_RX
)
3418 stl_cd1400rxisr(panelp
, iobase
);
3419 else if (svrtype
& SVRR_TX
)
3420 stl_cd1400txisr(panelp
, iobase
);
3421 else if (svrtype
& SVRR_MDM
)
3422 stl_cd1400mdmisr(panelp
, iobase
);
3424 spin_unlock(&brd_lock
);
3427 /*****************************************************************************/
3430 * Interrupt service routine for cd1400 panels.
3433 static void stl_cd1400echintr(struct stlpanel
*panelp
, unsigned int iobase
)
3435 unsigned char svrtype
;
3437 pr_debug("stl_cd1400echintr(panelp=%p,iobase=%x)\n", panelp
, iobase
);
3440 svrtype
= inb(iobase
+ EREG_DATA
);
3441 outb((SVRR
+ 0x80), iobase
);
3442 svrtype
|= inb(iobase
+ EREG_DATA
);
3443 if (svrtype
& SVRR_RX
)
3444 stl_cd1400rxisr(panelp
, iobase
);
3445 else if (svrtype
& SVRR_TX
)
3446 stl_cd1400txisr(panelp
, iobase
);
3447 else if (svrtype
& SVRR_MDM
)
3448 stl_cd1400mdmisr(panelp
, iobase
);
3452 /*****************************************************************************/
3455 * Unfortunately we need to handle breaks in the TX data stream, since
3456 * this is the only way to generate them on the cd1400.
3459 static int stl_cd1400breakisr(struct stlport
*portp
, int ioaddr
)
3461 if (portp
->brklen
== 1) {
3462 outb((COR2
+ portp
->uartaddr
), ioaddr
);
3463 outb((inb(ioaddr
+ EREG_DATA
) | COR2_ETC
),
3464 (ioaddr
+ EREG_DATA
));
3465 outb((TDR
+ portp
->uartaddr
), ioaddr
);
3466 outb(ETC_CMD
, (ioaddr
+ EREG_DATA
));
3467 outb(ETC_STARTBREAK
, (ioaddr
+ EREG_DATA
));
3468 outb((SRER
+ portp
->uartaddr
), ioaddr
);
3469 outb((inb(ioaddr
+ EREG_DATA
) & ~(SRER_TXDATA
| SRER_TXEMPTY
)),
3470 (ioaddr
+ EREG_DATA
));
3472 } else if (portp
->brklen
> 1) {
3473 outb((TDR
+ portp
->uartaddr
), ioaddr
);
3474 outb(ETC_CMD
, (ioaddr
+ EREG_DATA
));
3475 outb(ETC_STOPBREAK
, (ioaddr
+ EREG_DATA
));
3479 outb((COR2
+ portp
->uartaddr
), ioaddr
);
3480 outb((inb(ioaddr
+ EREG_DATA
) & ~COR2_ETC
),
3481 (ioaddr
+ EREG_DATA
));
3487 /*****************************************************************************/
3490 * Transmit interrupt handler. This has gotta be fast! Handling TX
3491 * chars is pretty simple, stuff as many as possible from the TX buffer
3492 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3493 * are embedded as commands in the data stream. Oh no, had to use a goto!
3494 * This could be optimized more, will do when I get time...
3495 * In practice it is possible that interrupts are enabled but that the
3496 * port has been hung up. Need to handle not having any TX buffer here,
3497 * this is done by using the side effect that head and tail will also
3498 * be NULL if the buffer has been freed.
3501 static void stl_cd1400txisr(struct stlpanel
*panelp
, int ioaddr
)
3503 struct stlport
*portp
;
3506 unsigned char ioack
, srer
;
3508 pr_debug("stl_cd1400txisr(panelp=%p,ioaddr=%x)\n", panelp
, ioaddr
);
3510 ioack
= inb(ioaddr
+ EREG_TXACK
);
3511 if (((ioack
& panelp
->ackmask
) != 0) ||
3512 ((ioack
& ACK_TYPMASK
) != ACK_TYPTX
)) {
3513 printk("STALLION: bad TX interrupt ack value=%x\n", ioack
);
3516 portp
= panelp
->ports
[(ioack
>> 3)];
3519 * Unfortunately we need to handle breaks in the data stream, since
3520 * this is the only way to generate them on the cd1400. Do it now if
3521 * a break is to be sent.
3523 if (portp
->brklen
!= 0)
3524 if (stl_cd1400breakisr(portp
, ioaddr
))
3527 head
= portp
->tx
.head
;
3528 tail
= portp
->tx
.tail
;
3529 len
= (head
>= tail
) ? (head
- tail
) : (STL_TXBUFSIZE
- (tail
- head
));
3530 if ((len
== 0) || ((len
< STL_TXBUFLOW
) &&
3531 (test_bit(ASYI_TXLOW
, &portp
->istate
) == 0))) {
3532 set_bit(ASYI_TXLOW
, &portp
->istate
);
3533 schedule_work(&portp
->tqueue
);
3537 outb((SRER
+ portp
->uartaddr
), ioaddr
);
3538 srer
= inb(ioaddr
+ EREG_DATA
);
3539 if (srer
& SRER_TXDATA
) {
3540 srer
= (srer
& ~SRER_TXDATA
) | SRER_TXEMPTY
;
3542 srer
&= ~(SRER_TXDATA
| SRER_TXEMPTY
);
3543 clear_bit(ASYI_TXBUSY
, &portp
->istate
);
3545 outb(srer
, (ioaddr
+ EREG_DATA
));
3547 len
= min(len
, CD1400_TXFIFOSIZE
);
3548 portp
->stats
.txtotal
+= len
;
3549 stlen
= min(len
, ((portp
->tx
.buf
+ STL_TXBUFSIZE
) - tail
));
3550 outb((TDR
+ portp
->uartaddr
), ioaddr
);
3551 outsb((ioaddr
+ EREG_DATA
), tail
, stlen
);
3554 if (tail
>= (portp
->tx
.buf
+ STL_TXBUFSIZE
))
3555 tail
= portp
->tx
.buf
;
3557 outsb((ioaddr
+ EREG_DATA
), tail
, len
);
3560 portp
->tx
.tail
= tail
;
3564 outb((EOSRR
+ portp
->uartaddr
), ioaddr
);
3565 outb(0, (ioaddr
+ EREG_DATA
));
3568 /*****************************************************************************/
3571 * Receive character interrupt handler. Determine if we have good chars
3572 * or bad chars and then process appropriately. Good chars are easy
3573 * just shove the lot into the RX buffer and set all status byte to 0.
