1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * File open, close, extend, truncate
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/capability.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
39 #define MLOG_MASK_PREFIX ML_INODE
40 #include <cluster/masklog.h>
48 #include "extent_map.h"
58 #include "buffer_head_io.h"
60 static int ocfs2_sync_inode(struct inode
*inode
)
62 filemap_fdatawrite(inode
->i_mapping
);
63 return sync_mapping_buffers(inode
->i_mapping
);
66 static int ocfs2_file_open(struct inode
*inode
, struct file
*file
)
69 int mode
= file
->f_flags
;
70 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
72 mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode
, file
,
73 file
->f_path
.dentry
->d_name
.len
, file
->f_path
.dentry
->d_name
.name
);
75 spin_lock(&oi
->ip_lock
);
77 /* Check that the inode hasn't been wiped from disk by another
78 * node. If it hasn't then we're safe as long as we hold the
79 * spin lock until our increment of open count. */
80 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_DELETED
) {
81 spin_unlock(&oi
->ip_lock
);
88 oi
->ip_flags
|= OCFS2_INODE_OPEN_DIRECT
;
91 spin_unlock(&oi
->ip_lock
);
98 static int ocfs2_file_release(struct inode
*inode
, struct file
*file
)
100 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
102 mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode
, file
,
103 file
->f_path
.dentry
->d_name
.len
,
104 file
->f_path
.dentry
->d_name
.name
);
106 spin_lock(&oi
->ip_lock
);
107 if (!--oi
->ip_open_count
)
108 oi
->ip_flags
&= ~OCFS2_INODE_OPEN_DIRECT
;
109 spin_unlock(&oi
->ip_lock
);
116 static int ocfs2_sync_file(struct file
*file
,
117 struct dentry
*dentry
,
122 struct inode
*inode
= dentry
->d_inode
;
123 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
125 mlog_entry("(0x%p, 0x%p, %d, '%.*s')\n", file
, dentry
, datasync
,
126 dentry
->d_name
.len
, dentry
->d_name
.name
);
128 err
= ocfs2_sync_inode(dentry
->d_inode
);
132 journal
= osb
->journal
->j_journal
;
133 err
= journal_force_commit(journal
);
138 return (err
< 0) ? -EIO
: 0;
141 int ocfs2_should_update_atime(struct inode
*inode
,
142 struct vfsmount
*vfsmnt
)
145 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
147 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
150 if ((inode
->i_flags
& S_NOATIME
) ||
151 ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
155 * We can be called with no vfsmnt structure - NFSD will
158 * Note that our action here is different than touch_atime() -
159 * if we can't tell whether this is a noatime mount, then we
160 * don't know whether to trust the value of s_atime_quantum.
165 if ((vfsmnt
->mnt_flags
& MNT_NOATIME
) ||
166 ((vfsmnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
169 if (vfsmnt
->mnt_flags
& MNT_RELATIME
) {
170 if ((timespec_compare(&inode
->i_atime
, &inode
->i_mtime
) <= 0) ||
171 (timespec_compare(&inode
->i_atime
, &inode
->i_ctime
) <= 0))
178 if ((now
.tv_sec
- inode
->i_atime
.tv_sec
<= osb
->s_atime_quantum
))
184 int ocfs2_update_inode_atime(struct inode
*inode
,
185 struct buffer_head
*bh
)
188 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
190 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*) bh
->b_data
;
194 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
195 if (handle
== NULL
) {
201 ret
= ocfs2_journal_access(handle
, inode
, bh
,
202 OCFS2_JOURNAL_ACCESS_WRITE
);
209 * Don't use ocfs2_mark_inode_dirty() here as we don't always
210 * have i_mutex to guard against concurrent changes to other
213 inode
->i_atime
= CURRENT_TIME
;
214 di
->i_atime
= cpu_to_le64(inode
->i_atime
.tv_sec
);
215 di
->i_atime_nsec
= cpu_to_le32(inode
->i_atime
.tv_nsec
);
217 ret
= ocfs2_journal_dirty(handle
, bh
);
222 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
228 static int ocfs2_set_inode_size(handle_t
*handle
,
230 struct buffer_head
*fe_bh
,
236 i_size_write(inode
, new_i_size
);
237 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
238 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
240 status
= ocfs2_mark_inode_dirty(handle
, inode
, fe_bh
);
251 static int ocfs2_simple_size_update(struct inode
*inode
,
252 struct buffer_head
*di_bh
,
256 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
257 handle_t
*handle
= NULL
;
259 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
260 if (handle
== NULL
) {
266 ret
= ocfs2_set_inode_size(handle
, inode
, di_bh
,
271 ocfs2_commit_trans(osb
, handle
);
276 static int ocfs2_orphan_for_truncate(struct ocfs2_super
*osb
,
278 struct buffer_head
*fe_bh
,
283 struct ocfs2_dinode
*di
;
288 /* TODO: This needs to actually orphan the inode in this
291 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
292 if (IS_ERR(handle
)) {
293 status
= PTR_ERR(handle
);
298 status
= ocfs2_journal_access(handle
, inode
, fe_bh
,
299 OCFS2_JOURNAL_ACCESS_WRITE
);
306 * Do this before setting i_size.
308 cluster_bytes
= ocfs2_align_bytes_to_clusters(inode
->i_sb
, new_i_size
);
309 status
= ocfs2_zero_range_for_truncate(inode
, handle
, new_i_size
,
316 i_size_write(inode
, new_i_size
);
317 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
319 di
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
320 di
->i_size
= cpu_to_le64(new_i_size
);
321 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
322 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
324 status
= ocfs2_journal_dirty(handle
, fe_bh
);
329 ocfs2_commit_trans(osb
, handle
);
336 static int ocfs2_truncate_file(struct inode
*inode
,
337 struct buffer_head
*di_bh
,
341 struct ocfs2_dinode
*fe
= NULL
;
342 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
343 struct ocfs2_truncate_context
*tc
= NULL
;
345 mlog_entry("(inode = %llu, new_i_size = %llu\n",
346 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
347 (unsigned long long)new_i_size
);
349 fe
= (struct ocfs2_dinode
*) di_bh
->b_data
;
350 if (!OCFS2_IS_VALID_DINODE(fe
)) {
351 OCFS2_RO_ON_INVALID_DINODE(inode
->i_sb
, fe
);
356 mlog_bug_on_msg(le64_to_cpu(fe
->i_size
) != i_size_read(inode
),
357 "Inode %llu, inode i_size = %lld != di "
358 "i_size = %llu, i_flags = 0x%x\n",
359 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
361 (unsigned long long)le64_to_cpu(fe
->i_size
),
362 le32_to_cpu(fe
->i_flags
));
364 if (new_i_size
> le64_to_cpu(fe
->i_size
)) {
365 mlog(0, "asked to truncate file with size (%llu) to size (%llu)!\n",
366 (unsigned long long)le64_to_cpu(fe
->i_size
),
367 (unsigned long long)new_i_size
);
373 mlog(0, "inode %llu, i_size = %llu, new_i_size = %llu\n",
374 (unsigned long long)le64_to_cpu(fe
->i_blkno
),
375 (unsigned long long)le64_to_cpu(fe
->i_size
),
376 (unsigned long long)new_i_size
);
378 /* lets handle the simple truncate cases before doing any more
379 * cluster locking. */
380 if (new_i_size
== le64_to_cpu(fe
->i_size
))
383 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
385 /* This forces other nodes to sync and drop their pages. Do
386 * this even if we have a truncate without allocation change -
387 * ocfs2 cluster sizes can be much greater than page size, so
388 * we have to truncate them anyway. */
389 status
= ocfs2_data_lock(inode
, 1);
391 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
397 unmap_mapping_range(inode
->i_mapping
, new_i_size
+ PAGE_SIZE
- 1, 0, 1);
398 truncate_inode_pages(inode
->i_mapping
, new_i_size
);
400 /* alright, we're going to need to do a full blown alloc size
401 * change. Orphan the inode so that recovery can complete the
402 * truncate if necessary. This does the task of marking
404 status
= ocfs2_orphan_for_truncate(osb
, inode
, di_bh
, new_i_size
);
407 goto bail_unlock_data
;
410 status
= ocfs2_prepare_truncate(osb
, inode
, di_bh
, &tc
);
413 goto bail_unlock_data
;
416 status
= ocfs2_commit_truncate(osb
, inode
, di_bh
, tc
);
419 goto bail_unlock_data
;
422 /* TODO: orphan dir cleanup here. */
424 ocfs2_data_unlock(inode
, 1);
426 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
435 * extend allocation only here.
