[PATCH] i386: iOPL handling for paravirt guests
[wrt350n-kernel.git] / arch / i386 / kernel / process.c
blob05be77413351698237c68bbd7385bc1bc2b71d49
1 /*
2 * linux/arch/i386/kernel/process.c
4 * Copyright (C) 1995 Linus Torvalds
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
11 * This file handles the architecture-dependent parts of process handling..
14 #include <stdarg.h>
16 #include <linux/cpu.h>
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/elfcore.h>
23 #include <linux/smp.h>
24 #include <linux/smp_lock.h>
25 #include <linux/stddef.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/user.h>
29 #include <linux/a.out.h>
30 #include <linux/interrupt.h>
31 #include <linux/utsname.h>
32 #include <linux/delay.h>
33 #include <linux/reboot.h>
34 #include <linux/init.h>
35 #include <linux/mc146818rtc.h>
36 #include <linux/module.h>
37 #include <linux/kallsyms.h>
38 #include <linux/ptrace.h>
39 #include <linux/random.h>
40 #include <linux/personality.h>
42 #include <asm/uaccess.h>
43 #include <asm/pgtable.h>
44 #include <asm/system.h>
45 #include <asm/io.h>
46 #include <asm/ldt.h>
47 #include <asm/processor.h>
48 #include <asm/i387.h>
49 #include <asm/desc.h>
50 #include <asm/vm86.h>
51 #ifdef CONFIG_MATH_EMULATION
52 #include <asm/math_emu.h>
53 #endif
55 #include <linux/err.h>
57 #include <asm/tlbflush.h>
58 #include <asm/cpu.h>
59 #include <asm/pda.h>
61 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
63 static int hlt_counter;
65 unsigned long boot_option_idle_override = 0;
66 EXPORT_SYMBOL(boot_option_idle_override);
69 * Return saved PC of a blocked thread.
71 unsigned long thread_saved_pc(struct task_struct *tsk)
73 return ((unsigned long *)tsk->thread.esp)[3];
77 * Powermanagement idle function, if any..
79 void (*pm_idle)(void);
80 EXPORT_SYMBOL(pm_idle);
81 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
83 void disable_hlt(void)
85 hlt_counter++;
88 EXPORT_SYMBOL(disable_hlt);
90 void enable_hlt(void)
92 hlt_counter--;
95 EXPORT_SYMBOL(enable_hlt);
98 * We use this if we don't have any better
99 * idle routine..
101 void default_idle(void)
103 if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
104 current_thread_info()->status &= ~TS_POLLING;
106 * TS_POLLING-cleared state must be visible before we
107 * test NEED_RESCHED:
109 smp_mb();
111 local_irq_disable();
112 if (!need_resched())
113 safe_halt(); /* enables interrupts racelessly */
114 else
115 local_irq_enable();
116 current_thread_info()->status |= TS_POLLING;
117 } else {
118 /* loop is done by the caller */
119 cpu_relax();
122 #ifdef CONFIG_APM_MODULE
123 EXPORT_SYMBOL(default_idle);
124 #endif
127 * On SMP it's slightly faster (but much more power-consuming!)
128 * to poll the ->work.need_resched flag instead of waiting for the
129 * cross-CPU IPI to arrive. Use this option with caution.