3574 * If a bad RX char then process as required. This routine needs to be
3575 * fast! In practice it is possible that we get an interrupt on a port
3576 * that is closed. This can happen on hangups - since they completely
3577 * shutdown a port not in user context. Need to handle this case.
3580 static void stl_cd1400rxisr(struct stlpanel
*panelp
, int ioaddr
)
3582 struct stlport
*portp
;
3583 struct tty_struct
*tty
;
3584 unsigned int ioack
, len
, buflen
;
3585 unsigned char status
;
3588 pr_debug("stl_cd1400rxisr(panelp=%p,ioaddr=%x)\n", panelp
, ioaddr
);
3590 ioack
= inb(ioaddr
+ EREG_RXACK
);
3591 if ((ioack
& panelp
->ackmask
) != 0) {
3592 printk("STALLION: bad RX interrupt ack value=%x\n", ioack
);
3595 portp
= panelp
->ports
[(ioack
>> 3)];
3598 if ((ioack
& ACK_TYPMASK
) == ACK_TYPRXGOOD
) {
3599 outb((RDCR
+ portp
->uartaddr
), ioaddr
);
3600 len
= inb(ioaddr
+ EREG_DATA
);
3601 if (tty
== NULL
|| (buflen
= tty_buffer_request_room(tty
, len
)) == 0) {
3602 len
= min(len
, sizeof(stl_unwanted
));
3603 outb((RDSR
+ portp
->uartaddr
), ioaddr
);
3604 insb((ioaddr
+ EREG_DATA
), &stl_unwanted
[0], len
);
3605 portp
->stats
.rxlost
+= len
;
3606 portp
->stats
.rxtotal
+= len
;
3608 len
= min(len
, buflen
);
3611 outb((RDSR
+ portp
->uartaddr
), ioaddr
);
3612 tty_prepare_flip_string(tty
, &ptr
, len
);
3613 insb((ioaddr
+ EREG_DATA
), ptr
, len
);
3614 tty_schedule_flip(tty
);
3615 portp
->stats
.rxtotal
+= len
;
3618 } else if ((ioack
& ACK_TYPMASK
) == ACK_TYPRXBAD
) {
3619 outb((RDSR
+ portp
->uartaddr
), ioaddr
);
3620 status
= inb(ioaddr
+ EREG_DATA
);
3621 ch
= inb(ioaddr
+ EREG_DATA
);
3622 if (status
& ST_PARITY
)
3623 portp
->stats
.rxparity
++;
3624 if (status
& ST_FRAMING
)
3625 portp
->stats
.rxframing
++;
3626 if (status
& ST_OVERRUN
)
3627 portp
->stats
.rxoverrun
++;
3628 if (status
& ST_BREAK
)
3629 portp
->stats
.rxbreaks
++;
3630 if (status
& ST_SCHARMASK
) {
3631 if ((status
& ST_SCHARMASK
) == ST_SCHAR1
)
3632 portp
->stats
.txxon
++;
3633 if ((status
& ST_SCHARMASK
) == ST_SCHAR2
)
3634 portp
->stats
.txxoff
++;
3637 if (tty
!= NULL
&& (portp
->rxignoremsk
& status
) == 0) {
3638 if (portp
->rxmarkmsk
& status
) {
3639 if (status
& ST_BREAK
) {
3641 if (portp
->flags
& ASYNC_SAK
) {
3643 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3645 } else if (status
& ST_PARITY
)
3646 status
= TTY_PARITY
;
3647 else if (status
& ST_FRAMING
)
3649 else if(status
& ST_OVERRUN
)
3650 status
= TTY_OVERRUN
;
3655 tty_insert_flip_char(tty
, ch
, status
);
3656 tty_schedule_flip(tty
);
3659 printk("STALLION: bad RX interrupt ack value=%x\n", ioack
);
3664 outb((EOSRR
+ portp
->uartaddr
), ioaddr
);
3665 outb(0, (ioaddr
+ EREG_DATA
));
3668 /*****************************************************************************/
3671 * Modem interrupt handler. The is called when the modem signal line
3672 * (DCD) has changed state. Leave most of the work to the off-level
3673 * processing routine.
3676 static void stl_cd1400mdmisr(struct stlpanel
*panelp
, int ioaddr
)
3678 struct stlport
*portp
;
3682 pr_debug("stl_cd1400mdmisr(panelp=%p)\n", panelp
);
3684 ioack
= inb(ioaddr
+ EREG_MDACK
);
3685 if (((ioack
& panelp
->ackmask
) != 0) ||
3686 ((ioack
& ACK_TYPMASK
) != ACK_TYPMDM
)) {
3687 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack
);
3690 portp
= panelp
->ports
[(ioack
>> 3)];
3692 outb((MISR
+ portp
->uartaddr
), ioaddr
);
3693 misr
= inb(ioaddr
+ EREG_DATA
);
3694 if (misr
& MISR_DCD
) {
3695 set_bit(ASYI_DCDCHANGE
, &portp
->istate
);
3696 schedule_work(&portp
->tqueue
);
3697 portp
->stats
.modem
++;
3700 outb((EOSRR
+ portp
->uartaddr
), ioaddr
);
3701 outb(0, (ioaddr
+ EREG_DATA
));
3704 /*****************************************************************************/
3705 /* SC26198 HARDWARE FUNCTIONS */
3706 /*****************************************************************************/
3709 * These functions get/set/update the registers of the sc26198 UARTs.
3710 * Access to the sc26198 registers is via an address/data io port pair.
3711 * (Maybe should make this inline...)
