2 * Real Time Clock interface for Linux
4 * Copyright (C) 1996 Paul Gortmaker
6 * This driver allows use of the real time clock (built into
7 * nearly all computers) from user space. It exports the /dev/rtc
8 * interface supporting various ioctl() and also the
9 * /proc/driver/rtc pseudo-file for status information.
11 * The ioctls can be used to set the interrupt behaviour and
12 * generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 * interface can be used to make use of these timer interrupts,
14 * be they interval or alarm based.
16 * The /dev/rtc interface will block on reads until an interrupt
17 * has been received. If a RTC interrupt has already happened,
18 * it will output an unsigned long and then block. The output value
19 * contains the interrupt status in the low byte and the number of
20 * interrupts since the last read in the remaining high bytes. The
21 * /dev/rtc interface can also be used with the select(2) call.
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
28 * Based on other minimal char device drivers, like Alan's
29 * watchdog, Ted's random, etc. etc.
31 * 1.07 Paul Gortmaker.
32 * 1.08 Miquel van Smoorenburg: disallow certain things on the
33 * DEC Alpha as the CMOS clock is also used for other things.
34 * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
35 * 1.09a Pete Zaitcev: Sun SPARC
36 * 1.09b Jeff Garzik: Modularize, init cleanup
37 * 1.09c Jeff Garzik: SMP cleanup
38 * 1.10 Paul Barton-Davis: add support for async I/O
39 * 1.10a Andrea Arcangeli: Alpha updates
40 * 1.10b Andrew Morton: SMP lock fix
41 * 1.10c Cesar Barros: SMP locking fixes and cleanup
42 * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
43 * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
44 * 1.11 Takashi Iwai: Kernel access functions
45 * rtc_register/rtc_unregister/rtc_control
46 * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 * CONFIG_HPET_EMULATE_RTC
49 * 1.12a Maciej W. Rozycki: Handle memory-mapped chips properly.
50 * 1.12ac Alan Cox: Allow read access to the day of week register
53 #define RTC_VERSION "1.12ac"
56 * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
57 * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
58 * design of the RTC, we don't want two different things trying to
59 * get to it at once. (e.g. the periodic 11 min sync from time.c vs.
63 #include <linux/interrupt.h>
64 #include <linux/module.h>
65 #include <linux/kernel.h>
66 #include <linux/types.h>
67 #include <linux/miscdevice.h>
68 #include <linux/ioport.h>
69 #include <linux/fcntl.h>
70 #include <linux/mc146818rtc.h>
71 #include <linux/init.h>
72 #include <linux/poll.h>
73 #include <linux/proc_fs.h>
74 #include <linux/seq_file.h>
75 #include <linux/spinlock.h>
76 #include <linux/sysctl.h>
77 #include <linux/wait.h>
78 #include <linux/bcd.h>
79 #include <linux/delay.h>
81 #include <asm/current.h>
82 #include <asm/uaccess.h>
83 #include <asm/system.h>
90 #include <linux/pci.h>
93 static unsigned long rtc_port
;
94 static int rtc_irq
= PCI_IRQ_NONE
;
97 #ifdef CONFIG_HPET_RTC_IRQ
102 static int rtc_has_irq
= 1;
105 #ifndef CONFIG_HPET_EMULATE_RTC
106 #define is_hpet_enabled() 0
107 #define hpet_set_alarm_time(hrs, min, sec) 0
108 #define hpet_set_periodic_freq(arg) 0
109 #define hpet_mask_rtc_irq_bit(arg) 0
110 #define hpet_set_rtc_irq_bit(arg) 0
111 #define hpet_rtc_timer_init() do { } while (0)
112 #define hpet_rtc_dropped_irq() 0
113 #define hpet_register_irq_handler(h) ({ 0; })
114 #define hpet_unregister_irq_handler(h) ({ 0; })
116 static irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
)
122 extern irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
);
126 * We sponge a minor off of the misc major. No need slurping
127 * up another valuable major dev number for this. If you add
128 * an ioctl, make sure you don't conflict with SPARC's RTC
132 static struct fasync_struct
*rtc_async_queue
;
134 static DECLARE_WAIT_QUEUE_HEAD(rtc_wait
);
137 static void rtc_dropped_irq(unsigned long data