131 static void poll_idle (void)
133 cpu_relax();
136 #ifdef CONFIG_HOTPLUG_CPU
137 #include <asm/nmi.h>
138 /* We don't actually take CPU down, just spin without interrupts. */
139 static inline void play_dead(void)
141 /* This must be done before dead CPU ack */
142 cpu_exit_clear();
143 wbinvd();
144 mb();
145 /* Ack it */
146 __get_cpu_var(cpu_state) = CPU_DEAD;
149 * With physical CPU hotplug, we should halt the cpu
151 local_irq_disable();
152 while (1)
153 halt();
155 #else
156 static inline void play_dead(void)
158 BUG();
160 #endif /* CONFIG_HOTPLUG_CPU */
163 * The idle thread. There's no useful work to be
164 * done, so just try to conserve power and have a
165 * low exit latency (ie sit in a loop waiting for
166 * somebody to say that they'd like to reschedule)
168 void cpu_idle(void)
170 int cpu = smp_processor_id();
172 current_thread_info()->status |= TS_POLLING;
174 /* endless idle loop with no priority at all */
175 while (1) {
176 while (!need_resched()) {
177 void (*idle)(void);
179 if (__get_cpu_var(cpu_idle_state))
180 __get_cpu_var(cpu_idle_state) = 0;
182 rmb();
183 idle = pm_idle;
185 if (!idle)
186 idle = default_idle;
188 if (cpu_is_offline(cpu))
189 play_dead();
191 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
192 idle();
194 preempt_enable_no_resched();
195 schedule();
196 preempt_disable();
200 void cpu_idle_wait(void)
202 unsigned int cpu, this_cpu = get_cpu();
203 cpumask_t map, tmp = current->cpus_allowed;
205 set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
206 put_cpu();
208 cpus_clear(map);
209 for_each_online_cpu(cpu) {
210 per_cpu(cpu_idle_state, cpu) = 1;
211 cpu_set(cpu, map);
214 __get_cpu_var(cpu_idle_state) = 0;
216 wmb();
217 do {
218 ssleep(1);
219 for_each_online_cpu(cpu) {
220 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
221 cpu_clear(cpu, map);
223 cpus_and(map, map, cpu_online_map);
224 } while (!cpus_empty(map));
226 set_cpus_allowed(current, tmp);
228 EXPORT_SYMBOL_GPL(cpu_idle_wait);
231 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
232 * which can obviate IPI to trigger checking of need_resched.
233 * We execute MONITOR against need_resched and enter optimized wait state
234 * through MWAIT. Whenever someone changes need_resched, we would be woken
235 * up from MWAIT (without an IPI).
237 * New with Core Duo processors, MWAIT can take some hints based on CPU
238 * capability.
240 void mwait_idle_with_hints(unsigned long eax, unsigned long ecx)
242 if (!need_resched()) {
243 __monitor((void *)&current_thread_info()->flags, 0, 0);
244 smp_mb();
245 if (!need_resched())
246 __mwait(eax, ecx);
250 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
251 static void mwait_idle(void)
253 local_irq_enable();
254 mwait_idle_with_hints(0, 0);
257 void __devinit select_idle_routine(const struct cpuinfo_x86 *c)
259 if (cpu_has(c, X86_FEATURE_MWAIT)) {
260 printk("monitor/mwait feature present.\n");
262 * Skip, if setup has overridden idle.
263 * One CPU supports mwait => All CPUs supports mwait
265 if (!pm_idle) {
266 printk("using mwait in idle threads.\n");
267 pm_idle = mwait_idle;
272 static int __init idle_setup (char *str)
274 if (!strncmp(str, "poll", 4)) {
275 printk("using polling idle threads.\n");
276 pm_idle = poll_idle;
277 #ifdef CONFIG_X86_SMP
278 if (smp_num_siblings > 1)
279 printk("WARNING: polling idle and HT enabled, performance may degrade.\n");
280 #endif
281 } else if (!strncmp(str, "halt", 4)) {
282 printk("using halt in idle threads.\n");
283 pm_idle = default_idle;
286 boot_option_idle_override = 1;
287 return 1;
290 __setup("idle=", idle_setup);
292 void show_regs(struct pt_regs * regs)
294 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
296 printk("\n");
297 printk("Pid: %d, comm: %20s\n", current->pid, current->comm);
298 printk("EIP: %04x:[<%08lx>] CPU: %d\n",0xffff & regs->xcs,regs->eip, smp_processor_id());
299 print_symbol("EIP is at %s\n", regs->eip);
301 if (user_mode_vm(regs))
302 printk(" ESP: %04x:%08lx",0xffff & regs->xss,regs->esp);
303 printk(" EFLAGS: %08lx %s (%s %.*s)\n",
304 regs->eflags, print_tainted(), init_utsname()->release,
305 (int)strcspn(init_utsname()->version, " "),
306 init_utsname()->version);
307 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
308 regs->eax,regs->ebx,regs->ecx,regs->edx);
309 printk("ESI: %08lx EDI: %08lx EBP: %08lx",
310 regs->esi, regs->edi, regs->ebp);
311 printk(" DS: %04x ES: %04x FS: %04x\n",
312 0xffff & regs->xds,0xffff & regs->xes, 0xffff & regs->xfs);
314 cr0 = read_cr0();
315 cr2 = read_cr2();
316 cr3 = read_cr3();
317 cr4 = read_cr4_safe();
318 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", cr0, cr2, cr3, cr4);
319 show_trace(NULL, regs, &regs->esp);
323 * This gets run with %ebx containing the
324 * function to call, and %edx containing
325 * the "args".