436 * we'll update all the disk stuff, and oip->alloc_size
438 * expect stuff to be locked, a transaction started and enough data /
439 * metadata reservations in the contexts.
441 * Will return -EAGAIN, and a reason if a restart is needed.
442 * If passed in, *reason will always be set, even in error.
444 int ocfs2_do_extend_allocation(struct ocfs2_super
*osb
,
449 struct buffer_head
*fe_bh
,
451 struct ocfs2_alloc_context
*data_ac
,
452 struct ocfs2_alloc_context
*meta_ac
,
453 enum ocfs2_alloc_restarted
*reason_ret
)
457 struct ocfs2_dinode
*fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
458 enum ocfs2_alloc_restarted reason
= RESTART_NONE
;
459 u32 bit_off
, num_bits
;
463 BUG_ON(!clusters_to_add
);
466 flags
= OCFS2_EXT_UNWRITTEN
;
468 free_extents
= ocfs2_num_free_extents(osb
, inode
, fe
);
469 if (free_extents
< 0) {
470 status
= free_extents
;
475 /* there are two cases which could cause us to EAGAIN in the
476 * we-need-more-metadata case:
477 * 1) we haven't reserved *any*
478 * 2) we are so fragmented, we've needed to add metadata too
480 if (!free_extents
&& !meta_ac
) {
481 mlog(0, "we haven't reserved any metadata!\n");
483 reason
= RESTART_META
;
485 } else if ((!free_extents
)
486 && (ocfs2_alloc_context_bits_left(meta_ac
)
487 < ocfs2_extend_meta_needed(fe
))) {
488 mlog(0, "filesystem is really fragmented...\n");
490 reason
= RESTART_META
;
494 status
= __ocfs2_claim_clusters(osb
, handle
, data_ac
, 1,
495 clusters_to_add
, &bit_off
, &num_bits
);
497 if (status
!= -ENOSPC
)
502 BUG_ON(num_bits
> clusters_to_add
);
504 /* reserve our write early -- insert_extent may update the inode */
505 status
= ocfs2_journal_access(handle
, inode
, fe_bh
,
506 OCFS2_JOURNAL_ACCESS_WRITE
);
512 block
= ocfs2_clusters_to_blocks(osb
->sb
, bit_off
);
513 mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
514 num_bits
, bit_off
, (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
515 status
= ocfs2_insert_extent(osb
, handle
, inode
, fe_bh
,
516 *logical_offset
, block
, num_bits
,
523 status
= ocfs2_journal_dirty(handle
, fe_bh
);
529 clusters_to_add
-= num_bits
;
530 *logical_offset
+= num_bits
;
532 if (clusters_to_add
) {
533 mlog(0, "need to alloc once more, clusters = %u, wanted = "
534 "%u\n", fe
->i_clusters
, clusters_to_add
);
536 reason
= RESTART_TRANS
;
542 *reason_ret
= reason
;
547 * For a given allocation, determine which allocators will need to be
548 * accessed, and lock them, reserving the appropriate number of bits.
550 * Sparse file systems call this from ocfs2_write_begin_nolock()
551 * and ocfs2_allocate_unwritten_extents().
553 * File systems which don't support holes call this from
554 * ocfs2_extend_allocation().
556 int ocfs2_lock_allocators(struct inode
*inode
, struct ocfs2_dinode
*di
,
557 u32 clusters_to_add
, u32 extents_to_split
,
558 struct ocfs2_alloc_context
**data_ac
,
559 struct ocfs2_alloc_context
**meta_ac
)
561 int ret
= 0, num_free_extents
;
562 unsigned int max_recs_needed
= clusters_to_add
+ 2 * extents_to_split
;
563 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
569 BUG_ON(clusters_to_add
!= 0 && data_ac
== NULL
);
571 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u, "
572 "clusters_to_add = %u, extents_to_split = %u\n",
573 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, i_size_read(inode
),
574 le32_to_cpu(di
->i_clusters
), clusters_to_add
, extents_to_split
);
576 num_free_extents
= ocfs2_num_free_extents(osb
, inode
, di
);
577 if (num_free_extents
< 0) {
578 ret
= num_free_extents
;
584 * Sparse allocation file systems need to be more conservative
585 * with reserving room for expansion - the actual allocation
586 * happens while we've got a journal handle open so re-taking
587 * a cluster lock (because we ran out of room for another
588 * extent) will violate ordering rules.
590 * Most of the time we'll only be seeing this 1 cluster at a time
593 * Always lock for any unwritten extents - we might want to
594 * add blocks during a split.
596 if (!num_free_extents
||
597 (ocfs2_sparse_alloc(osb
) && num_free_extents
< max_recs_needed
)) {
598 ret
= ocfs2_reserve_new_metadata(osb
, di
, meta_ac
);
606 if (clusters_to_add
== 0)
609 ret
= ocfs2_reserve_clusters(osb
, clusters_to_add
, data_ac
);
619 ocfs2_free_alloc_context(*meta_ac
);
624 * We cannot have an error and a non null *data_ac.
