2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
46 * Include the apic definitions for x86 to have the APIC timer related defines
47 * available also for UP (on SMP it gets magically included via linux/smp.h).
48 * asm/acpi.h is not an option, as it would require more include magic. Also
49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
56 #include <asm/uaccess.h>
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
61 #define ACPI_PROCESSOR_COMPONENT 0x01000000
62 #define ACPI_PROCESSOR_CLASS "processor"
63 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER "power"
66 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save
) (void) __read_mostly
;
73 #define C2_OVERHEAD 1 /* 1us */
74 #define C3_OVERHEAD 1 /* 1us */
76 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
78 static unsigned int max_cstate __read_mostly
= ACPI_PROCESSOR_MAX_POWER
;
79 #ifdef CONFIG_CPU_IDLE
80 module_param(max_cstate
, uint
, 0000);
82 module_param(max_cstate
, uint
, 0644);
84 static unsigned int nocst __read_mostly
;
85 module_param(nocst
, uint
, 0000);
87 #ifndef CONFIG_CPU_IDLE
89 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
90 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
91 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
92 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
93 * reduce history for more aggressive entry into C3
95 static unsigned int bm_history __read_mostly
=
96 (HZ
>= 800 ? 0xFFFFFFFF : ((1U << (HZ
/ 25)) - 1));
97 module_param(bm_history
, uint
, 0644);
99 static int acpi_processor_set_power_policy(struct acpi_processor
*pr
);
101 #else /* CONFIG_CPU_IDLE */
102 static unsigned int latency_factor __read_mostly
= 2;
103 module_param(latency_factor
, uint
, 0644);
107 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
108 * For now disable this. Probably a bug somewhere else.
110 * To skip this limit, boot/load with a large max_cstate limit.
112 static int set_max_cstate(const struct dmi_system_id
*id
)
114 if (max_cstate
> ACPI_PROCESSOR_MAX_POWER
)
117 printk(KERN_NOTICE PREFIX
"%s detected - limiting to C%ld max_cstate."
118 " Override with \"processor.max_cstate=%d\"\n", id
->ident
,
119 (long)id
->driver_data
, ACPI_PROCESSOR_MAX_POWER
+ 1);
121 max_cstate
= (long)id
->driver_data
;
126 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
127 callers to only run once -AK */
128 static struct dmi_system_id __cpuinitdata processor_power_dmi_table
[] = {
129 { set_max_cstate
, "IBM ThinkPad R40e", {
130 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
131 DMI_MATCH(DMI_BIOS_VERSION
,"1SET70WW")}, (void *)1},
132 { set_max_cstate
, "IBM ThinkPad R40e", {
133 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
134 DMI_MATCH(DMI_BIOS_VERSION
,"1SET60WW")}, (void *)1},
135 { set_max_cstate
, "IBM ThinkPad R40e", {
136 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
137 DMI_MATCH(DMI_BIOS_VERSION
,"1SET43WW") }, (void*)1},
138 { set_max_cstate
, "IBM ThinkPad R40e", {
139 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
140 DMI_MATCH(DMI_BIOS_VERSION
,"1SET45WW") }, (void*)1},
141 { set_max_cstate
, "IBM ThinkPad R40e", {
142 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
143 DMI_MATCH(DMI_BIOS_VERSION
,"1SET47WW") }, (void*)1},
144 { set_max_cstate
, "IBM ThinkPad R40e", {
145 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
146 DMI_MATCH(DMI_BIOS_VERSION
,"1SET50WW") }, (void*)1},
147 { set_max_cstate
, "IBM ThinkPad R40e", {
148 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
149 DMI_MATCH(DMI_BIOS_VERSION
,"1SET52WW") }, (void*)1},
150 { set_max_cstate
, "IBM ThinkPad R40e", {
151 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
152 DMI_MATCH(DMI_BIOS_VERSION
,"1SET55WW") }, (void*)1},
153 { set_max_cstate
, "IBM ThinkPad R40e", {
154 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
155 DMI_MATCH(DMI_BIOS_VERSION
,"1SET56WW") }, (void*)1},
156 { set_max_cstate
, "IBM ThinkPad R40e", {
157 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
158 DMI_MATCH(DMI_BIOS_VERSION
,"1SET59WW") }, (void*)1},
159 { set_max_cstate
, "IBM ThinkPad R40e", {
160 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
161 DMI_MATCH(DMI_BIOS_VERSION
,"1SET60WW") }, (void*)1},
162 { set_max_cstate
, "IBM ThinkPad R40e", {
163 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
164 DMI_MATCH(DMI_BIOS_VERSION
,"1SET61WW") }, (void*)1},
165 { set_max_cstate
, "IBM ThinkPad R40e", {
166 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
167 DMI_MATCH(DMI_BIOS_VERSION
,"1SET62WW") }, (void*)1},
168 { set_max_cstate
, "IBM ThinkPad R40e", {
169 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
170 DMI_MATCH(DMI_BIOS_VERSION
,"1SET64WW") }, (void*)1},
171 { set_max_cstate
, "IBM ThinkPad R40e", {
172 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
173 DMI_MATCH(DMI_BIOS_VERSION
,"1SET65WW") }, (void*)1},
174 { set_max_cstate
, "IBM ThinkPad R40e", {
175 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
176 DMI_MATCH(DMI_BIOS_VERSION
,"1SET68WW") }, (void*)1},
177 { set_max_cstate
, "Medion 41700", {
178 DMI_MATCH(DMI_BIOS_VENDOR
,"Phoenix Technologies LTD"),
179 DMI_MATCH(DMI_BIOS_VERSION
,"R01-A1J")}, (void *)1},
180 { set_max_cstate
, "Clevo 5600D", {
181 DMI_MATCH(DMI_BIOS_VENDOR
,"Phoenix Technologies LTD"),
182 DMI_MATCH(DMI_BIOS_VERSION
,"SHE845M0.86C.0013.D.0302131307")},
187 static inline u32
ticks_elapsed(u32 t1
, u32 t2
)
191 else if (!(acpi_gbl_FADT
.flags
& ACPI_FADT_32BIT_TIMER
))
192 return (((0x00FFFFFF - t1
) + t2
) & 0x00FFFFFF);
194 return ((0xFFFFFFFF - t1
) + t2
);
197 static inline u32
ticks_elapsed_in_us(u32 t1
, u32 t2
)
200 return PM_TIMER_TICKS_TO_US(t2
- t1
);
201 else if (!(acpi_gbl_FADT
.flags
& ACPI_FADT_32BIT_TIMER
))
202 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1
) + t2
) & 0x00FFFFFF);
204 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1
) + t2
);
208 * Callers should disable interrupts before the call and enable
209 * interrupts after return.