327 extern void kernel_thread_helper(void);
330 * Create a kernel thread
332 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
334 struct pt_regs regs;
336 memset(&regs, 0, sizeof(regs));
338 regs.ebx = (unsigned long) fn;
339 regs.edx = (unsigned long) arg;
341 regs.xds = __USER_DS;
342 regs.xes = __USER_DS;
343 regs.xfs = __KERNEL_PDA;
344 regs.orig_eax = -1;
345 regs.eip = (unsigned long) kernel_thread_helper;
346 regs.xcs = __KERNEL_CS | get_kernel_rpl();
347 regs.eflags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
349 /* Ok, create the new process.. */
350 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
352 EXPORT_SYMBOL(kernel_thread);
355 * Free current thread data structures etc..
357 void exit_thread(void)
359 /* The process may have allocated an io port bitmap... nuke it. */
360 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
361 struct task_struct *tsk = current;
362 struct thread_struct *t = &tsk->thread;
363 int cpu = get_cpu();
364 struct tss_struct *tss = &per_cpu(init_tss, cpu);
366 kfree(t->io_bitmap_ptr);
367 t->io_bitmap_ptr = NULL;
368 clear_thread_flag(TIF_IO_BITMAP);
370 * Careful, clear this in the TSS too:
372 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
373 t->io_bitmap_max = 0;
374 tss->io_bitmap_owner = NULL;
375 tss->io_bitmap_max = 0;
376 tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
377 put_cpu();
381 void flush_thread(void)
383 struct task_struct *tsk = current;
385 memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8);
386 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
387 clear_tsk_thread_flag(tsk, TIF_DEBUG);
389 * Forget coprocessor state..
391 clear_fpu(tsk);
392 clear_used_math();
395 void release_thread(struct task_struct *dead_task)
397 BUG_ON(dead_task->mm);
398 release_vm86_irqs(dead_task);
402 * This gets called before we allocate a new thread and copy
403 * the current task into it.
405 void prepare_to_copy(struct task_struct *tsk)
407 unlazy_fpu(tsk);
410 int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
411 unsigned long unused,
412 struct task_struct * p, struct pt_regs * regs)
414 struct pt_regs * childregs;
415 struct task_struct *tsk;
416 int err;
418 childregs = task_pt_regs(p);
419 *childregs = *regs;
420 childregs->eax = 0;
421 childregs->esp = esp;
423 p->thread.esp = (unsigned long) childregs;
424 p->thread.esp0 = (unsigned long) (childregs+1);
426 p->thread.eip = (unsigned long) ret_from_fork;
428 savesegment(gs,p->thread.gs);
430 tsk = current;
431 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
432 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
433 IO_BITMAP_BYTES, GFP_KERNEL);
434 if (!p->thread.io_bitmap_ptr) {
435 p->thread.io_bitmap_max = 0;
436 return -ENOMEM;
438 set_tsk_thread_flag(p, TIF_IO_BITMAP);
442 * Set a new TLS for the child thread?
444 if (clone_flags & CLONE_SETTLS) {
445 struct desc_struct *desc;
446 struct user_desc info;
447 int idx;
449 err = -EFAULT;
450 if (copy_from_user(&info, (void __user *)childregs->esi, sizeof(info)))
451 goto out;
452 err = -EINVAL;
453 if (LDT_empty(&info))
454 goto out;
456 idx = info.entry_number;
457 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
458 goto out;
460 desc = p->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
461 desc->a = LDT_entry_a(&info);
462 desc->b = LDT_entry_b(&info);
465 err = 0;
466 out:
467 if (err && p->thread.io_bitmap_ptr) {
468 kfree(p->thread.io_bitmap_ptr);
469 p->thread.io_bitmap_max = 0;
471 return err;
475 * fill in the user structure for a core dump..