631 static int __ocfs2_extend_allocation(struct inode
*inode
, u32 logical_start
,
632 u32 clusters_to_add
, int mark_unwritten
)
635 int restart_func
= 0;
638 struct buffer_head
*bh
= NULL
;
639 struct ocfs2_dinode
*fe
= NULL
;
640 handle_t
*handle
= NULL
;
641 struct ocfs2_alloc_context
*data_ac
= NULL
;
642 struct ocfs2_alloc_context
*meta_ac
= NULL
;
643 enum ocfs2_alloc_restarted why
;
644 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
646 mlog_entry("(clusters_to_add = %u)\n", clusters_to_add
);
649 * This function only exists for file systems which don't
652 BUG_ON(mark_unwritten
&& !ocfs2_sparse_alloc(osb
));
654 status
= ocfs2_read_block(osb
, OCFS2_I(inode
)->ip_blkno
, &bh
,
655 OCFS2_BH_CACHED
, inode
);
661 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
662 if (!OCFS2_IS_VALID_DINODE(fe
)) {
663 OCFS2_RO_ON_INVALID_DINODE(inode
->i_sb
, fe
);
669 BUG_ON(le32_to_cpu(fe
->i_clusters
) != OCFS2_I(inode
)->ip_clusters
);
671 status
= ocfs2_lock_allocators(inode
, fe
, clusters_to_add
, 0, &data_ac
,
678 credits
= ocfs2_calc_extend_credits(osb
->sb
, fe
, clusters_to_add
);
679 handle
= ocfs2_start_trans(osb
, credits
);
680 if (IS_ERR(handle
)) {
681 status
= PTR_ERR(handle
);
687 restarted_transaction
:
688 /* reserve a write to the file entry early on - that we if we
689 * run out of credits in the allocation path, we can still
691 status
= ocfs2_journal_access(handle
, inode
, bh
,
692 OCFS2_JOURNAL_ACCESS_WRITE
);
698 prev_clusters
= OCFS2_I(inode
)->ip_clusters
;
700 status
= ocfs2_do_extend_allocation(osb
,
710 if ((status
< 0) && (status
!= -EAGAIN
)) {
711 if (status
!= -ENOSPC
)
716 status
= ocfs2_journal_dirty(handle
, bh
);
722 spin_lock(&OCFS2_I(inode
)->ip_lock
);
723 clusters_to_add
-= (OCFS2_I(inode
)->ip_clusters
- prev_clusters
);
724 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
726 if (why
!= RESTART_NONE
&& clusters_to_add
) {
727 if (why
== RESTART_META
) {
728 mlog(0, "restarting function.\n");
731 BUG_ON(why
!= RESTART_TRANS
);
733 mlog(0, "restarting transaction.\n");
734 /* TODO: This can be more intelligent. */
735 credits
= ocfs2_calc_extend_credits(osb
->sb
,
738 status
= ocfs2_extend_trans(handle
, credits
);
740 /* handle still has to be committed at
746 goto restarted_transaction
;
750 mlog(0, "fe: i_clusters = %u, i_size=%llu\n",
751 le32_to_cpu(fe
->i_clusters
),
752 (unsigned long long)le64_to_cpu(fe
->i_size
));
753 mlog(0, "inode: ip_clusters=%u, i_size=%lld\n",
754 OCFS2_I(inode
)->ip_clusters
, i_size_read(inode
));
758 ocfs2_commit_trans(osb
, handle
);
762 ocfs2_free_alloc_context(data_ac
);
766 ocfs2_free_alloc_context(meta_ac
);
769 if ((!status
) && restart_func
) {
782 static int ocfs2_extend_allocation(struct inode
*inode
, u32 logical_start
,
783 u32 clusters_to_add
, int mark_unwritten
)
788 * The alloc sem blocks peope in read/write from reading our
789 * allocation until we're done changing it. We depend on
790 * i_mutex to block other extend/truncate calls while we're
793 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
794 ret
= __ocfs2_extend_allocation(inode
, logical_start
, clusters_to_add
,
796 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
801 /* Some parts of this taken from generic_cont_expand, which turned out
802 * to be too fragile to do exactly what we need without us having to
803 * worry about recursive locking in ->prepare_write() and
804 * ->commit_write(). */
805 static int ocfs2_write_zero_page(struct inode
*inode
,
808 struct address_space
*mapping
= inode
->i_mapping
;
812 handle_t
*handle
= NULL
;
815 offset
= (size
& (PAGE_CACHE_SIZE
-1)); /* Within page */
816 /* ugh. in prepare/commit_write, if from==to==start of block, we
817 ** skip the prepare. make sure we never send an offset for the start
820 if ((offset
& (inode
->i_sb
->s_blocksize
- 1)) == 0) {
823 index
= size
>> PAGE_CACHE_SHIFT
;
825 page
= grab_cache_page(mapping
, index
);
832 ret
= ocfs2_prepare_write_nolock(inode
, page
, offset
, offset
);
838 if (ocfs2_should_order_data(inode
)) {
839 handle
= ocfs2_start_walk_page_trans(inode
, page
, offset
,
841 if (IS_ERR(handle
)) {
842 ret
= PTR_ERR(handle
);
848 /* must not update i_size! */
849 ret
= block_commit_write(page
, offset
, offset
);
856 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
859 page_cache_release(page
);
864 static int ocfs2_zero_extend(struct inode
*inode
,
869 struct super_block
*sb
= inode
->i_sb
;
871 start_off
= ocfs2_align_bytes_to_blocks(sb
, i_size_read(inode
));
872 while (start_off
< zero_to_size
) {
873 ret
= ocfs2_write_zero_page(inode
, start_off
);
879 start_off
+= sb
->s_blocksize
;
882 * Very large extends have the potential to lock up
883 * the cpu for extended periods of time.
893 * A tail_to_skip value > 0 indicates that we're being called from
894 * ocfs2_file_aio_write(). This has the following implications:
896 * - we don't want to update i_size
897 * - di_bh will be NULL, which is fine because it's only used in the
898 * case where we want to update i_size.
899 * - ocfs2_zero_extend() will then only be filling the hole created
900 * between i_size and the start of the write.