211 static void acpi_safe_halt(void)
213 current_thread_info()->status
&= ~TS_POLLING
;
215 * TS_POLLING-cleared state must be visible before we
219 if (!need_resched()) {
223 current_thread_info()->status
|= TS_POLLING
;
226 #ifndef CONFIG_CPU_IDLE
229 acpi_processor_power_activate(struct acpi_processor
*pr
,
230 struct acpi_processor_cx
*new)
232 struct acpi_processor_cx
*old
;
237 old
= pr
->power
.state
;
240 old
->promotion
.count
= 0;
241 new->demotion
.count
= 0;
243 /* Cleanup from old state. */
247 /* Disable bus master reload */
248 if (new->type
!= ACPI_STATE_C3
&& pr
->flags
.bm_check
)
249 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 0);
254 /* Prepare to use new state. */
257 /* Enable bus master reload */
258 if (old
->type
!= ACPI_STATE_C3
&& pr
->flags
.bm_check
)
259 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 1);
263 pr
->power
.state
= new;
268 static atomic_t c3_cpu_count
;
270 /* Common C-state entry for C2, C3, .. */
271 static void acpi_cstate_enter(struct acpi_processor_cx
*cstate
)
273 if (cstate
->entry_method
== ACPI_CSTATE_FFH
) {
274 /* Call into architectural FFH based C-state */
275 acpi_processor_ffh_cstate_enter(cstate
);
278 /* IO port based C-state */
279 inb(cstate
->address
);
280 /* Dummy wait op - must do something useless after P_LVL2 read
281 because chipsets cannot guarantee that STPCLK# signal
282 gets asserted in time to freeze execution properly. */
283 unused
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
286 #endif /* !CONFIG_CPU_IDLE */
288 #ifdef ARCH_APICTIMER_STOPS_ON_C3
291 * Some BIOS implementations switch to C3 in the published C2 state.
292 * This seems to be a common problem on AMD boxen, but other vendors
293 * are affected too. We pick the most conservative approach: we assume
294 * that the local APIC stops in both C2 and C3.
296 static void acpi_timer_check_state(int state
, struct acpi_processor
*pr
,
297 struct acpi_processor_cx
*cx
)
299 struct acpi_processor_power
*pwr
= &pr
->power
;
300 u8 type
= local_apic_timer_c2_ok
? ACPI_STATE_C3
: ACPI_STATE_C2
;
303 * Check, if one of the previous states already marked the lapic
306 if (pwr
->timer_broadcast_on_state
< state
)
309 if (cx
->type
>= type
)
310 pr
->power
.timer_broadcast_on_state
= state
;
313 static void acpi_propagate_timer_broadcast(struct acpi_processor
*pr
)
315 unsigned long reason
;
317 reason
= pr
->power
.timer_broadcast_on_state
< INT_MAX
?
318 CLOCK_EVT_NOTIFY_BROADCAST_ON
: CLOCK_EVT_NOTIFY_BROADCAST_OFF
;
320 clockevents_notify(reason
, &pr
->id
);
323 /* Power(C) State timer broadcast control */
324 static void acpi_state_timer_broadcast(struct acpi_processor
*pr
,
325 struct acpi_processor_cx
*cx
,
328 int state
= cx
- pr
->power
.states
;
330 if (state
>= pr
->power
.timer_broadcast_on_state
) {
331 unsigned long reason
;
333 reason
= broadcast
? CLOCK_EVT_NOTIFY_BROADCAST_ENTER
:
334 CLOCK_EVT_NOTIFY_BROADCAST_EXIT
;
335 clockevents_notify(reason
, &pr
->id
);
341 static void acpi_timer_check_state(int state
, struct acpi_processor
*pr
,
342 struct acpi_processor_cx
*cstate
) { }
343 static void acpi_propagate_timer_broadcast(struct acpi_processor
*pr
) { }
344 static void acpi_state_timer_broadcast(struct acpi_processor
*pr
,
345 struct acpi_processor_cx
*cx
,
353 * Suspend / resume control
355 static int acpi_idle_suspend
;
357 int acpi_processor_suspend(struct acpi_device
* device
, pm_message_t state
)
359 acpi_idle_suspend
= 1;
363 int acpi_processor_resume(struct acpi_device
* device
)
365 acpi_idle_suspend
= 0;
369 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
370 static int tsc_halts_in_c(int state
)
372 switch (boot_cpu_data
.x86_vendor
) {
375 * AMD Fam10h TSC will tick in all
376 * C/P/S0/S1 states when this bit is set.
378 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
381 case X86_VENDOR_INTEL
:
382 /* Several cases known where TSC halts in C2 too */
384 return state
> ACPI_STATE_C1
;
389 #ifndef CONFIG_CPU_IDLE
390 static void acpi_processor_idle(void)
392 struct acpi_processor
*pr
= NULL
;
393 struct acpi_processor_cx
*cx
= NULL
;
394 struct acpi_processor_cx
*next_state
= NULL
;
399 * Interrupts must be disabled during bus mastering calculations and
400 * for C2/C3 transitions.
404 pr
= processors
[smp_processor_id()];
411 * Check whether we truly need to go idle, or should
414 if (unlikely(need_resched())) {
419 cx
= pr
->power
.state
;
420 if (!cx
|| acpi_idle_suspend
) {
435 * Check for bus mastering activity (if required), record, and check
438 if (pr
->flags
.bm_check
) {
440 unsigned long diff
= jiffies
- pr
->power
.bm_check_timestamp
;
445 pr
->power
.bm_activity
<<= diff
;
447 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS
, &bm_status
);
449 pr
->power
.bm_activity
|= 0x1;
450 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS
, 1);
453 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
454 * the true state of bus mastering activity; forcing us to
455 * manually check the BMIDEA bit of each IDE channel.
457 else if (errata
.piix4
.bmisx
) {
458 if ((inb_p(errata
.piix4
.bmisx
+ 0x02) & 0x01)
459 || (inb_p(errata
.piix4
.bmisx
+ 0x0A) & 0x01))
460 pr
->power
.bm_activity
|= 0x1;
463 pr
->power
.bm_check_timestamp
= jiffies
;
466 * If bus mastering is or was active this jiffy, demote
467 * to avoid a faulty transition. Note that the processor
468 * won't enter a low-power state during this call (to this
469 * function) but should upon the next.