477 void dump_thread(struct pt_regs * regs, struct user * dump)
479 int i;
481 /* changed the size calculations - should hopefully work better. lbt */
482 dump->magic = CMAGIC;
483 dump->start_code = 0;
484 dump->start_stack = regs->esp & ~(PAGE_SIZE - 1);
485 dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
486 dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
487 dump->u_dsize -= dump->u_tsize;
488 dump->u_ssize = 0;
489 for (i = 0; i < 8; i++)
490 dump->u_debugreg[i] = current->thread.debugreg[i];
492 if (dump->start_stack < TASK_SIZE)
493 dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;
495 dump->regs.ebx = regs->ebx;
496 dump->regs.ecx = regs->ecx;
497 dump->regs.edx = regs->edx;
498 dump->regs.esi = regs->esi;
499 dump->regs.edi = regs->edi;
500 dump->regs.ebp = regs->ebp;
501 dump->regs.eax = regs->eax;
502 dump->regs.ds = regs->xds;
503 dump->regs.es = regs->xes;
504 dump->regs.fs = regs->xfs;
505 savesegment(gs,dump->regs.gs);
506 dump->regs.orig_eax = regs->orig_eax;
507 dump->regs.eip = regs->eip;
508 dump->regs.cs = regs->xcs;
509 dump->regs.eflags = regs->eflags;
510 dump->regs.esp = regs->esp;
511 dump->regs.ss = regs->xss;
513 dump->u_fpvalid = dump_fpu (regs, &dump->i387);
515 EXPORT_SYMBOL(dump_thread);
518 * Capture the user space registers if the task is not running (in user space)
520 int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
522 struct pt_regs ptregs = *task_pt_regs(tsk);
523 ptregs.xcs &= 0xffff;
524 ptregs.xds &= 0xffff;
525 ptregs.xes &= 0xffff;
526 ptregs.xss &= 0xffff;
528 elf_core_copy_regs(regs, &ptregs);
530 return 1;
533 static noinline void __switch_to_xtra(struct task_struct *next_p,
534 struct tss_struct *tss)
536 struct thread_struct *next;
538 next = &next_p->thread;
540 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
541 set_debugreg(next->debugreg[0], 0);
542 set_debugreg(next->debugreg[1], 1);
543 set_debugreg(next->debugreg[2], 2);
544 set_debugreg(next->debugreg[3], 3);
545 /* no 4 and 5 */
546 set_debugreg(next->debugreg[6], 6);
547 set_debugreg(next->debugreg[7], 7);
550 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
552 * Disable the bitmap via an invalid offset. We still cache
553 * the previous bitmap owner and the IO bitmap contents:
555 tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
556 return;
559 if (likely(next == tss->io_bitmap_owner)) {
561 * Previous owner of the bitmap (hence the bitmap content)
562 * matches the next task, we dont have to do anything but
563 * to set a valid offset in the TSS:
565 tss->io_bitmap_base = IO_BITMAP_OFFSET;
566 return;
569 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
570 * and we let the task to get a GPF in case an I/O instruction
571 * is performed. The handler of the GPF will verify that the
572 * faulting task has a valid I/O bitmap and, it true, does the
573 * real copy and restart the instruction. This will save us
574 * redundant copies when the currently switched task does not
575 * perform any I/O during its timeslice.
577 tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
581 * This function selects if the context switch from prev to next
582 * has to tweak the TSC disable bit in the cr4.
584 static inline void disable_tsc(struct task_struct *prev_p,
585 struct task_struct *next_p)
587 struct thread_info *prev, *next;
590 * gcc should eliminate the ->thread_info dereference if
591 * has_secure_computing returns 0 at compile time (SECCOMP=n).
593 prev = task_thread_info(prev_p);
594 next = task_thread_info(next_p);
596 if (has_secure_computing(prev) || has_secure_computing(next)) {
597 /* slow path here */
598 if (has_secure_computing(prev) &&
599 !has_secure_computing(next)) {
600 write_cr4(read_cr4() & ~X86_CR4_TSD);
601 } else if (!has_secure_computing(prev) &&
602 has_secure_computing(next))
603 write_cr4(read_cr4() | X86_CR4_TSD);
608 * switch_to(x,yn) should switch tasks from x to y.
610 * We fsave/fwait so that an exception goes off at the right time
611 * (as a call from the fsave or fwait in effect) rather than to
612 * the wrong process. Lazy FP saving no longer makes any sense
613 * with modern CPU's, and this simplifies a lot of things (SMP
614 * and UP become the same).
616 * NOTE! We used to use the x86 hardware context switching. The
617 * reason for not using it any more becomes apparent when you
618 * try to recover gracefully from saved state that is no longer
619 * valid (stale segment register values in particular). With the
620 * hardware task-switch, there is no way to fix up bad state in
621 * a reasonable manner.