902 static int ocfs2_extend_file(struct inode
*inode
,
903 struct buffer_head
*di_bh
,
908 u32 clusters_to_add
= 0;
910 BUG_ON(!tail_to_skip
&& !di_bh
);
912 /* setattr sometimes calls us like this. */
916 if (i_size_read(inode
) == new_i_size
)
918 BUG_ON(new_i_size
< i_size_read(inode
));
920 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
))) {
921 BUG_ON(tail_to_skip
!= 0);
922 goto out_update_size
;
925 clusters_to_add
= ocfs2_clusters_for_bytes(inode
->i_sb
, new_i_size
) -
926 OCFS2_I(inode
)->ip_clusters
;
929 * protect the pages that ocfs2_zero_extend is going to be
930 * pulling into the page cache.. we do this before the
931 * metadata extend so that we don't get into the situation
932 * where we've extended the metadata but can't get the data
935 ret
= ocfs2_data_lock(inode
, 1);
941 if (clusters_to_add
) {
942 ret
= ocfs2_extend_allocation(inode
,
943 OCFS2_I(inode
)->ip_clusters
,
952 * Call this even if we don't add any clusters to the tree. We
953 * still need to zero the area between the old i_size and the
956 ret
= ocfs2_zero_extend(inode
, (u64
)new_i_size
- tail_to_skip
);
964 /* We're being called from ocfs2_setattr() which wants
965 * us to update i_size */
966 ret
= ocfs2_simple_size_update(inode
, di_bh
, new_i_size
);
972 if (!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
973 ocfs2_data_unlock(inode
, 1);
979 int ocfs2_setattr(struct dentry
*dentry
, struct iattr
*attr
)
981 int status
= 0, size_change
;
982 struct inode
*inode
= dentry
->d_inode
;
983 struct super_block
*sb
= inode
->i_sb
;
984 struct ocfs2_super
*osb
= OCFS2_SB(sb
);
985 struct buffer_head
*bh
= NULL
;
986 handle_t
*handle
= NULL
;
988 mlog_entry("(0x%p, '%.*s')\n", dentry
,
989 dentry
->d_name
.len
, dentry
->d_name
.name
);
991 if (attr
->ia_valid
& ATTR_MODE
)
992 mlog(0, "mode change: %d\n", attr
->ia_mode
);
993 if (attr
->ia_valid
& ATTR_UID
)
994 mlog(0, "uid change: %d\n", attr
->ia_uid
);
995 if (attr
->ia_valid
& ATTR_GID
)
996 mlog(0, "gid change: %d\n", attr
->ia_gid
);
997 if (attr
->ia_valid
& ATTR_SIZE
)
998 mlog(0, "size change...\n");
999 if (attr
->ia_valid
& (ATTR_ATIME
| ATTR_MTIME
| ATTR_CTIME
))
1000 mlog(0, "time change...\n");
1002 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1003 | ATTR_GID | ATTR_UID | ATTR_MODE)
1004 if (!(attr
->ia_valid
& OCFS2_VALID_ATTRS
)) {
1005 mlog(0, "can't handle attrs: 0x%x\n", attr
->ia_valid
);
1009 status
= inode_change_ok(inode
, attr
);
1013 size_change
= S_ISREG(inode
->i_mode
) && attr
->ia_valid
& ATTR_SIZE
;
1015 status
= ocfs2_rw_lock(inode
, 1);
1022 status
= ocfs2_meta_lock(inode
, &bh
, 1);
1024 if (status
!= -ENOENT
)
1026 goto bail_unlock_rw
;
1029 if (size_change
&& attr
->ia_size
!= i_size_read(inode
)) {
1030 if (attr
->ia_size
> sb
->s_maxbytes
) {
1035 if (i_size_read(inode
) > attr
->ia_size
)
1036 status
= ocfs2_truncate_file(inode
, bh
, attr
->ia_size
);
1038 status
= ocfs2_extend_file(inode
, bh
, attr
->ia_size
, 0);
1040 if (status
!= -ENOSPC
)
1047 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1048 if (IS_ERR(handle
)) {
1049 status
= PTR_ERR(handle
);
1055 * This will intentionally not wind up calling vmtruncate(),
1056 * since all the work for a size change has been done above.
1057 * Otherwise, we could get into problems with truncate as
1058 * ip_alloc_sem is used there to protect against i_size
1061 status
= inode_setattr(inode
, attr
);
1067 status
= ocfs2_mark_inode_dirty(handle
, inode
, bh
);
1072 ocfs2_commit_trans(osb
, handle
);
1074 ocfs2_meta_unlock(inode
, 1);
1077 ocfs2_rw_unlock(inode
, 1);
1086 int ocfs2_getattr(struct vfsmount
*mnt
,
1087 struct dentry
*dentry
,
1090 struct inode
*inode
= dentry
->d_inode
;
1091 struct super_block
*sb
= dentry
->d_inode
->i_sb
;
1092 struct ocfs2_super
*osb
= sb
->s_fs_info
;
1097 err
= ocfs2_inode_revalidate(dentry
);
1104 generic_fillattr(inode
, stat
);
1106 /* We set the blksize from the cluster size for performance */
1107 stat
->blksize
= osb
->s_clustersize
;
1115 int ocfs2_permission(struct inode
*inode
, int mask
, struct nameidata
*nd
)
1121 ret
= ocfs2_meta_lock(inode
, NULL
, 0);
1128 ret
= generic_permission(inode
, mask
, NULL
);
1130 ocfs2_meta_unlock(inode
, 0);
1136 static int __ocfs2_write_remove_suid(struct inode
*inode
,
1137 struct buffer_head
*bh
)
1141 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1142 struct ocfs2_dinode
*di
;
1144 mlog_entry("(Inode %llu, mode 0%o)\n",
1145 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, inode
->i_mode
);
1147 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1148 if (handle
== NULL
) {
1154 ret
= ocfs2_journal_access(handle
, inode
, bh
,
1155 OCFS2_JOURNAL_ACCESS_WRITE
);
1161 inode
->i_mode
&= ~S_ISUID
;
1162 if ((inode
->i_mode
& S_ISGID
) && (inode
->i_mode
& S_IXGRP
))
1163 inode
->i_mode
&= ~S_ISGID
;
1165 di
= (struct ocfs2_dinode
*) bh
->b_data
;
1166 di
->i_mode
= cpu_to_le16(inode
->i_mode
);
1168 ret
= ocfs2_journal_dirty(handle
, bh
);
1173 ocfs2_commit_trans(osb
, handle
);
1180 * Will look for holes and unwritten extents in the range starting at
1181 * pos for count bytes (inclusive).
1183 static int ocfs2_check_range_for_holes(struct inode
*inode
, loff_t pos
,
1187 unsigned int extent_flags
;
1188 u32 cpos
, clusters
, extent_len
, phys_cpos
;
1189 struct super_block
*sb
= inode
->i_sb
;
1191 cpos
= pos
>> OCFS2_SB(sb
)->s_clustersize_bits
;
1192 clusters
= ocfs2_clusters_for_bytes(sb
, pos
+ count
) - cpos
;
1195 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
, &extent_len
,
1202 if (phys_cpos
== 0 || (extent_flags
& OCFS2_EXT_UNWRITTEN
)) {
1207 if (extent_len
> clusters
)
1208 extent_len
= clusters
;
1210 clusters
-= extent_len
;
1217 static int ocfs2_write_remove_suid(struct inode
*inode
)
1220 struct buffer_head
*bh
= NULL
;
1221 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1223 ret
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
),
1224 oi
->ip_blkno
, &bh
, OCFS2_BH_CACHED
, inode
);
1230 ret
= __ocfs2_write_remove_suid(inode
, bh
);
1237 * Allocate enough extents to cover the region starting at byte offset
1238 * start for len bytes. Existing extents are skipped, any extents
1239 * added are marked as "unwritten".
1241 static int ocfs2_allocate_unwritten_extents(struct inode
*inode
,
1245 u32 cpos
, phys_cpos
, clusters
, alloc_size
;
1248 * We consider both start and len to be inclusive.
1250 cpos
= start
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
1251 clusters
= ocfs2_clusters_for_bytes(inode
->i_sb
, start
+ len
);
1255 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
,
1263 * Hole or existing extent len can be arbitrary, so
1264 * cap it to our own allocation request.