471 * TBD: A better policy might be to fallback to the demotion
472 * state (use it for this quantum only) istead of
473 * demoting -- and rely on duration as our sole demotion
474 * qualification. This may, however, introduce DMA
475 * issues (e.g. floppy DMA transfer overrun/underrun).
477 if ((pr
->power
.bm_activity
& 0x1) &&
478 cx
->demotion
.threshold
.bm
) {
480 next_state
= cx
->demotion
.state
;
485 #ifdef CONFIG_HOTPLUG_CPU
487 * Check for P_LVL2_UP flag before entering C2 and above on
488 * an SMP system. We do it here instead of doing it at _CST/P_LVL
489 * detection phase, to work cleanly with logical CPU hotplug.
491 if ((cx
->type
!= ACPI_STATE_C1
) && (num_online_cpus() > 1) &&
492 !pr
->flags
.has_cst
&& !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
))
493 cx
= &pr
->power
.states
[ACPI_STATE_C1
];
499 * Invoke the current Cx state to put the processor to sleep.
501 if (cx
->type
== ACPI_STATE_C2
|| cx
->type
== ACPI_STATE_C3
) {
502 current_thread_info()->status
&= ~TS_POLLING
;
504 * TS_POLLING-cleared state must be visible before we
508 if (need_resched()) {
509 current_thread_info()->status
|= TS_POLLING
;
520 * Use the appropriate idle routine, the one that would
521 * be used without acpi C-states.
529 * TBD: Can't get time duration while in C1, as resumes
530 * go to an ISR rather than here. Need to instrument
531 * base interrupt handler.
533 * Note: the TSC better not stop in C1, sched_clock() will
536 sleep_ticks
= 0xFFFFFFFF;
543 /* Get start time (ticks) */
544 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
545 /* Tell the scheduler that we are going deep-idle: */
546 sched_clock_idle_sleep_event();
548 acpi_state_timer_broadcast(pr
, cx
, 1);
549 acpi_cstate_enter(cx
);
550 /* Get end time (ticks) */
551 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
553 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
554 /* TSC halts in C2, so notify users */
555 if (tsc_halts_in_c(ACPI_STATE_C2
))
556 mark_tsc_unstable("possible TSC halt in C2");
558 /* Compute time (ticks) that we were actually asleep */
559 sleep_ticks
= ticks_elapsed(t1
, t2
);
561 /* Tell the scheduler how much we idled: */
562 sched_clock_idle_wakeup_event(sleep_ticks
*PM_TIMER_TICK_NS
);
564 /* Re-enable interrupts */
566 /* Do not account our idle-switching overhead: */
567 sleep_ticks
-= cx
->latency_ticks
+ C2_OVERHEAD
;
569 current_thread_info()->status
|= TS_POLLING
;
570 acpi_state_timer_broadcast(pr
, cx
, 0);
574 acpi_unlazy_tlb(smp_processor_id());
576 * Must be done before busmaster disable as we might
577 * need to access HPET !
579 acpi_state_timer_broadcast(pr
, cx
, 1);
582 * bm_check implies we need ARB_DIS
583 * !bm_check implies we need cache flush
584 * bm_control implies whether we can do ARB_DIS
586 * That leaves a case where bm_check is set and bm_control is
587 * not set. In that case we cannot do much, we enter C3
588 * without doing anything.
590 if (pr
->flags
.bm_check
&& pr
->flags
.bm_control
) {
591 if (atomic_inc_return(&c3_cpu_count
) ==
594 * All CPUs are trying to go to C3
595 * Disable bus master arbitration
597 acpi_set_register(ACPI_BITREG_ARB_DISABLE
, 1);
599 } else if (!pr
->flags
.bm_check
) {
600 /* SMP with no shared cache... Invalidate cache */
601 ACPI_FLUSH_CPU_CACHE();
604 /* Get start time (ticks) */
605 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
607 /* Tell the scheduler that we are going deep-idle: */
608 sched_clock_idle_sleep_event();
609 acpi_cstate_enter(cx
);
610 /* Get end time (ticks) */
611 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
612 if (pr
->flags
.bm_check
&& pr
->flags
.bm_control
) {
613 /* Enable bus master arbitration */
614 atomic_dec(&c3_cpu_count
);
615 acpi_set_register(ACPI_BITREG_ARB_DISABLE
, 0);
618 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
619 /* TSC halts in C3, so notify users */
620 if (tsc_halts_in_c(ACPI_STATE_C3
))
621 mark_tsc_unstable("TSC halts in C3");
623 /* Compute time (ticks) that we were actually asleep */
624 sleep_ticks
= ticks_elapsed(t1
, t2
);
625 /* Tell the scheduler how much we idled: */
626 sched_clock_idle_wakeup_event(sleep_ticks
*PM_TIMER_TICK_NS
);
628 /* Re-enable interrupts */
630 /* Do not account our idle-switching overhead: */
631 sleep_ticks
-= cx
->latency_ticks
+ C3_OVERHEAD
;
633 current_thread_info()->status
|= TS_POLLING
;
634 acpi_state_timer_broadcast(pr
, cx
, 0);
642 if ((cx
->type
!= ACPI_STATE_C1
) && (sleep_ticks
> 0))
643 cx
->time
+= sleep_ticks
;
645 next_state
= pr
->power
.state
;
647 #ifdef CONFIG_HOTPLUG_CPU
648 /* Don't do promotion/demotion */
649 if ((cx
->type
== ACPI_STATE_C1
) && (num_online_cpus() > 1) &&
650 !pr
->flags
.has_cst
&& !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
)) {
659 * Track the number of longs (time asleep is greater than threshold)
660 * and promote when the count threshold is reached. Note that bus
661 * mastering activity may prevent promotions.
662 * Do not promote above max_cstate.
664 if (cx
->promotion
.state
&&
665 ((cx
->promotion
.state
- pr
->power
.states
) <= max_cstate
)) {
666 if (sleep_ticks
> cx
->promotion
.threshold
.ticks
&&
667 cx
->promotion
.state
->latency
<=
668 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY
)) {
669 cx
->promotion
.count
++;
670 cx
->demotion
.count
= 0;
671 if (cx
->promotion
.count
>=
672 cx
->promotion
.threshold
.count
) {
673 if (pr
->flags
.bm_check
) {
675 (pr
->power
.bm_activity
& cx
->
676 promotion
.threshold
.bm
)) {
682 next_state
= cx
->promotion
.state
;
692 * Track the number of shorts (time asleep is less than time threshold)
693 * and demote when the usage threshold is reached.