623 * The fact that Intel documents the hardware task-switching to
624 * be slow is a fairly red herring - this code is not noticeably
625 * faster. However, there _is_ some room for improvement here,
626 * so the performance issues may eventually be a valid point.
627 * More important, however, is the fact that this allows us much
628 * more flexibility.
630 * The return value (in %eax) will be the "prev" task after
631 * the task-switch, and shows up in ret_from_fork in entry.S,
632 * for example.
634 struct task_struct fastcall * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
636 struct thread_struct *prev = &prev_p->thread,
637 *next = &next_p->thread;
638 int cpu = smp_processor_id();
639 struct tss_struct *tss = &per_cpu(init_tss, cpu);
641 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
643 __unlazy_fpu(prev_p);
646 /* we're going to use this soon, after a few expensive things */
647 if (next_p->fpu_counter > 5)
648 prefetch(&next->i387.fxsave);
651 * Reload esp0.
653 load_esp0(tss, next);
656 * Save away %gs. No need to save %fs, as it was saved on the
657 * stack on entry. No need to save %es and %ds, as those are
658 * always kernel segments while inside the kernel. Doing this
659 * before setting the new TLS descriptors avoids the situation
660 * where we temporarily have non-reloadable segments in %fs
661 * and %gs. This could be an issue if the NMI handler ever
662 * used %fs or %gs (it does not today), or if the kernel is
663 * running inside of a hypervisor layer.
665 savesegment(gs, prev->gs);
668 * Load the per-thread Thread-Local Storage descriptor.
670 load_TLS(next, cpu);
673 * Restore IOPL if needed. In normal use, the flags restore
674 * in the switch assembly will handle this. But if the kernel
675 * is running virtualized at a non-zero CPL, the popf will
676 * not restore flags, so it must be done in a separate step.
678 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
679 set_iopl_mask(next->iopl);
682 * Now maybe handle debug registers and/or IO bitmaps
684 if (unlikely((task_thread_info(next_p)->flags & _TIF_WORK_CTXSW)
685 || test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)))
686 __switch_to_xtra(next_p, tss);
688 disable_tsc(prev_p, next_p);
691 * Leave lazy mode, flushing any hypercalls made here.
692 * This must be done before restoring TLS segments so
693 * the GDT and LDT are properly updated, and must be
694 * done before math_state_restore, so the TS bit is up
695 * to date.
697 arch_leave_lazy_cpu_mode();
699 /* If the task has used fpu the last 5 timeslices, just do a full
700 * restore of the math state immediately to avoid the trap; the
701 * chances of needing FPU soon are obviously high now
703 if (next_p->fpu_counter > 5)
704 math_state_restore();
707 * Restore %gs if needed (which is common)
709 if (prev->gs | next->gs)
710 loadsegment(gs, next->gs);
712 write_pda(pcurrent, next_p);
714 return prev_p;
717 asmlinkage int sys_fork(struct pt_regs regs)
719 return do_fork(SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
722 asmlinkage int sys_clone(struct pt_regs regs)
724 unsigned long clone_flags;
725 unsigned long newsp;
726 int __user *parent_tidptr, *child_tidptr;
728 clone_flags = regs.ebx;
729 newsp = regs.ecx;
730 parent_tidptr = (int __user *)regs.edx;
731 child_tidptr = (int __user *)regs.edi;
732 if (!newsp)
733 newsp = regs.esp;
734 return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
738 * This is trivial, and on the face of it looks like it
739 * could equally well be done in user mode.
741 * Not so, for quite unobvious reasons - register pressure.
742 * In user mode vfork() cannot have a stack frame, and if
743 * done by calling the "clone()" system call directly, you
744 * do not have enough call-clobbered registers to hold all
745 * the information you need.
747 asmlinkage int sys_vfork(struct pt_regs regs)
749 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
753 * sys_execve() executes a new program.