3714 static int stl_sc26198getreg(struct stlport
*portp
, int regnr
)
3716 outb((regnr
| portp
->uartaddr
), (portp
->ioaddr
+ XP_ADDR
));
3717 return inb(portp
->ioaddr
+ XP_DATA
);
3720 static void stl_sc26198setreg(struct stlport
*portp
, int regnr
, int value
)
3722 outb((regnr
| portp
->uartaddr
), (portp
->ioaddr
+ XP_ADDR
));
3723 outb(value
, (portp
->ioaddr
+ XP_DATA
));
3726 static int stl_sc26198updatereg(struct stlport
*portp
, int regnr
, int value
)
3728 outb((regnr
| portp
->uartaddr
), (portp
->ioaddr
+ XP_ADDR
));
3729 if (inb(portp
->ioaddr
+ XP_DATA
) != value
) {
3730 outb(value
, (portp
->ioaddr
+ XP_DATA
));
3736 /*****************************************************************************/
3739 * Functions to get and set the sc26198 global registers.
3742 static int stl_sc26198getglobreg(struct stlport
*portp
, int regnr
)
3744 outb(regnr
, (portp
->ioaddr
+ XP_ADDR
));
3745 return inb(portp
->ioaddr
+ XP_DATA
);
3749 static void stl_sc26198setglobreg(struct stlport
*portp
, int regnr
, int value
)
3751 outb(regnr
, (portp
->ioaddr
+ XP_ADDR
));
3752 outb(value
, (portp
->ioaddr
+ XP_DATA
));
3756 /*****************************************************************************/
3759 * Inbitialize the UARTs in a panel. We don't care what sort of board
3760 * these ports are on - since the port io registers are almost
3761 * identical when dealing with ports.
3764 static int stl_sc26198panelinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
)
3767 int nrchips
, ioaddr
;
3769 pr_debug("stl_sc26198panelinit(brdp=%p,panelp=%p)\n", brdp
, panelp
);
3771 BRDENABLE(panelp
->brdnr
, panelp
->pagenr
);
3774 * Check that each chip is present and started up OK.
3777 nrchips
= (panelp
->nrports
+ 4) / SC26198_PORTS
;
3778 if (brdp
->brdtype
== BRD_ECHPCI
)
3779 outb(panelp
->pagenr
, brdp
->ioctrl
);
3781 for (i
= 0; i
< nrchips
; i
++) {
3782 ioaddr
= panelp
->iobase
+ (i
* 4);
3783 outb(SCCR
, (ioaddr
+ XP_ADDR
));
3784 outb(CR_RESETALL
, (ioaddr
+ XP_DATA
));
3785 outb(TSTR
, (ioaddr
+ XP_ADDR
));
3786 if (inb(ioaddr
+ XP_DATA
) != 0) {
3787 printk("STALLION: sc26198 not responding, "
3788 "brd=%d panel=%d chip=%d\n",
3789 panelp
->brdnr
, panelp
->panelnr
, i
);
3792 chipmask
|= (0x1 << i
);
3793 outb(GCCR
, (ioaddr
+ XP_ADDR
));
3794 outb(GCCR_IVRTYPCHANACK
, (ioaddr
+ XP_DATA
));
3795 outb(WDTRCR
, (ioaddr
+ XP_ADDR
));
3796 outb(0xff, (ioaddr
+ XP_DATA
));
3799 BRDDISABLE(panelp
->brdnr
);
3803 /*****************************************************************************/
3806 * Initialize hardware specific port registers.
3809 static void stl_sc26198portinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
, struct stlport
*portp
)
3811 pr_debug("stl_sc26198portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp
,
3814 if ((brdp
== NULL
) || (panelp
== NULL
) ||
3818 portp
->ioaddr
= panelp
->iobase
+ ((portp
->portnr
< 8) ? 0 : 4);
3819 portp
->uartaddr
= (portp
->portnr
& 0x07) << 4;
3820 portp
->pagenr
= panelp
->pagenr
;
3823 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3824 stl_sc26198setreg(portp
, IOPCR
, IOPCR_SETSIGS
);
3825 BRDDISABLE(portp
->brdnr
);
3828 /*****************************************************************************/
3831 * Set up the sc26198 registers for a port based on the termios port
3835 static void stl_sc26198setport(struct stlport
*portp
, struct ktermios
*tiosp
)
3837 struct stlbrd
*brdp
;
3838 unsigned long flags
;
3839 unsigned int baudrate
;
3840 unsigned char mr0
, mr1
, mr2
, clk
;
3841 unsigned char imron
, imroff
, iopr
, ipr
;
3851 brdp
= stl_brds
[portp
->brdnr
];
3856 * Set up the RX char ignore mask with those RX error types we
3859 portp
->rxignoremsk
= 0;
3860 if (tiosp
->c_iflag
& IGNPAR
)
3861 portp
->rxignoremsk
|= (SR_RXPARITY
| SR_RXFRAMING
|
3863 if (tiosp
->c_iflag
& IGNBRK
)
3864 portp
->rxignoremsk
|= SR_RXBREAK
;
3866 portp
->rxmarkmsk
= SR_RXOVERRUN
;
3867 if (tiosp
->c_iflag
& (INPCK
| PARMRK
))
3868 portp
->rxmarkmsk
|= (SR_RXPARITY
| SR_RXFRAMING
);
3869 if (tiosp
->c_iflag
& BRKINT
)
3870 portp
->rxmarkmsk
|= SR_RXBREAK
;
3873 * Go through the char size, parity and stop bits and set all the
3874 * option register appropriately.
3876 switch (tiosp
->c_cflag
& CSIZE
) {
3891 if (tiosp
->c_cflag
& CSTOPB
)
3896 if (tiosp
->c_cflag
& PARENB
) {
3897 if (tiosp
->c_cflag
& PARODD
)
3898 mr1
|= (MR1_PARENB
| MR1_PARODD
);
3900 mr1
|= (MR1_PARENB
| MR1_PAREVEN
);
3904 mr1
|= MR1_ERRBLOCK
;
3907 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
3908 * space for hardware flow control and the like. This should be set to
3911 mr2
|= MR2_RXFIFOHALF
;
3914 * Calculate the baud rate timers. For now we will just assume that
3915 * the input and output baud are the same. The sc26198 has a fixed
3916 * baud rate table, so only discrete baud rates possible.