695 if (cx
->demotion
.state
) {
696 if (sleep_ticks
< cx
->demotion
.threshold
.ticks
) {
697 cx
->demotion
.count
++;
698 cx
->promotion
.count
= 0;
699 if (cx
->demotion
.count
>= cx
->demotion
.threshold
.count
) {
700 next_state
= cx
->demotion
.state
;
708 * Demote if current state exceeds max_cstate
709 * or if the latency of the current state is unacceptable
711 if ((pr
->power
.state
- pr
->power
.states
) > max_cstate
||
712 pr
->power
.state
->latency
>
713 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY
)) {
714 if (cx
->demotion
.state
)
715 next_state
= cx
->demotion
.state
;
721 * If we're going to start using a new Cx state we must clean up
722 * from the previous and prepare to use the new.
724 if (next_state
!= pr
->power
.state
)
725 acpi_processor_power_activate(pr
, next_state
);
728 static int acpi_processor_set_power_policy(struct acpi_processor
*pr
)
731 unsigned int state_is_set
= 0;
732 struct acpi_processor_cx
*lower
= NULL
;
733 struct acpi_processor_cx
*higher
= NULL
;
734 struct acpi_processor_cx
*cx
;
741 * This function sets the default Cx state policy (OS idle handler).
742 * Our scheme is to promote quickly to C2 but more conservatively
743 * to C3. We're favoring C2 for its characteristics of low latency
744 * (quick response), good power savings, and ability to allow bus
745 * mastering activity. Note that the Cx state policy is completely
746 * customizable and can be altered dynamically.
750 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
751 cx
= &pr
->power
.states
[i
];
756 pr
->power
.state
= cx
;
765 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
766 cx
= &pr
->power
.states
[i
];
771 cx
->demotion
.state
= lower
;
772 cx
->demotion
.threshold
.ticks
= cx
->latency_ticks
;
773 cx
->demotion
.threshold
.count
= 1;
774 if (cx
->type
== ACPI_STATE_C3
)
775 cx
->demotion
.threshold
.bm
= bm_history
;
782 for (i
= (ACPI_PROCESSOR_MAX_POWER
- 1); i
> 0; i
--) {
783 cx
= &pr
->power
.states
[i
];
788 cx
->promotion
.state
= higher
;
789 cx
->promotion
.threshold
.ticks
= cx
->latency_ticks
;
790 if (cx
->type
>= ACPI_STATE_C2
)
791 cx
->promotion
.threshold
.count
= 4;
793 cx
->promotion
.threshold
.count
= 10;
794 if (higher
->type
== ACPI_STATE_C3
)
795 cx
->promotion
.threshold
.bm
= bm_history
;
803 #endif /* !CONFIG_CPU_IDLE */
805 static int acpi_processor_get_power_info_fadt(struct acpi_processor
*pr
)
814 /* if info is obtained from pblk/fadt, type equals state */
815 pr
->power
.states
[ACPI_STATE_C2
].type
= ACPI_STATE_C2
;
816 pr
->power
.states
[ACPI_STATE_C3
].type
= ACPI_STATE_C3
;
818 #ifndef CONFIG_HOTPLUG_CPU
820 * Check for P_LVL2_UP flag before entering C2 and above on
823 if ((num_online_cpus() > 1) &&
824 !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
))
828 /* determine C2 and C3 address from pblk */
829 pr
->power
.states
[ACPI_STATE_C2
].address
= pr
->pblk
+ 4;
830 pr
->power
.states
[ACPI_STATE_C3
].address
= pr
->pblk
+ 5;
832 /* determine latencies from FADT */
833 pr
->power
.states
[ACPI_STATE_C2
].latency
= acpi_gbl_FADT
.C2latency
;
834 pr
->power
.states
[ACPI_STATE_C3
].latency
= acpi_gbl_FADT
.C3latency
;
836 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
837 "lvl2[0x%08x] lvl3[0x%08x]\n",
838 pr
->power
.states
[ACPI_STATE_C2
].address
,
839 pr
->power
.states
[ACPI_STATE_C3
].address
));
844 static int acpi_processor_get_power_info_default(struct acpi_processor
*pr
)
846 if (!pr
->power
.states
[ACPI_STATE_C1
].valid
) {
847 /* set the first C-State to C1 */
848 /* all processors need to support C1 */
849 pr
->power
.states
[ACPI_STATE_C1
].type
= ACPI_STATE_C1
;
850 pr
->power
.states
[ACPI_STATE_C1
].valid
= 1;
852 /* the C0 state only exists as a filler in our array */
853 pr
->power
.states
[ACPI_STATE_C0
].valid
= 1;
857 static int acpi_processor_get_power_info_cst(struct acpi_processor
*pr
)
859 acpi_status status
= 0;
863 struct acpi_buffer buffer
= { ACPI_ALLOCATE_BUFFER
, NULL
};
864 union acpi_object
*cst
;
872 status
= acpi_evaluate_object(pr
->handle
, "_CST", NULL
, &buffer
);
873 if (ACPI_FAILURE(status
)) {
874 ACPI_DEBUG_PRINT((ACPI_DB_INFO
, "No _CST, giving up\n"));
878 cst
= buffer
.pointer
;
880 /* There must be at least 2 elements */
881 if (!cst
|| (cst
->type
!= ACPI_TYPE_PACKAGE
) || cst
->package
.count
< 2) {
882 printk(KERN_ERR PREFIX
"not enough elements in _CST\n");
887 count
= cst
->package
.elements
[0].integer
.value
;
889 /* Validate number of power states. */
890 if (count
< 1 || count
!= cst
->package
.count
- 1) {
891 printk(KERN_ERR PREFIX
"count given by _CST is not valid\n");
896 /* Tell driver that at least _CST is supported. */
897 pr
->flags
.has_cst
= 1;
899 for (i
= 1; i
<= count
; i
++) {
900 union acpi_object
*element
;
901 union acpi_object
*obj
;
902 struct acpi_power_register
*reg
;
903 struct acpi_processor_cx cx
;
905 memset(&cx
, 0, sizeof(cx
));
907 element
= &(cst
->package
.elements
[i
]);
908 if (element
->type
!= ACPI_TYPE_PACKAGE
)
911 if (element
->package
.count
!= 4)
914 obj
= &(element
->package
.elements
[0]);
916 if (obj
->type
!= ACPI_TYPE_BUFFER
)
919 reg
= (struct acpi_power_register
*)obj
->buffer
.pointer
;
921 if (reg
->space_id
!= ACPI_ADR_SPACE_SYSTEM_IO
&&
922 (reg
->space_id
!= ACPI_ADR_SPACE_FIXED_HARDWARE
))
925 /* There should be an easy way to extract an integer... */
926 obj
= &(element
->package
.elements
[1]);
927 if (obj
->type
!= ACPI_TYPE_INTEGER
)
930 cx
.type
= obj
->integer
.value
;
932 * Some buggy BIOSes won't list C1 in _CST -
933 * Let acpi_processor_get_power_info_default() handle them later
935 if (i
== 1 && cx
.type
!= ACPI_STATE_C1
)
938 cx
.address
= reg
->address
;
939 cx
.index
= current_count
+ 1;
941 cx
.entry_method
= ACPI_CSTATE_SYSTEMIO
;
942 if (reg
->space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
) {
943 if (acpi_processor_ffh_cstate_probe
944 (pr
->id
, &cx
, reg
) == 0) {
945 cx
.entry_method
= ACPI_CSTATE_FFH
;
946 } else if (cx
.type
== ACPI_STATE_C1
) {
948 * C1 is a special case where FIXED_HARDWARE
949 * can be handled in non-MWAIT way as well.