);
139 static DEFINE_TIMER(rtc_irq_timer
, rtc_dropped_irq
, 0, 0);
142 static ssize_t
rtc_read(struct file
*file
, char __user
*buf
,
143 size_t count
, loff_t
*ppos
);
145 static int rtc_ioctl(struct inode
*inode
, struct file
*file
,
146 unsigned int cmd
, unsigned long arg
);
149 static unsigned int rtc_poll(struct file
*file
, poll_table
*wait
);
152 static void get_rtc_alm_time(struct rtc_time
*alm_tm
);
154 static void set_rtc_irq_bit_locked(unsigned char bit
);
155 static void mask_rtc_irq_bit_locked(unsigned char bit
);
157 static inline void set_rtc_irq_bit(unsigned char bit
)
159 spin_lock_irq(&rtc_lock
);
160 set_rtc_irq_bit_locked(bit
);
161 spin_unlock_irq(&rtc_lock
);
164 static void mask_rtc_irq_bit(unsigned char bit
)
166 spin_lock_irq(&rtc_lock
);
167 mask_rtc_irq_bit_locked(bit
);
168 spin_unlock_irq(&rtc_lock
);
172 #ifdef CONFIG_PROC_FS
173 static int rtc_proc_open(struct inode
*inode
, struct file
*file
);
177 * Bits in rtc_status. (6 bits of room for future expansion)
180 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
181 #define RTC_TIMER_ON 0x02 /* missed irq timer active */
184 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
185 * protected by the big kernel lock. However, ioctl can still disable the timer
186 * in rtc_status and then with del_timer after the interrupt has read
187 * rtc_status but before mod_timer is called, which would then reenable the
188 * timer (but you would need to have an awful timing before you'd trip on it)
190 static unsigned long rtc_status
; /* bitmapped status byte. */
191 static unsigned long rtc_freq
; /* Current periodic IRQ rate */
192 static unsigned long rtc_irq_data
; /* our output to the world */
193 static unsigned long rtc_max_user_freq
= 64; /* > this, need CAP_SYS_RESOURCE */
197 * rtc_task_lock nests inside rtc_lock.
199 static DEFINE_SPINLOCK(rtc_task_lock
);
200 static rtc_task_t
*rtc_callback
;
204 * If this driver ever becomes modularised, it will be really nice
205 * to make the epoch retain its value across module reload...
208 static unsigned long epoch
= 1900; /* year corresponding to 0x00 */
210 static const unsigned char days_in_mo
[] =
211 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
214 * Returns true if a clock update is in progress
216 static inline unsigned char rtc_is_updating(void)
221 spin_lock_irqsave(&rtc_lock
, flags
);
222 uip
= (CMOS_READ(RTC_FREQ_SELECT
) & RTC_UIP
);
223 spin_unlock_irqrestore(&rtc_lock
, flags
);
229 * A very tiny interrupt handler. It runs with IRQF_DISABLED set,
230 * but there is possibility of conflicting with the set_rtc_mmss()
231 * call (the rtc irq and the timer irq can easily run at the same
232 * time in two different CPUs). So we need to serialize
233 * accesses to the chip with the rtc_lock spinlock that each
234 * architecture should implement in the timer code.
235 * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
238 irqreturn_t
rtc_interrupt(int irq
, void *dev_id
)
241 * Can be an alarm interrupt, update complete interrupt,
242 * or a periodic interrupt. We store the status in the
243 * low byte and the number of interrupts received since
244 * the last read in the remainder of rtc_irq_data.
247 spin_lock(&rtc_lock
);
248 rtc_irq_data
+= 0x100;
249 rtc_irq_data
&= ~0xff;
250 if (is_hpet_enabled()) {
252 * In this case it is HPET RTC interrupt handler
253 * calling us, with the interrupt information
254 * passed as arg1, instead of irq.
256 rtc_irq_data
|= (unsigned long)irq
& 0xF0;
258 rtc_irq_data
|= (CMOS_READ(RTC_INTR_FLAGS
) & 0xF0);
261 if (rtc_status
& RTC_TIMER_ON
)
262 mod_timer(&rtc_irq_timer
, jiffies
+ HZ
/rtc_freq
+ 2*HZ
/100);
264 spin_unlock(&rtc_lock
);
266 /* Now do the rest of the actions */
267 spin_lock(&rtc_task_lock
);
269 rtc_callback
->func(rtc_callback
->private_data
);
270 spin_unlock(&rtc_task_lock
);
271 wake_up_interruptible(&rtc_wait
);
273 kill_fasync(&rtc_async_queue
, SIGIO
, POLL_IN
);
280 * sysctl-tuning infrastructure.