1266 if (alloc_size
> clusters
)
1267 alloc_size
= clusters
;
1271 * We already have an allocation at this
1272 * region so we can safely skip it.
1277 ret
= __ocfs2_extend_allocation(inode
, cpos
, alloc_size
, 1);
1286 clusters
-= alloc_size
;
1294 static int __ocfs2_remove_inode_range(struct inode
*inode
,
1295 struct buffer_head
*di_bh
,
1296 u32 cpos
, u32 phys_cpos
, u32 len
,
1297 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
1300 u64 phys_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, phys_cpos
);
1301 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1302 struct inode
*tl_inode
= osb
->osb_tl_inode
;
1304 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1305 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1307 ret
= ocfs2_lock_allocators(inode
, di
, 0, 1, NULL
, &meta_ac
);
1313 mutex_lock(&tl_inode
->i_mutex
);
1315 if (ocfs2_truncate_log_needs_flush(osb
)) {
1316 ret
= __ocfs2_flush_truncate_log(osb
);
1323 handle
= ocfs2_start_trans(osb
, OCFS2_REMOVE_EXTENT_CREDITS
);
1324 if (handle
== NULL
) {
1330 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
1331 OCFS2_JOURNAL_ACCESS_WRITE
);
1337 ret
= ocfs2_remove_extent(inode
, di_bh
, cpos
, len
, handle
, meta_ac
,
1344 OCFS2_I(inode
)->ip_clusters
-= len
;
1345 di
->i_clusters
= cpu_to_le32(OCFS2_I(inode
)->ip_clusters
);
1347 ret
= ocfs2_journal_dirty(handle
, di_bh
);
1353 ret
= ocfs2_truncate_log_append(osb
, handle
, phys_blkno
, len
);
1358 ocfs2_commit_trans(osb
, handle
);
1360 mutex_unlock(&tl_inode
->i_mutex
);
1363 ocfs2_free_alloc_context(meta_ac
);
1369 * Truncate a byte range, avoiding pages within partial clusters. This
1370 * preserves those pages for the zeroing code to write to.
1372 static void ocfs2_truncate_cluster_pages(struct inode
*inode
, u64 byte_start
,
1375 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1377 struct address_space
*mapping
= inode
->i_mapping
;
1379 start
= (loff_t
)ocfs2_align_bytes_to_clusters(inode
->i_sb
, byte_start
);
1380 end
= byte_start
+ byte_len
;
1381 end
= end
& ~(osb
->s_clustersize
- 1);
1384 unmap_mapping_range(mapping
, start
, end
- start
, 0);
1385 truncate_inode_pages_range(mapping
, start
, end
- 1);
1389 static int ocfs2_zero_partial_clusters(struct inode
*inode
,
1393 u64 tmpend
, end
= start
+ len
;
1394 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1395 unsigned int csize
= osb
->s_clustersize
;
1399 * The "start" and "end" values are NOT necessarily part of
1400 * the range whose allocation is being deleted. Rather, this
1401 * is what the user passed in with the request. We must zero
1402 * partial clusters here. There's no need to worry about
1403 * physical allocation - the zeroing code knows to skip holes.
1405 mlog(0, "byte start: %llu, end: %llu\n",
1406 (unsigned long long)start
, (unsigned long long)end
);
1409 * If both edges are on a cluster boundary then there's no
1410 * zeroing required as the region is part of the allocation to
1413 if ((start
& (csize
- 1)) == 0 && (end
& (csize
- 1)) == 0)
1416 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1417 if (handle
== NULL
) {
1424 * We want to get the byte offset of the end of the 1st cluster.
1426 tmpend
= (u64
)osb
->s_clustersize
+ (start
& ~(osb
->s_clustersize
- 1));
1430 mlog(0, "1st range: start: %llu, tmpend: %llu\n",
1431 (unsigned long long)start
, (unsigned long long)tmpend
);
1433 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, tmpend
);
1439 * This may make start and end equal, but the zeroing
1440 * code will skip any work in that case so there's no
1441 * need to catch it up here.
1443 start
= end
& ~(osb
->s_clustersize
- 1);
1445 mlog(0, "2nd range: start: %llu, end: %llu\n",
1446 (unsigned long long)start
, (unsigned long long)end
);
1448 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, end
);
1453 ocfs2_commit_trans(osb
, handle
);
1458 static int ocfs2_remove_inode_range(struct inode
*inode
,
1459 struct buffer_head
*di_bh
, u64 byte_start
,
1463 u32 trunc_start
, trunc_len
, cpos
, phys_cpos
, alloc_size
;
1464 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1465 struct ocfs2_cached_dealloc_ctxt dealloc
;
1467 ocfs2_init_dealloc_ctxt(&dealloc
);
1472 trunc_start
= ocfs2_clusters_for_bytes(osb
->sb
, byte_start
);
1473 trunc_len
= (byte_start
+ byte_len
) >> osb
->s_clustersize_bits
;
1474 if (trunc_len
>= trunc_start
)
1475 trunc_len
-= trunc_start
;
1479 mlog(0, "Inode: %llu, start: %llu, len: %llu, cstart: %u, clen: %u\n",
1480 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1481 (unsigned long long)byte_start
,
1482 (unsigned long long)byte_len
, trunc_start
, trunc_len
);
1484 ret
= ocfs2_zero_partial_clusters(inode
, byte_start
, byte_len
);
1492 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
,
1499 if (alloc_size
> trunc_len
)
1500 alloc_size
= trunc_len
;
1502 /* Only do work for non-holes */
1503 if (phys_cpos
!= 0) {
1504 ret
= __ocfs2_remove_inode_range(inode
, di_bh
, cpos
,
1505 phys_cpos
, alloc_size
,
1514 trunc_len
-= alloc_size
;
1517 ocfs2_truncate_cluster_pages(inode
, byte_start
, byte_len
);
1520 ocfs2_schedule_truncate_log_flush(osb
, 1);
1521 ocfs2_run_deallocs(osb
, &dealloc
);
1527 * Parts of this function taken from xfs_change_file_space()
1529 static int __ocfs2_change_file_space(struct file
*file
, struct inode
*inode
,
1530 loff_t f_pos
, unsigned int cmd
,
1531 struct ocfs2_space_resv
*sr
,
1537 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1538 struct buffer_head
*di_bh
= NULL
;
1540 unsigned long long max_off
= inode
->i_sb
->s_maxbytes
;
1542 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
1545 mutex_lock(&inode
->i_mutex
);
1548 * This prevents concurrent writes on other nodes
1550 ret
= ocfs2_rw_lock(inode
, 1);
1556 ret
= ocfs2_meta_lock(inode
, &di_bh
, 1);
1562 if (inode
->i_flags
& (S_IMMUTABLE
|S_APPEND
)) {
1564 goto out_meta_unlock
;
1567 switch (sr
->l_whence
) {
1568 case 0: /*SEEK_SET*/
1570 case 1: /*SEEK_CUR*/
1571 sr
->l_start
+= f_pos
;
1573 case 2: /*SEEK_END*/
1574 sr
->l_start
+= i_size_read(inode
);
1578 goto out_meta_unlock
;
1582 llen
= sr
->l_len
> 0 ? sr
->l_len
- 1 : sr
->l_len
;
1585 || sr
->l_start
> max_off
1586 || (sr
->l_start
+ llen
) < 0
1587 || (sr
->l_start
+ llen
) > max_off
) {
1589 goto out_meta_unlock
;
1591 size
= sr
->l_start
+ sr
->l_len
;
1593 if (cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
) {
1594 if (sr
->l_len
<= 0) {
1596 goto out_meta_unlock
;
1600 if (file
&& should_remove_suid(file
->f_path
.dentry
)) {
1601 ret
= __ocfs2_write_remove_suid(inode
, di_bh
);
1604 goto out_meta_unlock
;
1608 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1610 case OCFS2_IOC_RESVSP
:
1611 case OCFS2_IOC_RESVSP64
:
1613 * This takes unsigned offsets, but the signed ones we
1614 * pass have been checked against overflow above.