950 * In that case, save this _CST entry info.
951 * Otherwise, ignore this info and continue.
953 cx
.entry_method
= ACPI_CSTATE_HALT
;
954 snprintf(cx
.desc
, ACPI_CX_DESC_LEN
, "ACPI HLT");
959 snprintf(cx
.desc
, ACPI_CX_DESC_LEN
, "ACPI IOPORT 0x%x",
964 obj
= &(element
->package
.elements
[2]);
965 if (obj
->type
!= ACPI_TYPE_INTEGER
)
968 cx
.latency
= obj
->integer
.value
;
970 obj
= &(element
->package
.elements
[3]);
971 if (obj
->type
!= ACPI_TYPE_INTEGER
)
974 cx
.power
= obj
->integer
.value
;
977 memcpy(&(pr
->power
.states
[current_count
]), &cx
, sizeof(cx
));
980 * We support total ACPI_PROCESSOR_MAX_POWER - 1
981 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
983 if (current_count
>= (ACPI_PROCESSOR_MAX_POWER
- 1)) {
985 "Limiting number of power states to max (%d)\n",
986 ACPI_PROCESSOR_MAX_POWER
);
988 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
993 ACPI_DEBUG_PRINT((ACPI_DB_INFO
, "Found %d power states\n",
996 /* Validate number of power states discovered */
997 if (current_count
< 2)
1001 kfree(buffer
.pointer
);
1006 static void acpi_processor_power_verify_c2(struct acpi_processor_cx
*cx
)
1013 * C2 latency must be less than or equal to 100
1016 else if (cx
->latency
> ACPI_PROCESSOR_MAX_C2_LATENCY
) {
1017 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1018 "latency too large [%d]\n", cx
->latency
));
1023 * Otherwise we've met all of our C2 requirements.
1024 * Normalize the C2 latency to expidite policy
1028 #ifndef CONFIG_CPU_IDLE
1029 cx
->latency_ticks
= US_TO_PM_TIMER_TICKS(cx
->latency
);
1031 cx
->latency_ticks
= cx
->latency
;
1037 static void acpi_processor_power_verify_c3(struct acpi_processor
*pr
,
1038 struct acpi_processor_cx
*cx
)
1040 static int bm_check_flag
;
1047 * C3 latency must be less than or equal to 1000
1050 else if (cx
->latency
> ACPI_PROCESSOR_MAX_C3_LATENCY
) {
1051 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1052 "latency too large [%d]\n", cx
->latency
));
1057 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1058 * DMA transfers are used by any ISA device to avoid livelock.
1059 * Note that we could disable Type-F DMA (as recommended by
1060 * the erratum), but this is known to disrupt certain ISA
1061 * devices thus we take the conservative approach.
1063 else if (errata
.piix4
.fdma
) {
1064 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1065 "C3 not supported on PIIX4 with Type-F DMA\n"));
1069 /* All the logic here assumes flags.bm_check is same across all CPUs */
1070 if (!bm_check_flag
) {
1071 /* Determine whether bm_check is needed based on CPU */
1072 acpi_processor_power_init_bm_check(&(pr
->flags
), pr
->id
);
1073 bm_check_flag
= pr
->flags
.bm_check
;
1075 pr
->flags
.bm_check
= bm_check_flag
;
1078 if (pr
->flags
.bm_check
) {
1079 if (!pr
->flags
.bm_control
) {
1080 if (pr
->flags
.has_cst
!= 1) {
1081 /* bus mastering control is necessary */
1082 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1083 "C3 support requires BM control\n"));
1086 /* Here we enter C3 without bus mastering */
1087 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1088 "C3 support without BM control\n"));
1093 * WBINVD should be set in fadt, for C3 state to be
1094 * supported on when bm_check is not required.
1096 if (!(acpi_gbl_FADT
.flags
& ACPI_FADT_WBINVD
)) {
1097 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1098 "Cache invalidation should work properly"
1099 " for C3 to be enabled on SMP systems\n"));
1102 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 0);
1106 * Otherwise we've met all of our C3 requirements.