282 static ctl_table rtc_table
[] = {
284 .ctl_name
= CTL_UNNUMBERED
,
285 .procname
= "max-user-freq",
286 .data
= &rtc_max_user_freq
,
287 .maxlen
= sizeof(int),
289 .proc_handler
= &proc_dointvec
,
294 static ctl_table rtc_root
[] = {
296 .ctl_name
= CTL_UNNUMBERED
,
304 static ctl_table dev_root
[] = {
314 static struct ctl_table_header
*sysctl_header
;
316 static int __init
init_sysctl(void)
318 sysctl_header
= register_sysctl_table(dev_root
);
322 static void __exit
cleanup_sysctl(void)
324 unregister_sysctl_table(sysctl_header
);
328 * Now all the various file operations that we export.
331 static ssize_t
rtc_read(struct file
*file
, char __user
*buf
,
332 size_t count
, loff_t
*ppos
)
337 DECLARE_WAITQUEUE(wait
, current
);
341 if (rtc_has_irq
== 0)
345 * Historically this function used to assume that sizeof(unsigned long)
346 * is the same in userspace and kernelspace. This lead to problems
347 * for configurations with multiple ABIs such a the MIPS o32 and 64
348 * ABIs supported on the same kernel. So now we support read of both
349 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
352 if (count
!= sizeof(unsigned int) && count
!= sizeof(unsigned long))
355 add_wait_queue(&rtc_wait
, &wait
);
358 /* First make it right. Then make it fast. Putting this whole
359 * block within the parentheses of a while would be too
360 * confusing. And no, xchg() is not the answer. */
362 __set_current_state(TASK_INTERRUPTIBLE
);
364 spin_lock_irq(&rtc_lock
);
367 spin_unlock_irq(&rtc_lock
);
372 if (file
->f_flags
& O_NONBLOCK
) {
376 if (signal_pending(current
)) {
377 retval
= -ERESTARTSYS
;
383 if (count
== sizeof(unsigned int)) {
384 retval
= put_user(data
,
385 (unsigned int __user
*)buf
) ?: sizeof(int);
387 retval
= put_user(data
,
388 (unsigned long __user
*)buf
) ?: sizeof(long);
393 __set_current_state(TASK_RUNNING
);
394 remove_wait_queue(&rtc_wait
, &wait
);
400 static int rtc_do_ioctl(unsigned int cmd
, unsigned long arg
, int kernel
)
402 struct rtc_time wtime
;
405 if (rtc_has_irq
== 0) {
422 case RTC_AIE_OFF
: /* Mask alarm int. enab. bit */
424 mask_rtc_irq_bit(RTC_AIE
);
427 case RTC_AIE_ON
: /* Allow alarm interrupts. */
429 set_rtc_irq_bit(RTC_AIE
);
432 case RTC_PIE_OFF
: /* Mask periodic int. enab. bit */
434 /* can be called from isr via rtc_control() */
437 spin_lock_irqsave(&rtc_lock
, flags
);
438 mask_rtc_irq_bit_locked(RTC_PIE
);
439 if (rtc_status
& RTC_TIMER_ON
) {
440 rtc_status
&= ~RTC_TIMER_ON
;
441 del_timer(&rtc_irq_timer
);
443 spin_unlock_irqrestore(&rtc_lock
, flags
);
447 case RTC_PIE_ON
: /* Allow periodic ints */
449 /* can be called from isr via rtc_control() */
453 * We don't really want Joe User enabling more
454 * than 64Hz of interrupts on a multi-user machine.
456 if (!kernel
&& (rtc_freq
> rtc_max_user_freq
) &&
457 (!capable(CAP_SYS_RESOURCE
)))
460 spin_lock_irqsave(&rtc_lock
, flags
);
461 if (!(rtc_status
& RTC_TIMER_ON
)) {
462 mod_timer(&rtc_irq_timer
, jiffies
+ HZ
/rtc_freq
+
464 rtc_status
|= RTC_TIMER_ON
;
466 set_rtc_irq_bit_locked(RTC_PIE
);
467 spin_unlock_irqrestore(&rtc_lock
, flags
);
471 case RTC_UIE_OFF
: /* Mask ints from RTC updates. */
473 mask_rtc_irq_bit(RTC_UIE
);
476 case RTC_UIE_ON
: /* Allow ints for RTC updates. */
478 set_rtc_irq_bit(RTC_UIE
);
482 case RTC_ALM_READ
: /* Read the present alarm time */
485 * This returns a struct rtc_time. Reading >= 0xc0
486 * means "don't care" or "match all". Only the tm_hour,
487 * tm_min, and tm_sec values are filled in.