1616 ret
= ocfs2_allocate_unwritten_extents(inode
, sr
->l_start
,
1619 case OCFS2_IOC_UNRESVSP
:
1620 case OCFS2_IOC_UNRESVSP64
:
1621 ret
= ocfs2_remove_inode_range(inode
, di_bh
, sr
->l_start
,
1627 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1630 goto out_meta_unlock
;
1634 * We update c/mtime for these changes
1636 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1637 if (IS_ERR(handle
)) {
1638 ret
= PTR_ERR(handle
);
1640 goto out_meta_unlock
;
1643 if (change_size
&& i_size_read(inode
) < size
)
1644 i_size_write(inode
, size
);
1646 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
1647 ret
= ocfs2_mark_inode_dirty(handle
, inode
, di_bh
);
1651 ocfs2_commit_trans(osb
, handle
);
1655 ocfs2_meta_unlock(inode
, 1);
1657 ocfs2_rw_unlock(inode
, 1);
1659 mutex_unlock(&inode
->i_mutex
);
1664 int ocfs2_change_file_space(struct file
*file
, unsigned int cmd
,
1665 struct ocfs2_space_resv
*sr
)
1667 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1668 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);;
1670 if ((cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
) &&
1671 !ocfs2_writes_unwritten_extents(osb
))
1673 else if ((cmd
== OCFS2_IOC_UNRESVSP
|| cmd
== OCFS2_IOC_UNRESVSP64
) &&
1674 !ocfs2_sparse_alloc(osb
))
1677 if (!S_ISREG(inode
->i_mode
))
1680 if (!(file
->f_mode
& FMODE_WRITE
))
1683 return __ocfs2_change_file_space(file
, inode
, file
->f_pos
, cmd
, sr
, 0);
1686 static long ocfs2_fallocate(struct inode
*inode
, int mode
, loff_t offset
,
1689 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1690 struct ocfs2_space_resv sr
;
1691 int change_size
= 1;
1693 if (!ocfs2_writes_unwritten_extents(osb
))
1696 if (S_ISDIR(inode
->i_mode
))
1699 if (mode
& FALLOC_FL_KEEP_SIZE
)
1703 sr
.l_start
= (s64
)offset
;
1704 sr
.l_len
= (s64
)len
;
1706 return __ocfs2_change_file_space(NULL
, inode
, offset
,
1707 OCFS2_IOC_RESVSP64
, &sr
, change_size
);
1710 static int ocfs2_prepare_inode_for_write(struct dentry
*dentry
,
1716 int ret
= 0, meta_level
= appending
;
1717 struct inode
*inode
= dentry
->d_inode
;
1719 loff_t newsize
, saved_pos
;
1722 * We sample i_size under a read level meta lock to see if our write
1723 * is extending the file, if it is we back off and get a write level
1727 ret
= ocfs2_meta_lock(inode
, NULL
, meta_level
);
1734 /* Clear suid / sgid if necessary. We do this here
1735 * instead of later in the write path because
1736 * remove_suid() calls ->setattr without any hint that
1737 * we may have already done our cluster locking. Since
1738 * ocfs2_setattr() *must* take cluster locks to
1739 * proceeed, this will lead us to recursively lock the
1740 * inode. There's also the dinode i_size state which
1741 * can be lost via setattr during extending writes (we
1742 * set inode->i_size at the end of a write. */
1743 if (should_remove_suid(dentry
)) {
1744 if (meta_level
== 0) {
1745 ocfs2_meta_unlock(inode
, meta_level
);
1750 ret
= ocfs2_write_remove_suid(inode
);
1757 /* work on a copy of ppos until we're sure that we won't have
1758 * to recalculate it due to relocking. */
1760 saved_pos
= i_size_read(inode
);
1761 mlog(0, "O_APPEND: inode->i_size=%llu\n", saved_pos
);
1766 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
))) {
1767 loff_t end
= saved_pos
+ count
;
1770 * Skip the O_DIRECT checks if we don't need
1773 if (!direct_io
|| !(*direct_io
))
1777 * Allowing concurrent direct writes means
1778 * i_size changes wouldn't be synchronized, so
1779 * one node could wind up truncating another
1782 if (end
> i_size_read(inode
)) {
1788 * We don't fill holes during direct io, so
1789 * check for them here. If any are found, the
1790 * caller will have to retake some cluster
1791 * locks and initiate the io as buffered.
1793 ret
= ocfs2_check_range_for_holes(inode
, saved_pos
,
1804 * The rest of this loop is concerned with legacy file
1805 * systems which don't support sparse files.
1808 newsize
= count
+ saved_pos
;
1810 mlog(0, "pos=%lld newsize=%lld cursize=%lld\n",
1811 (long long) saved_pos
, (long long) newsize
,
1812 (long long) i_size_read(inode
));
1814 /* No need for a higher level metadata lock if we're
1815 * never going past i_size. */
1816 if (newsize
<= i_size_read(inode
))
1819 if (meta_level
== 0) {
1820 ocfs2_meta_unlock(inode
, meta_level
);
1825 spin_lock(&OCFS2_I(inode
)->ip_lock
);
1826 clusters
= ocfs2_clusters_for_bytes(inode
->i_sb
, newsize
) -
1827 OCFS2_I(inode
)->ip_clusters
;
1828 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
1830 mlog(0, "Writing at EOF, may need more allocation: "
1831 "i_size = %lld, newsize = %lld, need %u clusters\n",
1832 (long long) i_size_read(inode
), (long long) newsize
,
1835 /* We only want to continue the rest of this loop if
1836 * our extend will actually require more
1841 ret
= ocfs2_extend_file(inode
, NULL
, newsize
, count
);
1854 ocfs2_meta_unlock(inode
, meta_level
);
1861 ocfs2_set_next_iovec(const struct iovec
**iovp
, size_t *basep
, size_t bytes
)
1863 const struct iovec
*iov
= *iovp
;
1864 size_t base
= *basep
;
1867 int copy
= min(bytes
, iov
->iov_len
- base
);
1871 if (iov
->iov_len
== base
) {
1880 static struct page
* ocfs2_get_write_source(char **ret_src_buf
,
1881 const struct iovec
*cur_iov
,
1885 char *buf
= cur_iov
->iov_base
+ iov_offset
;
1886 struct page
*src_page
= NULL
;
1889 off
= (unsigned long)(buf
) & ~PAGE_CACHE_MASK
;
1891 if (!segment_eq(get_fs(), KERNEL_DS
)) {
1893 * Pull in the user page. We want to do this outside
1894 * of the meta data locks in order to preserve locking
1895 * order in case of page fault.