1107 * Normalize the C3 latency to expidite policy. Enable
1108 * checking of bus mastering status (bm_check) so we can
1109 * use this in our C3 policy
1113 #ifndef CONFIG_CPU_IDLE
1114 cx
->latency_ticks
= US_TO_PM_TIMER_TICKS(cx
->latency
);
1116 cx
->latency_ticks
= cx
->latency
;
1122 static int acpi_processor_power_verify(struct acpi_processor
*pr
)
1125 unsigned int working
= 0;
1127 pr
->power
.timer_broadcast_on_state
= INT_MAX
;
1129 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
1130 struct acpi_processor_cx
*cx
= &pr
->power
.states
[i
];
1138 acpi_processor_power_verify_c2(cx
);
1140 acpi_timer_check_state(i
, pr
, cx
);
1144 acpi_processor_power_verify_c3(pr
, cx
);
1146 acpi_timer_check_state(i
, pr
, cx
);
1154 acpi_propagate_timer_broadcast(pr
);
1159 static int acpi_processor_get_power_info(struct acpi_processor
*pr
)
1165 /* NOTE: the idle thread may not be running while calling
1168 /* Zero initialize all the C-states info. */
1169 memset(pr
->power
.states
, 0, sizeof(pr
->power
.states
));
1171 result
= acpi_processor_get_power_info_cst(pr
);
1172 if (result
== -ENODEV
)
1173 result
= acpi_processor_get_power_info_fadt(pr
);
1178 acpi_processor_get_power_info_default(pr
);
1180 pr
->power
.count
= acpi_processor_power_verify(pr
);
1182 #ifndef CONFIG_CPU_IDLE
1184 * Set Default Policy
1185 * ------------------
1186 * Now that we know which states are supported, set the default
1187 * policy. Note that this policy can be changed dynamically
1188 * (e.g. encourage deeper sleeps to conserve battery life when
1191 result
= acpi_processor_set_power_policy(pr
);
1197 * if one state of type C2 or C3 is available, mark this
1198 * CPU as being "idle manageable"
1200 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
1201 if (pr
->power
.states
[i
].valid
) {
1202 pr
->power
.count
= i
;
1203 if (pr
->power
.states
[i
].type
>= ACPI_STATE_C2
)
1204 pr
->flags
.power
= 1;
1211 static int acpi_processor_power_seq_show(struct seq_file
*seq
, void *offset
)
1213 struct acpi_processor
*pr
= seq
->private;
1220 seq_printf(seq
, "active state: C%zd\n"
1222 "bus master activity: %08x\n"
1223 "maximum allowed latency: %d usec\n",
1224 pr
->power
.state
? pr
->power
.state
- pr
->power
.states
: 0,
1225 max_cstate
, (unsigned)pr
->power
.bm_activity
,
1226 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY
));
1228 seq_puts(seq
, "states:\n");
1230 for (i
= 1; i
<= pr
->power
.count
; i
++) {
1231 seq_printf(seq
, " %cC%d: ",
1232 (&pr
->power
.states
[i
] ==
1233 pr
->power
.state
? '*' : ' '), i
);
1235 if (!pr
->power
.states
[i
].valid
) {
1236 seq_puts(seq
, "<not supported>\n");
1240 switch (pr
->power
.states
[i
].type
) {
1242 seq_printf(seq
, "type[C1] ");
1245 seq_printf(seq
, "type[C2] ");
1248 seq_printf(seq
, "type[C3] ");
1251 seq_printf(seq
, "type[--] ");
1255 if (pr
->power
.states
[i
].promotion
.state
)
1256 seq_printf(seq
, "promotion[C%zd] ",
1257 (pr
->power
.states
[i
].promotion
.state
-
1260 seq_puts(seq
, "promotion[--] ");
1262 if (pr
->power
.states
[i
].demotion
.state
)
1263 seq_printf(seq
, "demotion[C%zd] ",
1264 (pr
->power
.states
[i
].demotion
.state
-
1267 seq_puts(seq
, "demotion[--] ");
1269 seq_printf(seq
, "latency[%03d] usage[%08d] duration[%020llu]\n",
1270 pr
->power
.states
[i
].latency
,
1271 pr
->power
.states
[i
].usage
,
1272 (unsigned long long)pr
->power
.states
[i
].time
);
1279 static int acpi_processor_power_open_fs(struct inode
*inode
, struct file
*file
)
1281 return single_open(file
, acpi_processor_power_seq_show
,
1285 static const struct file_operations acpi_processor_power_fops
= {
1286 .open
= acpi_processor_power_open_fs
,
1288 .llseek
= seq_lseek
,
1289 .release
= single_release
,
1292 #ifndef CONFIG_CPU_IDLE
1294 int acpi_processor_cst_has_changed(struct acpi_processor
*pr
)
1306 if (!pr
->flags
.power_setup_done
)
1309 /* Fall back to the default idle loop */
1310 pm_idle
= pm_idle_save
;
1311 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1313 pr
->flags
.power
= 0;
1314 result
= acpi_processor_get_power_info(pr
);
1315 if ((pr
->flags
.power
== 1) && (pr
->flags
.power_setup_done
))
1316 pm_idle
= acpi_processor_idle
;
1322 static void smp_callback(void *v
)
1324 /* we already woke the CPU up, nothing more to do */
1328 * This function gets called when a part of the kernel has a new latency
1329 * requirement. This means we need to get all processors out of their C-state,
1330 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1331 * wakes them all right up.
1333 static int acpi_processor_latency_notify(struct notifier_block
*b
,
1334 unsigned long l
, void *v
)
1336 smp_call_function(smp_callback
, NULL
, 0, 1);
1340 static struct notifier_block acpi_processor_latency_notifier
= {
1341 .notifier_call
= acpi_processor_latency_notify
,
1346 #else /* CONFIG_CPU_IDLE */
1349 * acpi_idle_bm_check - checks if bus master activity was detected
1351 static int acpi_idle_bm_check(void)
1355 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS
, &bm_status
);
1357 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS
, 1);
1359 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1360 * the true state of bus mastering activity; forcing us to
1361 * manually check the BMIDEA bit of each IDE channel.
1363 else if (errata
.piix4
.bmisx
) {
1364 if ((inb_p(errata
.piix4
.bmisx
+ 0x02) & 0x01)
1365 || (inb_p(errata
.piix4
.bmisx
+ 0x0A) & 0x01))
1372 * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1373 * @pr: the processor
1374 * @target: the new target state
1376 static inline void acpi_idle_update_bm_rld(struct acpi_processor
*pr
,
1377 struct acpi_processor_cx
*target
)
1379 if (pr
->flags
.bm_rld_set
&& target
->type
!= ACPI_STATE_C3
) {
1380 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 0);
1381 pr
->flags
.bm_rld_set
= 0;
1384 if (!pr
->flags
.bm_rld_set
&& target
->type
== ACPI_STATE_C3
) {
1385 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 1);
1386 pr
->flags
.bm_rld_set
= 1;
1391 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1394 * Caller disables interrupt before call and enables interrupt after return.
1396 static inline void acpi_idle_do_entry(struct acpi_processor_cx
*cx
)
1398 if (cx
->entry_method
== ACPI_CSTATE_FFH
) {
1399 /* Call into architectural FFH based C-state */
1400 acpi_processor_ffh_cstate_enter(cx
);
1401 } else if (cx
->entry_method
== ACPI_CSTATE_HALT
) {
1405 /* IO port based C-state */
1407 /* Dummy wait op - must do something useless after P_LVL2 read
1408 because chipsets cannot guarantee that STPCLK# signal
1409 gets asserted in time to freeze execution properly. */
1410 unused
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1415 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1416 * @dev: the target CPU
1417 * @state: the state data
1419 * This is equivalent to the HALT instruction.