489 memset(&wtime
, 0, sizeof(struct rtc_time
));
490 get_rtc_alm_time(&wtime
);
493 case RTC_ALM_SET
: /* Store a time into the alarm */
496 * This expects a struct rtc_time. Writing 0xff means
497 * "don't care" or "match all". Only the tm_hour,
498 * tm_min and tm_sec are used.
500 unsigned char hrs
, min
, sec
;
501 struct rtc_time alm_tm
;
503 if (copy_from_user(&alm_tm
, (struct rtc_time __user
*)arg
,
504 sizeof(struct rtc_time
)))
507 hrs
= alm_tm
.tm_hour
;
511 spin_lock_irq(&rtc_lock
);
512 if (hpet_set_alarm_time(hrs
, min
, sec
)) {
514 * Fallthru and set alarm time in CMOS too,
515 * so that we will get proper value in RTC_ALM_READ
518 if (!(CMOS_READ(RTC_CONTROL
) & RTC_DM_BINARY
) ||
535 CMOS_WRITE(hrs
, RTC_HOURS_ALARM
);
536 CMOS_WRITE(min
, RTC_MINUTES_ALARM
);
537 CMOS_WRITE(sec
, RTC_SECONDS_ALARM
);
538 spin_unlock_irq(&rtc_lock
);
542 case RTC_RD_TIME
: /* Read the time/date from RTC */
544 memset(&wtime
, 0, sizeof(struct rtc_time
));
545 rtc_get_rtc_time(&wtime
);
548 case RTC_SET_TIME
: /* Set the RTC */
550 struct rtc_time rtc_tm
;
551 unsigned char mon
, day
, hrs
, min
, sec
, leap_yr
;
552 unsigned char save_control
, save_freq_select
;
554 #ifdef CONFIG_MACH_DECSTATION
555 unsigned int real_yrs
;
558 if (!capable(CAP_SYS_TIME
))
561 if (copy_from_user(&rtc_tm
, (struct rtc_time __user
*)arg
,
562 sizeof(struct rtc_time
)))
565 yrs
= rtc_tm
.tm_year
+ 1900;
566 mon
= rtc_tm
.tm_mon
+ 1; /* tm_mon starts at zero */
567 day
= rtc_tm
.tm_mday
;
568 hrs
= rtc_tm
.tm_hour
;
575 leap_yr
= ((!(yrs
% 4) && (yrs
% 100)) || !(yrs
% 400));
577 if ((mon
> 12) || (day
== 0))
580 if (day
> (days_in_mo
[mon
] + ((mon
== 2) && leap_yr
)))
583 if ((hrs
>= 24) || (min
>= 60) || (sec
>= 60))
587 if (yrs
> 255) /* They are unsigned */
590 spin_lock_irq(&rtc_lock
);
591 #ifdef CONFIG_MACH_DECSTATION
596 * We want to keep the year set to 73 until March
597 * for non-leap years, so that Feb, 29th is handled
600 if (!leap_yr
&& mon
< 3) {
605 /* These limits and adjustments are independent of
606 * whether the chip is in binary mode or not.
609 spin_unlock_irq(&rtc_lock
);
615 if (!(CMOS_READ(RTC_CONTROL
) & RTC_DM_BINARY
)
625 save_control
= CMOS_READ(RTC_CONTROL
);
626 CMOS_WRITE((save_control
|RTC_SET
), RTC_CONTROL
);
627 save_freq_select
= CMOS_READ(RTC_FREQ_SELECT
);
628 CMOS_WRITE((save_freq_select
|RTC_DIV_RESET2
), RTC_FREQ_SELECT
);
630 #ifdef CONFIG_MACH_DECSTATION
631 CMOS_WRITE(real_yrs
, RTC_DEC_YEAR
);
633 CMOS_WRITE(yrs
, RTC_YEAR
);
634 CMOS_WRITE(mon
, RTC_MONTH
);
635 CMOS_WRITE(day
, RTC_DAY_OF_MONTH
);
636 CMOS_WRITE(hrs
, RTC_HOURS
);
637 CMOS_WRITE(min
, RTC_MINUTES
);
638 CMOS_WRITE(sec
, RTC_SECONDS
);
640 CMOS_WRITE(save_control
, RTC_CONTROL
);
641 CMOS_WRITE(save_freq_select
, RTC_FREQ_SELECT
);
643 spin_unlock_irq(&rtc_lock
);
647 case RTC_IRQP_READ
: /* Read the periodic IRQ rate. */
649 return put_user(rtc_freq
, (unsigned long __user
*)arg
);
651 case RTC_IRQP_SET
: /* Set periodic IRQ rate. */
655 /* can be called from isr via rtc_control() */
659 * The max we can do is 8192Hz.