755 asmlinkage int sys_execve(struct pt_regs regs)
757 int error;
758 char * filename;
760 filename = getname((char __user *) regs.ebx);
761 error = PTR_ERR(filename);
762 if (IS_ERR(filename))
763 goto out;
764 error = do_execve(filename,
765 (char __user * __user *) regs.ecx,
766 (char __user * __user *) regs.edx,
767 &regs);
768 if (error == 0) {
769 task_lock(current);
770 current->ptrace &= ~PT_DTRACE;
771 task_unlock(current);
772 /* Make sure we don't return using sysenter.. */
773 set_thread_flag(TIF_IRET);
775 putname(filename);
776 out:
777 return error;
780 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
781 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
783 unsigned long get_wchan(struct task_struct *p)
785 unsigned long ebp, esp, eip;
786 unsigned long stack_page;
787 int count = 0;
788 if (!p || p == current || p->state == TASK_RUNNING)
789 return 0;
790 stack_page = (unsigned long)task_stack_page(p);
791 esp = p->thread.esp;
792 if (!stack_page || esp < stack_page || esp > top_esp+stack_page)
793 return 0;
794 /* include/asm-i386/system.h:switch_to() pushes ebp last. */
795 ebp = *(unsigned long *) esp;
796 do {
797 if (ebp < stack_page || ebp > top_ebp+stack_page)
798 return 0;
799 eip = *(unsigned long *) (ebp+4);
800 if (!in_sched_functions(eip))
801 return eip;
802 ebp = *(unsigned long *) ebp;
803 } while (count++ < 16);
804 return 0;
808 * sys_alloc_thread_area: get a yet unused TLS descriptor index.
810 static int get_free_idx(void)
812 struct thread_struct *t = &current->thread;
813 int idx;
815 for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
816 if (desc_empty(t->tls_array + idx))
817 return idx + GDT_ENTRY_TLS_MIN;
818 return -ESRCH;
822 * Set a given TLS descriptor:
824 asmlinkage int sys_set_thread_area(struct user_desc __user *u_info)
826 struct thread_struct *t = &current->thread;
827 struct user_desc info;
828 struct desc_struct *desc;
829 int cpu, idx;
831 if (copy_from_user(&info, u_info, sizeof(info)))
832 return -EFAULT;
833 idx = info.entry_number;
836 * index -1 means the kernel should try to find and
837 * allocate an empty descriptor:
839 if (idx == -1) {
840 idx = get_free_idx();
841 if (idx < 0)
842 return idx;
843 if (put_user(idx, &u_info->entry_number))
844 return -EFAULT;
847 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
848 return -EINVAL;
850 desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN;
853 * We must not get preempted while modifying the TLS.
855 cpu = get_cpu();
857 if (LDT_empty(&info)) {
858 desc->a = 0;
859 desc->b = 0;
860 } else {
861 desc->a = LDT_entry_a(&info);
862 desc->b = LDT_entry_b(&info);
864 load_TLS(t, cpu);
866 put_cpu();
868 return 0;
872 * Get the current Thread-Local Storage area:
875 #define GET_BASE(desc) ( \
876 (((desc)->a >> 16) & 0x0000ffff) | \
877 (((desc)->b << 16) & 0x00ff0000) | \
878 ( (desc)->b & 0xff000000) )
880 #define GET_LIMIT(desc) ( \
881 ((desc)->a & 0x0ffff) | \
882 ((desc)->b & 0xf0000) )
884 #define GET_32BIT(desc) (((desc)->b >> 22) & 1)
885 #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3)
886 #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1)
887 #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
888 #define GET_PRESENT(desc) (((desc)->b >> 15) & 1)
889 #define GET_USEABLE(desc) (((desc)->b >> 20) & 1)
891 asmlinkage int sys_get_thread_area(struct user_desc __user *u_info)
893 struct user_desc info;
894 struct desc_struct *desc;
895 int idx;
897 if (get_user(idx, &u_info->entry_number))
898 return -EFAULT;
899 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
900 return -EINVAL;
902 memset(&info, 0, sizeof(info));
904 desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
906 info.entry_number = idx;
907 info.base_addr = GET_BASE(desc);
908 info.limit = GET_LIMIT(desc);
909 info.seg_32bit = GET_32BIT(desc);
910 info.contents = GET_CONTENTS(desc);
911 info.read_exec_only = !GET_WRITABLE(desc);
912 info.limit_in_pages = GET_LIMIT_PAGES(desc);
913 info.seg_not_present = !GET_PRESENT(desc);
914 info.useable = GET_USEABLE(desc);
916 if (copy_to_user(u_info, &info, sizeof(info)))
917 return -EFAULT;
918 return 0;
921 unsigned long arch_align_stack(unsigned long sp)
923 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
924 sp -= get_random_int() % 8192;
925 return sp & ~0xf;