1421 static int acpi_idle_enter_c1(struct cpuidle_device
*dev
,
1422 struct cpuidle_state
*state
)
1425 struct acpi_processor
*pr
;
1426 struct acpi_processor_cx
*cx
= cpuidle_get_statedata(state
);
1428 pr
= processors
[smp_processor_id()];
1433 local_irq_disable();
1435 /* Do not access any ACPI IO ports in suspend path */
1436 if (acpi_idle_suspend
) {
1442 if (pr
->flags
.bm_check
)
1443 acpi_idle_update_bm_rld(pr
, cx
);
1445 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1446 acpi_idle_do_entry(cx
);
1447 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1452 return ticks_elapsed_in_us(t1
, t2
);
1456 * acpi_idle_enter_simple - enters an ACPI state without BM handling
1457 * @dev: the target CPU
1458 * @state: the state data
1460 static int acpi_idle_enter_simple(struct cpuidle_device
*dev
,
1461 struct cpuidle_state
*state
)
1463 struct acpi_processor
*pr
;
1464 struct acpi_processor_cx
*cx
= cpuidle_get_statedata(state
);
1466 int sleep_ticks
= 0;
1468 pr
= processors
[smp_processor_id()];
1473 if (acpi_idle_suspend
)
1474 return(acpi_idle_enter_c1(dev
, state
));
1476 local_irq_disable();
1477 current_thread_info()->status
&= ~TS_POLLING
;
1479 * TS_POLLING-cleared state must be visible before we test
1484 if (unlikely(need_resched())) {
1485 current_thread_info()->status
|= TS_POLLING
;
1490 acpi_unlazy_tlb(smp_processor_id());
1492 * Must be done before busmaster disable as we might need to
1495 acpi_state_timer_broadcast(pr
, cx
, 1);
1497 if (pr
->flags
.bm_check
)
1498 acpi_idle_update_bm_rld(pr
, cx
);
1500 if (cx
->type
== ACPI_STATE_C3
)
1501 ACPI_FLUSH_CPU_CACHE();
1503 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1504 /* Tell the scheduler that we are going deep-idle: */
1505 sched_clock_idle_sleep_event();
1506 acpi_idle_do_entry(cx
);
1507 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1509 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1510 /* TSC could halt in idle, so notify users */
1511 if (tsc_halts_in_c(cx
->type
))
1512 mark_tsc_unstable("TSC halts in idle");;
1514 sleep_ticks
= ticks_elapsed(t1
, t2
);
1516 /* Tell the scheduler how much we idled: */
1517 sched_clock_idle_wakeup_event(sleep_ticks
*PM_TIMER_TICK_NS
);
1520 current_thread_info()->status
|= TS_POLLING
;
1524 acpi_state_timer_broadcast(pr
, cx
, 0);
1525 cx
->time
+= sleep_ticks
;
1526 return ticks_elapsed_in_us(t1
, t2
);
1529 static int c3_cpu_count
;
1530 static DEFINE_SPINLOCK(c3_lock
);
1533 * acpi_idle_enter_bm - enters C3 with proper BM handling
1534 * @dev: the target CPU
1535 * @state: the state data
1537 * If BM is detected, the deepest non-C3 idle state is entered instead.
1539 static int acpi_idle_enter_bm(struct cpuidle_device
*dev
,
1540 struct cpuidle_state
*state
)
1542 struct acpi_processor
*pr
;
1543 struct acpi_processor_cx
*cx
= cpuidle_get_statedata(state
);
1545 int sleep_ticks
= 0;
1547 pr
= processors
[smp_processor_id()];
1552 if (acpi_idle_suspend
)
1553 return(acpi_idle_enter_c1(dev
, state
));
1555 if (acpi_idle_bm_check()) {
1556 if (dev
->safe_state
) {
1557 return dev
->safe_state
->enter(dev
, dev
->safe_state
);
1559 local_irq_disable();
1566 local_irq_disable();
1567 current_thread_info()->status
&= ~TS_POLLING
;
1569 * TS_POLLING-cleared state must be visible before we test
1574 if (unlikely(need_resched())) {
1575 current_thread_info()->status
|= TS_POLLING
;
1580 /* Tell the scheduler that we are going deep-idle: */
1581 sched_clock_idle_sleep_event();
1583 * Must be done before busmaster disable as we might need to
1586 acpi_state_timer_broadcast(pr
, cx
, 1);
1588 acpi_idle_update_bm_rld(pr
, cx
);
1591 * disable bus master
1592 * bm_check implies we need ARB_DIS
1593 * !bm_check implies we need cache flush
1594 * bm_control implies whether we can do ARB_DIS
1596 * That leaves a case where bm_check is set and bm_control is
1597 * not set. In that case we cannot do much, we enter C3
1598 * without doing anything.