1897 ret
= get_user_pages(current
, current
->mm
,
1898 (unsigned long)buf
& PAGE_CACHE_MASK
, 1,
1899 0, 0, &src_page
, NULL
);
1901 *ret_src_buf
= kmap(src_page
) + off
;
1903 src_page
= ERR_PTR(-EFAULT
);
1911 static void ocfs2_put_write_source(struct page
*page
)
1915 page_cache_release(page
);
1919 static ssize_t
ocfs2_file_buffered_write(struct file
*file
, loff_t
*ppos
,
1920 const struct iovec
*iov
,
1921 unsigned long nr_segs
,
1923 ssize_t o_direct_written
)
1926 ssize_t copied
, total
= 0;
1927 size_t iov_offset
= 0, bytes
;
1929 const struct iovec
*cur_iov
= iov
;
1930 struct page
*user_page
, *page
;
1931 char * uninitialized_var(buf
);
1936 * handle partial DIO write. Adjust cur_iov if needed.
1938 ocfs2_set_next_iovec(&cur_iov
, &iov_offset
, o_direct_written
);
1943 user_page
= ocfs2_get_write_source(&buf
, cur_iov
, iov_offset
);
1944 if (IS_ERR(user_page
)) {
1945 ret
= PTR_ERR(user_page
);
1949 /* Stay within our page boundaries */
1950 bytes
= min((PAGE_CACHE_SIZE
- ((unsigned long)pos
& ~PAGE_CACHE_MASK
)),
1951 (PAGE_CACHE_SIZE
- ((unsigned long)buf
& ~PAGE_CACHE_MASK
)));
1952 /* Stay within the vector boundary */
1953 bytes
= min_t(size_t, bytes
, cur_iov
->iov_len
- iov_offset
);
1954 /* Stay within count */
1955 bytes
= min(bytes
, count
);
1958 ret
= ocfs2_write_begin(file
, file
->f_mapping
, pos
, bytes
, 0,
1965 dst
= kmap_atomic(page
, KM_USER0
);
1966 memcpy(dst
+ (pos
& (loff_t
)(PAGE_CACHE_SIZE
- 1)), buf
, bytes
);
1967 kunmap_atomic(dst
, KM_USER0
);
1968 flush_dcache_page(page
);
1969 ocfs2_put_write_source(user_page
);
1971 copied
= ocfs2_write_end(file
, file
->f_mapping
, pos
, bytes
,
1972 bytes
, page
, fsdata
);
1980 *ppos
= pos
+ copied
;
1983 ocfs2_set_next_iovec(&cur_iov
, &iov_offset
, copied
);
1987 return total
? total
: ret
;
1990 static ssize_t
ocfs2_file_aio_write(struct kiocb
*iocb
,
1991 const struct iovec
*iov
,
1992 unsigned long nr_segs
,
1995 int ret
, direct_io
, appending
, rw_level
, have_alloc_sem
= 0;
1996 int can_do_direct
, sync
= 0;
1997 ssize_t written
= 0;
1998 size_t ocount
; /* original count */
1999 size_t count
; /* after file limit checks */
2000 loff_t
*ppos
= &iocb
->ki_pos
;
2001 struct file
*file
= iocb
->ki_filp
;
2002 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
2004 mlog_entry("(0x%p, %u, '%.*s')\n", file
,
2005 (unsigned int)nr_segs
,
2006 file
->f_path
.dentry
->d_name
.len
,
2007 file
->f_path
.dentry
->d_name
.name
);
2009 if (iocb
->ki_left
== 0)
2012 ret
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2018 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2020 appending
= file
->f_flags
& O_APPEND
? 1 : 0;
2021 direct_io
= file
->f_flags
& O_DIRECT
? 1 : 0;
2023 mutex_lock(&inode
->i_mutex
);
2026 /* to match setattr's i_mutex -> i_alloc_sem -> rw_lock ordering */
2028 down_read(&inode
->i_alloc_sem
);
2032 /* concurrent O_DIRECT writes are allowed */
2033 rw_level
= !direct_io
;
2034 ret
= ocfs2_rw_lock(inode
, rw_level
);
2040 can_do_direct
= direct_io
;
2041 ret
= ocfs2_prepare_inode_for_write(file
->f_path
.dentry
, ppos
,
2042 iocb
->ki_left
, appending
,
2050 * We can't complete the direct I/O as requested, fall back to
2053 if (direct_io
&& !can_do_direct
) {
2054 ocfs2_rw_unlock(inode
, rw_level
);
2055 up_read(&inode
->i_alloc_sem
);
2065 if (!sync
&& ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
)))
2069 * XXX: Is it ok to execute these checks a second time?
2071 ret
= generic_write_checks(file
, ppos
, &count
, S_ISBLK(inode
->i_mode
));
2076 * Set pos so that sync_page_range_nolock() below understands
2077 * where to start from. We might've moved it around via the
2078 * calls above. The range we want to actually sync starts from
2084 /* communicate with ocfs2_dio_end_io */
2085 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2088 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, *ppos
,
2089 ppos
, count
, ocount
);
2095 written
= ocfs2_file_buffered_write(file
, ppos
, iov
, nr_segs
,
2099 if (ret
!= -EFAULT
|| ret
!= -ENOSPC
)
2106 /* buffered aio wouldn't have proper lock coverage today */
2107 BUG_ON(ret
== -EIOCBQUEUED
&& !(file
->f_flags
& O_DIRECT
));
2110 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2111 * function pointer which is called when o_direct io completes so that
2112 * it can unlock our rw lock. (it's the clustered equivalent of
2113 * i_alloc_sem; protects truncate from racing with pending ios).
2114 * Unfortunately there are error cases which call end_io and others
2115 * that don't. so we don't have to unlock the rw_lock if either an
2116 * async dio is going to do it in the future or an end_io after an
2117 * error has already done it.