3918 baudrate
= tiosp
->c_cflag
& CBAUD
;
3919 if (baudrate
& CBAUDEX
) {
3920 baudrate
&= ~CBAUDEX
;
3921 if ((baudrate
< 1) || (baudrate
> 4))
3922 tiosp
->c_cflag
&= ~CBAUDEX
;
3926 baudrate
= stl_baudrates
[baudrate
];
3927 if ((tiosp
->c_cflag
& CBAUD
) == B38400
) {
3928 if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_HI
)
3930 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_VHI
)
3932 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_SHI
)
3934 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_WARP
)
3936 else if ((portp
->flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_CUST
)
3937 baudrate
= (portp
->baud_base
/ portp
->custom_divisor
);
3939 if (baudrate
> STL_SC26198MAXBAUD
)
3940 baudrate
= STL_SC26198MAXBAUD
;
3943 for (clk
= 0; clk
< SC26198_NRBAUDS
; clk
++)
3944 if (baudrate
<= sc26198_baudtable
[clk
])
3948 * Check what form of modem signaling is required and set it up.
3950 if (tiosp
->c_cflag
& CLOCAL
) {
3951 portp
->flags
&= ~ASYNC_CHECK_CD
;
3953 iopr
|= IOPR_DCDCOS
;
3955 portp
->flags
|= ASYNC_CHECK_CD
;
3959 * Setup sc26198 enhanced modes if we can. In particular we want to
3960 * handle as much of the flow control as possible automatically. As
3961 * well as saving a few CPU cycles it will also greatly improve flow
3962 * control reliability.
3964 if (tiosp
->c_iflag
& IXON
) {
3965 mr0
|= MR0_SWFTX
| MR0_SWFT
;
3966 imron
|= IR_XONXOFF
;
3968 imroff
|= IR_XONXOFF
;
3970 if (tiosp
->c_iflag
& IXOFF
)
3973 if (tiosp
->c_cflag
& CRTSCTS
) {
3979 * All sc26198 register values calculated so go through and set
3983 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3984 portp
->portnr
, portp
->panelnr
, portp
->brdnr
);
3985 pr_debug(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0
, mr1
, mr2
, clk
);
3986 pr_debug(" iopr=%x imron=%x imroff=%x\n", iopr
, imron
, imroff
);
3987 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3988 tiosp
->c_cc
[VSTART
], tiosp
->c_cc
[VSTOP
],
3989 tiosp
->c_cc
[VSTART
], tiosp
->c_cc
[VSTOP
]);
3991 spin_lock_irqsave(&brd_lock
, flags
);
3992 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3993 stl_sc26198setreg(portp
, IMR
, 0);
3994 stl_sc26198updatereg(portp
, MR0
, mr0
);
3995 stl_sc26198updatereg(portp
, MR1
, mr1
);
3996 stl_sc26198setreg(portp
, SCCR
, CR_RXERRBLOCK
);
3997 stl_sc26198updatereg(portp
, MR2
, mr2
);
3998 stl_sc26198updatereg(portp
, IOPIOR
,
3999 ((stl_sc26198getreg(portp
, IOPIOR
) & ~IPR_CHANGEMASK
) | iopr
));
4002 stl_sc26198setreg(portp
, TXCSR
, clk
);
4003 stl_sc26198setreg(portp
, RXCSR
, clk
);
4006 stl_sc26198setreg(portp
, XONCR
, tiosp
->c_cc
[VSTART
]);
4007 stl_sc26198setreg(portp
, XOFFCR
, tiosp
->c_cc
[VSTOP
]);
4009 ipr
= stl_sc26198getreg(portp
, IPR
);
4011 portp
->sigs
&= ~TIOCM_CD
;
4013 portp
->sigs
|= TIOCM_CD
;
4015 portp
->imr
= (portp
->imr
& ~imroff
) | imron
;
4016 stl_sc26198setreg(portp
, IMR
, portp
->imr
);
4017 BRDDISABLE(portp
->brdnr
);
4018 spin_unlock_irqrestore(&brd_lock
, flags
);
4021 /*****************************************************************************/
4024 * Set the state of the DTR and RTS signals.
4027 static void stl_sc26198setsignals(struct stlport
*portp
, int dtr
, int rts
)
4029 unsigned char iopioron
, iopioroff
;
4030 unsigned long flags
;
4032 pr_debug("stl_sc26198setsignals(portp=%p,dtr=%d,rts=%d)\n", portp
,
4038 iopioroff
|= IPR_DTR
;
4040 iopioron
|= IPR_DTR
;
4042 iopioroff
|= IPR_RTS
;
4044 iopioron
|= IPR_RTS
;
4046 spin_lock_irqsave(&brd_lock
, flags
);
4047 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4048 stl_sc26198setreg(portp
, IOPIOR
,
4049 ((stl_sc26198getreg(portp
, IOPIOR
) & ~iopioroff
) | iopioron
));
4050 BRDDISABLE(portp
->brdnr
);
4051 spin_unlock_irqrestore(&brd_lock
, flags
);
4054 /*****************************************************************************/
4057 * Return the state of the signals.
4060 static int stl_sc26198getsignals(struct stlport
*portp
)
4063 unsigned long flags
;
4066 pr_debug("stl_sc26198getsignals(portp=%p)\n", portp
);
4068 spin_lock_irqsave(&brd_lock
, flags
);
4069 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4070 ipr
= stl_sc26198getreg(portp
, IPR
);
4071 BRDDISABLE(portp
->brdnr
);
4072 spin_unlock_irqrestore(&brd_lock
, flags
);
4075 sigs
|= (ipr
& IPR_DCD
) ? 0 : TIOCM_CD
;
4076 sigs
|= (ipr
& IPR_CTS
) ? 0 : TIOCM_CTS
;
4077 sigs
|= (ipr
& IPR_DTR
) ? 0: TIOCM_DTR
;
4078 sigs
|= (ipr
& IPR_RTS
) ? 0: TIOCM_RTS
;
4083 /*****************************************************************************/
4086 * Enable/Disable the Transmitter and/or Receiver.
4089 static void stl_sc26198enablerxtx(struct stlport
*portp
, int rx
, int tx
)
4092 unsigned long flags
;
4094 pr_debug("stl_sc26198enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp
, rx
,tx
);
4096 ccr
= portp
->crenable
;
4098 ccr
&= ~CR_TXENABLE
;
4102 ccr
&= ~CR_RXENABLE
;
4106 spin_lock_irqsave(&brd_lock
, flags
);
4107 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4108 stl_sc26198setreg(portp
, SCCR
, ccr
);
4109 BRDDISABLE(portp
->brdnr
);
4110 portp
->crenable
= ccr
;
4111 spin_unlock_irqrestore(&brd_lock
, flags
);
4114 /*****************************************************************************/
4117 * Start/stop the Transmitter and/or Receiver.