1600 if (pr
->flags
.bm_check
&& pr
->flags
.bm_control
) {
1601 spin_lock(&c3_lock
);
1603 /* Disable bus master arbitration when all CPUs are in C3 */
1604 if (c3_cpu_count
== num_online_cpus())
1605 acpi_set_register(ACPI_BITREG_ARB_DISABLE
, 1);
1606 spin_unlock(&c3_lock
);
1607 } else if (!pr
->flags
.bm_check
) {
1608 ACPI_FLUSH_CPU_CACHE();
1611 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1612 acpi_idle_do_entry(cx
);
1613 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1615 /* Re-enable bus master arbitration */
1616 if (pr
->flags
.bm_check
&& pr
->flags
.bm_control
) {
1617 spin_lock(&c3_lock
);
1618 acpi_set_register(ACPI_BITREG_ARB_DISABLE
, 0);
1620 spin_unlock(&c3_lock
);
1623 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1624 /* TSC could halt in idle, so notify users */
1625 if (tsc_halts_in_c(ACPI_STATE_C3
))
1626 mark_tsc_unstable("TSC halts in idle");
1628 sleep_ticks
= ticks_elapsed(t1
, t2
);
1629 /* Tell the scheduler how much we idled: */
1630 sched_clock_idle_wakeup_event(sleep_ticks
*PM_TIMER_TICK_NS
);
1633 current_thread_info()->status
|= TS_POLLING
;
1637 acpi_state_timer_broadcast(pr
, cx
, 0);
1638 cx
->time
+= sleep_ticks
;
1639 return ticks_elapsed_in_us(t1
, t2
);
1642 struct cpuidle_driver acpi_idle_driver
= {
1643 .name
= "acpi_idle",
1644 .owner
= THIS_MODULE
,
1648 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1649 * @pr: the ACPI processor
1651 static int acpi_processor_setup_cpuidle(struct acpi_processor
*pr
)
1653 int i
, count
= CPUIDLE_DRIVER_STATE_START
;
1654 struct acpi_processor_cx
*cx
;
1655 struct cpuidle_state
*state
;
1656 struct cpuidle_device
*dev
= &pr
->power
.dev
;
1658 if (!pr
->flags
.power_setup_done
)
1661 if (pr
->flags
.power
== 0) {
1665 for (i
= 0; i
< CPUIDLE_STATE_MAX
; i
++) {
1666 dev
->states
[i
].name
[0] = '\0';
1667 dev
->states
[i
].desc
[0] = '\0';
1670 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
&& i
<= max_cstate
; i
++) {
1671 cx
= &pr
->power
.states
[i
];
1672 state
= &dev
->states
[count
];
1677 #ifdef CONFIG_HOTPLUG_CPU
1678 if ((cx
->type
!= ACPI_STATE_C1
) && (num_online_cpus() > 1) &&
1679 !pr
->flags
.has_cst
&&
1680 !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
))
1683 cpuidle_set_statedata(state
, cx
);
1685 snprintf(state
->name
, CPUIDLE_NAME_LEN
, "C%d", i
);
1686 strncpy(state
->desc
, cx
->desc
, CPUIDLE_DESC_LEN
);
1687 state
->exit_latency
= cx
->latency
;
1688 state
->target_residency
= cx
->latency
* latency_factor
;
1689 state
->power_usage
= cx
->power
;
1694 state
->flags
|= CPUIDLE_FLAG_SHALLOW
;
1695 state
->flags
|= CPUIDLE_FLAG_TIME_VALID
;
1696 state
->enter
= acpi_idle_enter_c1
;
1697 dev
->safe_state
= state
;
1701 state
->flags
|= CPUIDLE_FLAG_BALANCED
;
1702 state
->flags
|= CPUIDLE_FLAG_TIME_VALID
;
1703 state
->enter
= acpi_idle_enter_simple
;
1704 dev
->safe_state
= state
;
1708 state
->flags
|= CPUIDLE_FLAG_DEEP
;
1709 state
->flags
|= CPUIDLE_FLAG_TIME_VALID
;
1710 state
->flags
|= CPUIDLE_FLAG_CHECK_BM
;
1711 state
->enter
= pr
->flags
.bm_check
?
1712 acpi_idle_enter_bm
:
1713 acpi_idle_enter_simple
;
1718 if (count
== CPUIDLE_STATE_MAX
)
1722 dev
->state_count
= count
;
1730 int acpi_processor_cst_has_changed(struct acpi_processor
*pr
)
1741 if (!pr
->flags
.power_setup_done
)
1744 cpuidle_pause_and_lock();
1745 cpuidle_disable_device(&pr
->power
.dev
);
1746 acpi_processor_get_power_info(pr
);
1747 acpi_processor_setup_cpuidle(pr
);
1748 ret
= cpuidle_enable_device(&pr
->power
.dev
);
1749 cpuidle_resume_and_unlock();
1754 #endif /* CONFIG_CPU_IDLE */
1756 int __cpuinit
acpi_processor_power_init(struct acpi_processor
*pr
,
1757 struct acpi_device
*device
)
1759 acpi_status status
= 0;
1760 static int first_run
;
1761 struct proc_dir_entry
*entry
= NULL
;
1766 dmi_check_system(processor_power_dmi_table
);
1767 max_cstate
= acpi_processor_cstate_check(max_cstate
);
1768 if (max_cstate
< ACPI_C_STATES_MAX
)
1770 "ACPI: processor limited to max C-state %d\n",
1773 #if !defined(CONFIG_CPU_IDLE) && defined(CONFIG_SMP)
1774 pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY
,
1775 &acpi_processor_latency_notifier
);
1782 if (acpi_gbl_FADT
.cst_control
&& !nocst
) {
1784 acpi_os_write_port(acpi_gbl_FADT
.smi_command
, acpi_gbl_FADT
.cst_control
, 8);
1785 if (ACPI_FAILURE(status
)) {
1786 ACPI_EXCEPTION((AE_INFO
, status
,
1787 "Notifying BIOS of _CST ability failed"));
1791 acpi_processor_get_power_info(pr
);
1792 pr
->flags
.power_setup_done
= 1;
1795 * Install the idle handler if processor power management is supported.
1796 * Note that we use previously set idle handler will be used on
1797 * platforms that only support C1.
1799 if ((pr
->flags
.power
) && (!boot_option_idle_override
)) {
1800 #ifdef CONFIG_CPU_IDLE
1801 acpi_processor_setup_cpuidle(pr
);
1802 pr
->power
.dev
.cpu
= pr
->id
;
1803 if (cpuidle_register_device(&pr
->power
.dev
))
1807 printk(KERN_INFO PREFIX
"CPU%d (power states:", pr
->id
);
1808 for (i
= 1; i
<= pr
->power
.count
; i
++)
1809 if (pr
->power
.states
[i
].valid
)
1810 printk(" C%d[C%d]", i
,
1811 pr
->power
.states
[i
].type
);
1814 #ifndef CONFIG_CPU_IDLE
1816 pm_idle_save
= pm_idle
;
1817 pm_idle
= acpi_processor_idle
;
1823 entry
= create_proc_entry(ACPI_PROCESSOR_FILE_POWER
,
1824 S_IRUGO
, acpi_device_dir(device
));
1828 entry
->proc_fops
= &acpi_processor_power_fops
;
1829 entry
->data
= acpi_driver_data(device
);
1830 entry
->owner
= THIS_MODULE
;
1836 int acpi_processor_power_exit(struct acpi_processor
*pr
,
1837 struct acpi_device
*device
)
1839 #ifdef CONFIG_CPU_IDLE
1840 if ((pr
->flags
.power
) && (!boot_option_idle_override
))
1841 cpuidle_unregister_device(&pr
->power
.dev
);
1843 pr
->flags
.power_setup_done
= 0;
1845 if (acpi_device_dir(device
))
1846 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER
,
1847 acpi_device_dir(device
));
1849 #ifndef CONFIG_CPU_IDLE
1851 /* Unregister the idle handler when processor #0 is removed. */
1853 pm_idle
= pm_idle_save
;
1856 * We are about to unload the current idle thread pm callback
1857 * (pm_idle), Wait for all processors to update cached/local
1858 * copies of pm_idle before proceeding.
1862 pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY
,
1863 &acpi_processor_latency_notifier
);