2119 if (ret
== -EIOCBQUEUED
|| !ocfs2_iocb_is_rw_locked(iocb
)) {
2126 ocfs2_rw_unlock(inode
, rw_level
);
2130 up_read(&inode
->i_alloc_sem
);
2132 if (written
> 0 && sync
) {
2135 err
= sync_page_range_nolock(inode
, file
->f_mapping
, pos
, count
);
2140 mutex_unlock(&inode
->i_mutex
);
2143 return written
? written
: ret
;
2146 static int ocfs2_splice_write_actor(struct pipe_inode_info
*pipe
,
2147 struct pipe_buffer
*buf
,
2148 struct splice_desc
*sd
)
2152 struct file
*file
= sd
->u
.file
;
2153 unsigned int offset
;
2154 struct page
*page
= NULL
;
2158 ret
= buf
->ops
->confirm(pipe
, buf
);
2162 offset
= sd
->pos
& ~PAGE_CACHE_MASK
;
2164 if (count
+ offset
> PAGE_CACHE_SIZE
)
2165 count
= PAGE_CACHE_SIZE
- offset
;
2167 ret
= ocfs2_write_begin(file
, file
->f_mapping
, sd
->pos
, count
, 0,
2174 src
= buf
->ops
->map(pipe
, buf
, 1);
2175 dst
= kmap_atomic(page
, KM_USER1
);
2176 memcpy(dst
+ offset
, src
+ buf
->offset
, count
);
2177 kunmap_atomic(dst
, KM_USER1
);
2178 buf
->ops
->unmap(pipe
, buf
, src
);
2180 copied
= ocfs2_write_end(file
, file
->f_mapping
, sd
->pos
, count
, count
,
2189 return copied
? copied
: ret
;
2192 static ssize_t
__ocfs2_file_splice_write(struct pipe_inode_info
*pipe
,
2199 struct address_space
*mapping
= out
->f_mapping
;
2200 struct inode
*inode
= mapping
->host
;
2201 struct splice_desc sd
= {
2208 ret
= __splice_from_pipe(pipe
, &sd
, ocfs2_splice_write_actor
);
2212 if (unlikely((out
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2213 err
= generic_osync_inode(inode
, mapping
,
2214 OSYNC_METADATA
|OSYNC_DATA
);
2223 static ssize_t
ocfs2_file_splice_write(struct pipe_inode_info
*pipe
,
2230 struct inode
*inode
= out
->f_path
.dentry
->d_inode
;
2232 mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", out
, pipe
,
2234 out
->f_path
.dentry
->d_name
.len
,
2235 out
->f_path
.dentry
->d_name
.name
);
2237 inode_double_lock(inode
, pipe
->inode
);
2239 ret
= ocfs2_rw_lock(inode
, 1);
2245 ret
= ocfs2_prepare_inode_for_write(out
->f_path
.dentry
, ppos
, len
, 0,
2252 /* ok, we're done with i_size and alloc work */
2253 ret
= __ocfs2_file_splice_write(pipe
, out
, ppos
, len
, flags
);
2256 ocfs2_rw_unlock(inode
, 1);
2258 inode_double_unlock(inode
, pipe
->inode
);
2264 static ssize_t
ocfs2_file_splice_read(struct file
*in
,
2266 struct pipe_inode_info
*pipe
,
2271 struct inode
*inode
= in
->f_path
.dentry
->d_inode
;
2273 mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", in
, pipe
,
2275 in
->f_path
.dentry
->d_name
.len
,
2276 in
->f_path
.dentry
->d_name
.name
);
2279 * See the comment in ocfs2_file_aio_read()
2281 ret
= ocfs2_meta_lock(inode
, NULL
, 0);
2286 ocfs2_meta_unlock(inode
, 0);
2288 ret
= generic_file_splice_read(in
, ppos
, pipe
, len
, flags
);
2295 static ssize_t
ocfs2_file_aio_read(struct kiocb
*iocb
,
2296 const struct iovec
*iov
,
2297 unsigned long nr_segs
,
2300 int ret
= 0, rw_level
= -1, have_alloc_sem
= 0, lock_level
= 0;
2301 struct file
*filp
= iocb
->ki_filp
;
2302 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
2304 mlog_entry("(0x%p, %u, '%.*s')\n", filp
,
2305 (unsigned int)nr_segs
,
2306 filp
->f_path
.dentry
->d_name
.len
,
2307 filp
->f_path
.dentry
->d_name
.name
);
2316 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2317 * need locks to protect pending reads from racing with truncate.
2319 if (filp
->f_flags
& O_DIRECT
) {
2320 down_read(&inode
->i_alloc_sem
);
2323 ret
= ocfs2_rw_lock(inode
, 0);
2329 /* communicate with ocfs2_dio_end_io */
2330 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2334 * We're fine letting folks race truncates and extending
2335 * writes with read across the cluster, just like they can
2336 * locally. Hence no rw_lock during read.
2338 * Take and drop the meta data lock to update inode fields
2339 * like i_size. This allows the checks down below
2340 * generic_file_aio_read() a chance of actually working.
2342 ret
= ocfs2_meta_lock_atime(inode
, filp
->f_vfsmnt
, &lock_level
);
2347 ocfs2_meta_unlock(inode
, lock_level
);
2349 ret
= generic_file_aio_read(iocb
, iov
, nr_segs
, iocb
->ki_pos
);
2351 mlog(ML_ERROR
, "generic_file_aio_read returned -EINVAL\n");
2353 /* buffered aio wouldn't have proper lock coverage today */
2354 BUG_ON(ret
== -EIOCBQUEUED
&& !(filp
->f_flags
& O_DIRECT
));
2356 /* see ocfs2_file_aio_write */
2357 if (ret
== -EIOCBQUEUED
|| !ocfs2_iocb_is_rw_locked(iocb
)) {
2364 up_read(&inode
->i_alloc_sem
);
2366 ocfs2_rw_unlock(inode
, rw_level
);
2372 const struct inode_operations ocfs2_file_iops
= {
2373 .setattr
= ocfs2_setattr
,
2374 .getattr
= ocfs2_getattr
,
2375 .permission
= ocfs2_permission
,
2376 .fallocate
= ocfs2_fallocate
,
2379 const struct inode_operations ocfs2_special_file_iops
= {
2380 .setattr
= ocfs2_setattr
,
2381 .getattr
= ocfs2_getattr
,
2382 .permission
= ocfs2_permission
,
2385 const struct file_operations ocfs2_fops
= {
2386 .read
= do_sync_read
,
2387 .write
= do_sync_write
,
2389 .fsync
= ocfs2_sync_file
,
2390 .release
= ocfs2_file_release
,
2391 .open
= ocfs2_file_open
,
2392 .aio_read
= ocfs2_file_aio_read
,
2393 .aio_write
= ocfs2_file_aio_write
,
2394 .ioctl
= ocfs2_ioctl
,
2395 #ifdef CONFIG_COMPAT
2396 .compat_ioctl
= ocfs2_compat_ioctl
,
2398 .splice_read
= ocfs2_file_splice_read
,
2399 .splice_write
= ocfs2_file_splice_write
,
2402 const struct file_operations ocfs2_dops
= {
2403 .read
= generic_read_dir
,
2404 .readdir
= ocfs2_readdir
,
2405 .fsync
= ocfs2_sync_file
,
2406 .ioctl
= ocfs2_ioctl
,
2407 #ifdef CONFIG_COMPAT
2408 .compat_ioctl
= ocfs2_compat_ioctl
,