4120 static void stl_sc26198startrxtx(struct stlport
*portp
, int rx
, int tx
)
4123 unsigned long flags
;
4125 pr_debug("stl_sc26198startrxtx(portp=%p,rx=%d,tx=%d)\n", portp
, rx
, tx
);
4133 imr
&= ~(IR_RXRDY
| IR_RXBREAK
| IR_RXWATCHDOG
);
4135 imr
|= IR_RXRDY
| IR_RXBREAK
| IR_RXWATCHDOG
;
4137 spin_lock_irqsave(&brd_lock
, flags
);
4138 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4139 stl_sc26198setreg(portp
, IMR
, imr
);
4140 BRDDISABLE(portp
->brdnr
);
4143 set_bit(ASYI_TXBUSY
, &portp
->istate
);
4144 spin_unlock_irqrestore(&brd_lock
, flags
);
4147 /*****************************************************************************/
4150 * Disable all interrupts from this port.
4153 static void stl_sc26198disableintrs(struct stlport
*portp
)
4155 unsigned long flags
;
4157 pr_debug("stl_sc26198disableintrs(portp=%p)\n", portp
);
4159 spin_lock_irqsave(&brd_lock
, flags
);
4160 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4162 stl_sc26198setreg(portp
, IMR
, 0);
4163 BRDDISABLE(portp
->brdnr
);
4164 spin_unlock_irqrestore(&brd_lock
, flags
);
4167 /*****************************************************************************/
4169 static void stl_sc26198sendbreak(struct stlport
*portp
, int len
)
4171 unsigned long flags
;
4173 pr_debug("stl_sc26198sendbreak(portp=%p,len=%d)\n", portp
, len
);
4175 spin_lock_irqsave(&brd_lock
, flags
);
4176 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4178 stl_sc26198setreg(portp
, SCCR
, CR_TXSTARTBREAK
);
4179 portp
->stats
.txbreaks
++;
4181 stl_sc26198setreg(portp
, SCCR
, CR_TXSTOPBREAK
);
4183 BRDDISABLE(portp
->brdnr
);
4184 spin_unlock_irqrestore(&brd_lock
, flags
);
4187 /*****************************************************************************/
4190 * Take flow control actions...
4193 static void stl_sc26198flowctrl(struct stlport
*portp
, int state
)
4195 struct tty_struct
*tty
;
4196 unsigned long flags
;
4199 pr_debug("stl_sc26198flowctrl(portp=%p,state=%x)\n", portp
, state
);
4207 spin_lock_irqsave(&brd_lock
, flags
);
4208 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4211 if (tty
->termios
->c_iflag
& IXOFF
) {
4212 mr0
= stl_sc26198getreg(portp
, MR0
);
4213 stl_sc26198setreg(portp
, MR0
, (mr0
& ~MR0_SWFRXTX
));
4214 stl_sc26198setreg(portp
, SCCR
, CR_TXSENDXON
);
4216 portp
->stats
.rxxon
++;
4217 stl_sc26198wait(portp
);
4218 stl_sc26198setreg(portp
, MR0
, mr0
);
4221 * Question: should we return RTS to what it was before? It may
4222 * have been set by an ioctl... Suppose not, since if you have
4223 * hardware flow control set then it is pretty silly to go and
4224 * set the RTS line by hand.
4226 if (tty
->termios
->c_cflag
& CRTSCTS
) {
4227 stl_sc26198setreg(portp
, MR1
,
4228 (stl_sc26198getreg(portp
, MR1
) | MR1_AUTORTS
));
4229 stl_sc26198setreg(portp
, IOPIOR
,
4230 (stl_sc26198getreg(portp
, IOPIOR
) | IOPR_RTS
));
4231 portp
->stats
.rxrtson
++;
4234 if (tty
->termios
->c_iflag
& IXOFF
) {
4235 mr0
= stl_sc26198getreg(portp
, MR0
);
4236 stl_sc26198setreg(portp
, MR0
, (mr0
& ~MR0_SWFRXTX
));
4237 stl_sc26198setreg(portp
, SCCR
, CR_TXSENDXOFF
);
4239 portp
->stats
.rxxoff
++;
4240 stl_sc26198wait(portp
);
4241 stl_sc26198setreg(portp
, MR0
, mr0
);
4243 if (tty
->termios
->c_cflag
& CRTSCTS
) {
4244 stl_sc26198setreg(portp
, MR1
,
4245 (stl_sc26198getreg(portp
, MR1
) & ~MR1_AUTORTS
));
4246 stl_sc26198setreg(portp
, IOPIOR
,
4247 (stl_sc26198getreg(portp
, IOPIOR
) & ~IOPR_RTS
));
4248 portp
->stats
.rxrtsoff
++;
4252 BRDDISABLE(portp
->brdnr
);
4253 spin_unlock_irqrestore(&brd_lock
, flags
);
4256 /*****************************************************************************/
4259 * Send a flow control character.
4262 static void stl_sc26198sendflow(struct stlport
*portp
, int state
)
4264 struct tty_struct
*tty
;
4265 unsigned long flags
;
4268 pr_debug("stl_sc26198sendflow(portp=%p,state=%x)\n", portp
, state
);
4276 spin_lock_irqsave(&brd_lock
, flags
);
4277 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4279 mr0
= stl_sc26198getreg(portp
, MR0
);
4280 stl_sc26198setreg(portp
, MR0
, (mr0
& ~MR0_SWFRXTX
));
4281 stl_sc26198setreg(portp
, SCCR
, CR_TXSENDXON
);
4283 portp
->stats
.rxxon
++;
4284 stl_sc26198wait(portp
);
4285 stl_sc26198setreg(portp
, MR0
, mr0
);
4287 mr0
= stl_sc26198getreg(portp
, MR0
);
4288 stl_sc26198setreg(portp
, MR0
, (mr0
& ~MR0_SWFRXTX
));
4289 stl_sc26198setreg(portp
, SCCR
, CR_TXSENDXOFF
);
4291 portp
->stats
.rxxoff
++;
4292 stl_sc26198wait(portp
);
4293 stl_sc26198setreg(portp
, MR0
, mr0
);
4295 BRDDISABLE(portp
->brdnr
);
4296 spin_unlock_irqrestore(&brd_lock
, flags
);
4299 /*****************************************************************************/
4301 static void stl_sc26198flush(struct stlport
*portp
)
4303 unsigned long flags
;
4305 pr_debug("stl_sc26198flush(portp=%p)\n", portp
);
4310 spin_lock_irqsave(&brd_lock
, flags
);
4311 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4312 stl_sc26198setreg(portp
, SCCR
, CR_TXRESET
);
4313 stl_sc26198setreg(portp
, SCCR
, portp
->crenable
);
4314 BRDDISABLE(portp
->brdnr
);
4315 portp
->tx
.tail
= portp
->tx
.head
;
4316 spin_unlock_irqrestore(&brd_lock
, flags
);
4319 /*****************************************************************************/
4322 * Return the current state of data flow on this port. This is only
4323 * really interresting when determining if data has fully completed
4324 * transmission or not... The sc26198 interrupt scheme cannot
4325 * determine when all data has actually drained, so we need to
4326 * check the port statusy register to be sure.
4329 static int stl_sc26198datastate(struct stlport
*portp
)
4331 unsigned long flags
;
4334 pr_debug("stl_sc26198datastate(portp=%p)\n", portp
);
4338 if (test_bit(ASYI_TXBUSY
, &portp
->istate
))
4341 spin_lock_irqsave(&brd_lock
, flags
);
4342 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4343 sr
= stl_sc26198getreg(portp
, SR
);
4344 BRDDISABLE(portp
->brdnr
);
4345 spin_unlock_irqrestore(&brd_lock
, flags
);
4347 return (sr
& SR_TXEMPTY
) ? 0 : 1;
4350 /*****************************************************************************/
4353 * Delay for a small amount of time, to give the sc26198 a chance
4354 * to process a command...
4357 static void stl_sc26198wait(struct stlport
*portp
)
4361 pr_debug("stl_sc26198wait(portp=%p)\n", portp
);
4366 for (i
= 0; i
< 20; i
++)
4367 stl_sc26198getglobreg(portp
, TSTR
);
4370 /*****************************************************************************/
4373 * If we are TX flow controlled and in IXANY mode then we may
4374 * need to unflow control here. We gotta do this because of the
4375 * automatic flow control modes of the sc26198.
4378 static void stl_sc26198txunflow(struct stlport
*portp
, struct tty_struct
*tty
)
4382 mr0
= stl_sc26198getreg(portp
, MR0
);
4383 stl_sc26198setreg(portp
, MR0
, (mr0
& ~MR0_SWFRXTX
));
4384 stl_sc26198setreg(portp
, SCCR
, CR_HOSTXON
);
4385 stl_sc26198wait(portp
);
4386 stl_sc26198setreg(portp
, MR0
, mr0
);
4387 clear_bit(ASYI_TXFLOWED
, &portp
->istate
);
4390 /*****************************************************************************/
4393 * Interrupt service routine for sc26198 panels.
4396 static void stl_sc26198intr(struct stlpanel
*panelp
, unsigned int iobase
)
4398 struct stlport
*portp
;
4401 spin_lock(&brd_lock
);
4404 * Work around bug in sc26198 chip... Cannot have A6 address
4405 * line of UART high, else iack will be returned as 0.
4407 outb(0, (iobase
+ 1));
4409 iack
= inb(iobase
+ XP_IACK
);
4410 portp
= panelp
->ports
[(iack
& IVR_CHANMASK
) + ((iobase
& 0x4) << 1)];
4412 if (iack
& IVR_RXDATA
)
4413 stl_sc26198rxisr(portp
, iack
);
4414 else if (iack
& IVR_TXDATA
)
4415 stl_sc26198txisr(portp
);
4417 stl_sc26198otherisr(portp
, iack
);
4419 spin_unlock(&brd_lock
);
4422 /*****************************************************************************/
4425 * Transmit interrupt handler. This has gotta be fast! Handling TX
4426 * chars is pretty simple, stuff as many as possible from the TX buffer
4427 * into the sc26198 FIFO.
4428 * In practice it is possible that interrupts are enabled but that the
4429 * port has been hung up. Need to handle not having any TX buffer here,
4430 * this is done by using the side effect that head and tail will also
4431 * be NULL if the buffer has been freed.
4434 static void stl_sc26198txisr(struct stlport
*portp
)
4436 unsigned int ioaddr
;
4441 pr_debug("stl_sc26198txisr(portp=%p)\n", portp
);
4443 ioaddr
= portp
->ioaddr
;
4444 head
= portp
->tx
.head
;
4445 tail
= portp
->tx
.tail
;
4446 len
= (head
>= tail
) ? (head
- tail
) : (STL_TXBUFSIZE
- (tail
- head
));
4447 if ((len
== 0) || ((len
< STL_TXBUFLOW
) &&
4448 (test_bit(ASYI_TXLOW
, &portp
->istate
) == 0))) {
4449 set_bit(ASYI_TXLOW
, &portp
->istate
);
4450 schedule_work(&portp
->tqueue
);
4454 outb((MR0
| portp
->uartaddr
), (ioaddr
+ XP_ADDR
));
4455 mr0
= inb(ioaddr
+ XP_DATA
);
4456 if ((mr0
& MR0_TXMASK
) == MR0_TXEMPTY
) {
4457 portp
->imr
&= ~IR_TXRDY
;
4458 outb((IMR
| portp
->uartaddr
), (ioaddr
+ XP_ADDR
));
4459 outb(portp
->imr
, (ioaddr
+ XP_DATA
));
4460 clear_bit(ASYI_TXBUSY
, &portp
->istate
);
4462 mr0
|= ((mr0
& ~MR0_TXMASK
) | MR0_TXEMPTY
);
4463 outb(mr0
, (ioaddr
+ XP_DATA
));
4466 len
= min(len
, SC26198_TXFIFOSIZE
);
4467 portp
->stats
.txtotal
+= len
;
4468 stlen
= min(len
, ((portp
->tx
.buf
+ STL_TXBUFSIZE
) - tail
));
4469 outb(GTXFIFO
, (ioaddr
+ XP_ADDR
));
4470 outsb((ioaddr
+ XP_DATA
), tail
, stlen
);
4473 if (tail
>= (portp
->tx
.buf
+ STL_TXBUFSIZE
))
4474 tail
= portp
->tx
.buf
;
4476 outsb((ioaddr
+ XP_DATA
), tail
, len
);
4479 portp
->tx
.tail
= tail
;
4483 /*****************************************************************************/
4486 * Receive character interrupt handler. Determine if we have good chars
4487 * or bad chars and then process appropriately. Good chars are easy
4488 * just shove the lot into the RX buffer and set all status byte to 0.
4489 * If a bad RX char then process as required. This routine needs to be
4490 * fast! In practice it is possible that we get an interrupt on a port
4491 * that is closed. This can happen on hangups - since they completely
4492 * shutdown a port not in user context. Need to handle this case.
4495 static void stl_sc26198rxisr(struct stlport
*portp
, unsigned int iack
)
4497 struct tty_struct
*tty
;
4498 unsigned int len
, buflen
, ioaddr
;
4500 pr_debug("stl_sc26198rxisr(portp=%p,iack=%x)\n", portp
, iack
);
4503 ioaddr
= portp
->ioaddr
;
4504 outb(GIBCR
, (ioaddr
+ XP_ADDR
));
4505 len
= inb(ioaddr
+ XP_DATA
) + 1;
4507 if ((iack
& IVR_TYPEMASK
) == IVR_RXDATA
) {
4508 if (tty
== NULL
|| (buflen
= tty_buffer_request_room(tty
, len
)) == 0) {
4509 len
= min(len
, sizeof(stl_unwanted
));
4510 outb(GRXFIFO
, (ioaddr
+ XP_ADDR
));
4511 insb((ioaddr
+ XP_DATA
), &stl_unwanted
[0], len
);
4512 portp
->stats
.rxlost
+= len
;
4513 portp
->stats
.rxtotal
+= len
;
4515 len
= min(len
, buflen
);
4518 outb(GRXFIFO
, (ioaddr
+ XP_ADDR
));
4519 tty_prepare_flip_string(tty
, &ptr
, len
);
4520 insb((ioaddr
+ XP_DATA
), ptr
, len
);
4521 tty_schedule_flip(tty
);
4522 portp
->stats
.rxtotal
+= len
;
4526 stl_sc26198rxbadchars(portp
);
4530 * If we are TX flow controlled and in IXANY mode then we may need
4531 * to unflow control here. We gotta do this because of the automatic
4532 * flow control modes of the sc26198.
4534 if (test_bit(ASYI_TXFLOWED
, &portp
->istate
)) {
4535 if ((tty
!= NULL
) &&
4536 (tty
->termios
!= NULL
) &&
4537 (tty
->termios
->c_iflag
& IXANY
)) {
4538 stl_sc26198txunflow(portp
, tty
);
4543 /*****************************************************************************/
4546 * Process an RX bad character.
4549 static void stl_sc26198rxbadch(struct stlport
*portp
, unsigned char status
, char ch
)
4551 struct tty_struct
*tty
;
4552 unsigned int ioaddr
;
4555 ioaddr
= portp
->ioaddr
;
4557 if (status
& SR_RXPARITY
)
4558 portp
->stats
.rxparity
++;
4559 if (status
& SR_RXFRAMING
)
4560 portp
->stats
.rxframing
++;
4561 if (status
& SR_RXOVERRUN
)
4562 portp
->stats
.rxoverrun
++;
4563 if (status
& SR_RXBREAK
)
4564 portp
->stats
.rxbreaks
++;
4566 if ((tty
!= NULL
) &&
4567 ((portp
->rxignoremsk
& status
) == 0)) {
4568 if (portp
->rxmarkmsk
& status
) {
4569 if (status
& SR_RXBREAK
) {
4571 if (portp
->flags
& ASYNC_SAK
) {
4573 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4575 } else if (status
& SR_RXPARITY
)
4576 status
= TTY_PARITY
;
4577 else if (status
& SR_RXFRAMING
)
4579 else if(status
& SR_RXOVERRUN
)
4580 status
= TTY_OVERRUN
;
4586 tty_insert_flip_char(tty
, ch
, status
);
4587 tty_schedule_flip(tty
);
4590 portp
->stats
.rxtotal
++;
4594 /*****************************************************************************/
4597 * Process all characters in the RX FIFO of the UART. Check all char
4598 * status bytes as well, and process as required. We need to check
4599 * all bytes in the FIFO, in case some more enter the FIFO while we
4600 * are here. To get the exact character error type we need to switch
4601 * into CHAR error mode (that is why we need to make sure we empty
4605 static void stl_sc26198rxbadchars(struct stlport
*portp
)
4607 unsigned char status
, mr1
;
4611 * To get the precise error type for each character we must switch
4612 * back into CHAR error mode.
4614 mr1
= stl_sc26198getreg(portp
, MR1
);
4615 stl_sc26198setreg(portp
, MR1
, (mr1
& ~MR1_ERRBLOCK
));
4617 while ((status
= stl_sc26198getreg(portp
, SR
)) & SR_RXRDY
) {
4618 stl_sc26198setreg(portp
, SCCR
, CR_CLEARRXERR
);
4619 ch
= stl_sc26198getreg(portp
, RXFIFO
);
4620 stl_sc26198rxbadch(portp
, status
, ch
);
4624 * To get correct interrupt class we must switch back into BLOCK
4627 stl_sc26198setreg(portp
, MR1
, mr1
);
4630 /*****************************************************************************/
4633 * Other interrupt handler. This includes modem signals, flow
4634 * control actions, etc. Most stuff is left to off-level interrupt
4638 static void stl_sc26198otherisr(struct stlport
*portp
, unsigned int iack
)
4640 unsigned char cir
, ipr
, xisr
;
4642 pr_debug("stl_sc26198otherisr(portp=%p,iack=%x)\n", portp
, iack
);
4644 cir
= stl_sc26198getglobreg(portp
, CIR
);
4646 switch (cir
& CIR_SUBTYPEMASK
) {
4648 ipr
= stl_sc26198getreg(portp
, IPR
);
4649 if (ipr
& IPR_DCDCHANGE
) {
4650 set_bit(ASYI_DCDCHANGE
, &portp
->istate
);
4651 schedule_work(&portp
->tqueue
);
4652 portp
->stats
.modem
++;
4655 case CIR_SUBXONXOFF
:
4656 xisr
= stl_sc26198getreg(portp
, XISR
);
4657 if (xisr
& XISR_RXXONGOT
) {
4658 set_bit(ASYI_TXFLOWED
, &portp
->istate
);
4659 portp
->stats
.txxoff
++;
4661 if (xisr
& XISR_RXXOFFGOT
) {
4662 clear_bit(ASYI_TXFLOWED
, &portp
->istate
);
4663 portp
->stats
.txxon
++;
4667 stl_sc26198setreg(portp
, SCCR
, CR_BREAKRESET
);
4668 stl_sc26198rxbadchars(portp
);
4675 static void stl_free_isabrds(void)
4677 struct stlbrd
*brdp
;
4680 for (i
= 0; i
< stl_nrbrds
; i
++) {
4681 if ((brdp
= stl_brds
[i
]) == NULL
|| (brdp
->state
& STL_PROBED
))
4684 free_irq(brdp
->irq
, brdp
);
4686 stl_cleanup_panels(brdp
);
4688 release_region(brdp
->ioaddr1
, brdp
->iosize1
);
4689 if (brdp
->iosize2
> 0)
4690 release_region(brdp
->ioaddr2
, brdp
->iosize2
);
4698 * Loadable module initialization stuff.
4700 static int __init
stallion_module_init(void)
4702 struct stlbrd
*brdp
;
4703 struct stlconf conf
;
4707 printk(KERN_INFO
"%s: version %s\n", stl_drvtitle
, stl_drvversion
);
4709 spin_lock_init(&stallion_lock
);
4710 spin_lock_init(&brd_lock
);
4712 stl_serial
= alloc_tty_driver(STL_MAXBRDS
* STL_MAXPORTS
);
4718 stl_serial
->owner
= THIS_MODULE
;
4719 stl_serial
->driver_name
= stl_drvname
;
4720 stl_serial
->name
= "ttyE";
4721 stl_serial
->major
= STL_SERIALMAJOR
;
4722 stl_serial
->minor_start
= 0;
4723 stl_serial
->type
= TTY_DRIVER_TYPE_SERIAL
;
4724 stl_serial
->subtype
= SERIAL_TYPE_NORMAL
;
4725 stl_serial
->init_termios
= stl_deftermios
;
4726 stl_serial
->flags
= TTY_DRIVER_REAL_RAW
| TTY_DRIVER_DYNAMIC_DEV
;
4727 tty_set_operations(stl_serial
, &stl_ops
);
4729 retval
= tty_register_driver(stl_serial
);
4731 printk("STALLION: failed to register serial driver\n");
4736 * Find any dynamically supported boards. That is via module load
4739 for (i
= stl_nrbrds
; i
< stl_nargs
; i
++) {
4740 memset(&conf
, 0, sizeof(conf
));
4741 if (stl_parsebrd(&conf
, stl_brdsp
[i
]) == 0)
4743 if ((brdp
= stl_allocbrd()) == NULL
)
4746 brdp
->brdtype
= conf
.brdtype
;
4747 brdp
->ioaddr1
= conf
.ioaddr1
;
4748 brdp
->ioaddr2
= conf
.ioaddr2
;
4749 brdp
->irq
= conf
.irq
;
4750 brdp
->irqtype
= conf
.irqtype
;
4751 stl_brds
[brdp
->brdnr
] = brdp
;
4752 if (stl_brdinit(brdp
)) {
4753 stl_brds
[brdp
->brdnr
] = NULL
;
4756 for (j
= 0; j
< brdp
->nrports
; j
++)
4757 tty_register_device(stl_serial
,
4758 brdp
->brdnr
* STL_MAXPORTS
+ j
, NULL
);
4763 /* this has to be _after_ isa finding because of locking */
4764 retval
= pci_register_driver(&stl_pcidriver
);
4765 if (retval
&& stl_nrbrds
== 0) {
4766 printk(KERN_ERR
"STALLION: can't register pci driver\n");
4771 * Set up a character driver for per board stuff. This is mainly used
4772 * to do stats ioctls on the ports.
4774 if (register_chrdev(STL_SIOMEMMAJOR
, "staliomem", &stl_fsiomem
))
4775 printk("STALLION: failed to register serial board device\n");
4777 stallion_class
= class_create(THIS_MODULE
, "staliomem");
4778 if (IS_ERR(stallion_class
))
4779 printk("STALLION: failed to create class\n");
4780 for (i
= 0; i
< 4; i
++)
4781 class_device_create(stallion_class
, NULL
,
4782 MKDEV(STL_SIOMEMMAJOR
, i
), NULL
,
4787 tty_unregister_driver(stl_serial
);
4789 put_tty_driver(stl_serial
);
4794 static void __exit
stallion_module_exit(void)
4796 struct stlbrd
*brdp
;
4799 pr_debug("cleanup_module()\n");
4801 printk(KERN_INFO
"Unloading %s: version %s\n", stl_drvtitle
,
4805 * Free up all allocated resources used by the ports. This includes
4806 * memory and interrupts. As part of this process we will also do
4807 * a hangup on every open port - to try to flush out any processes
4808 * hanging onto ports.
4810 for (i
= 0; i
< stl_nrbrds
; i
++) {
4811 if ((brdp
= stl_brds
[i
]) == NULL
|| (brdp
->state
& STL_PROBED
))
4813 for (j
= 0; j
< brdp
->nrports
; j
++)
4814 tty_unregister_device(stl_serial
,
4815 brdp
->brdnr
* STL_MAXPORTS
+ j
);
4818 for (i
= 0; i
< 4; i
++)
4819 class_device_destroy(stallion_class
, MKDEV(STL_SIOMEMMAJOR
, i
));
4820 unregister_chrdev(STL_SIOMEMMAJOR
, "staliomem");
4821 class_destroy(stallion_class
);
4823 pci_unregister_driver(&stl_pcidriver
);
4827 tty_unregister_driver(stl_serial
);
4828 put_tty_driver(stl_serial
);
4831 module_init(stallion_module_init
);
4832 module_exit(stallion_module_exit
);
4834 MODULE_AUTHOR("Greg Ungerer");
4835 MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
4836 MODULE_LICENSE("GPL");