661 if ((arg
< 2) || (arg
> 8192))
664 * We don't really want Joe User generating more
665 * than 64Hz of interrupts on a multi-user machine.
667 if (!kernel
&& (arg
> rtc_max_user_freq
) &&
668 !capable(CAP_SYS_RESOURCE
))
671 while (arg
> (1<<tmp
))
675 * Check that the input was really a power of 2.
680 spin_lock_irqsave(&rtc_lock
, flags
);
681 if (hpet_set_periodic_freq(arg
)) {
682 spin_unlock_irqrestore(&rtc_lock
, flags
);
687 val
= CMOS_READ(RTC_FREQ_SELECT
) & 0xf0;
689 CMOS_WRITE(val
, RTC_FREQ_SELECT
);
690 spin_unlock_irqrestore(&rtc_lock
, flags
);
694 case RTC_EPOCH_READ
: /* Read the epoch. */
696 return put_user(epoch
, (unsigned long __user
*)arg
);
698 case RTC_EPOCH_SET
: /* Set the epoch. */
701 * There were no RTC clocks before 1900.
706 if (!capable(CAP_SYS_TIME
))
715 return copy_to_user((void __user
*)arg
,
716 &wtime
, sizeof wtime
) ? -EFAULT
: 0;
719 static int rtc_ioctl(struct inode
*inode
, struct file
*file
, unsigned int cmd
,
722 return rtc_do_ioctl(cmd
, arg
, 0);
726 * We enforce only one user at a time here with the open/close.
727 * Also clear the previous interrupt data on an open, and clean
728 * up things on a close.
731 /* We use rtc_lock to protect against concurrent opens. So the BKL is not
732 * needed here. Or anywhere else in this driver. */
733 static int rtc_open(struct inode
*inode
, struct file
*file
)
735 spin_lock_irq(&rtc_lock
);
737 if (rtc_status
& RTC_IS_OPEN
)
740 rtc_status
|= RTC_IS_OPEN
;
743 spin_unlock_irq(&rtc_lock
);
747 spin_unlock_irq(&rtc_lock
);
751 static int rtc_fasync(int fd
, struct file
*filp
, int on
)
753 return fasync_helper(fd
, filp
, on
, &rtc_async_queue
);
756 static int rtc_release(struct inode
*inode
, struct file
*file
)
761 if (rtc_has_irq
== 0)
765 * Turn off all interrupts once the device is no longer
766 * in use, and clear the data.
769 spin_lock_irq(&rtc_lock
);
770 if (!hpet_mask_rtc_irq_bit(RTC_PIE
| RTC_AIE
| RTC_UIE
)) {
771 tmp
= CMOS_READ(RTC_CONTROL
);
775 CMOS_WRITE(tmp
, RTC_CONTROL
);
776 CMOS_READ(RTC_INTR_FLAGS
);
778 if (rtc_status
& RTC_TIMER_ON
) {
779 rtc_status
&= ~RTC_TIMER_ON
;
780 del_timer(&rtc_irq_timer
);
782 spin_unlock_irq(&rtc_lock
);
784 if (file
->f_flags
& FASYNC
)
785 rtc_fasync(-1, file
, 0);
789 spin_lock_irq(&rtc_lock
);
791 rtc_status
&= ~RTC_IS_OPEN
;
792 spin_unlock_irq(&rtc_lock
);
798 /* Called without the kernel lock - fine */
799 static unsigned int rtc_poll(struct file
*file
, poll_table
*wait
)
803 if (rtc_has_irq
== 0)
806 poll_wait(file
, &rtc_wait
, wait
);
808 spin_lock_irq(&rtc_lock
);
810 spin_unlock_irq(&rtc_lock
);
813 return POLLIN
| POLLRDNORM
;
818 int rtc_register(rtc_task_t
*task
)
823 if (task
== NULL
|| task
->func
== NULL
)
825 spin_lock_irq(&rtc_lock
);
826 if (rtc_status
& RTC_IS_OPEN
) {
827 spin_unlock_irq(&rtc_lock
);
830 spin_lock(&rtc_task_lock
);
832 spin_unlock(&rtc_task_lock
);
833 spin_unlock_irq(&rtc_lock
);
836 rtc_status
|= RTC_IS_OPEN
;
838 spin_unlock(&rtc_task_lock
);
839 spin_unlock_irq(&rtc_lock
);
843 EXPORT_SYMBOL(rtc_register
);
845 int rtc_unregister(rtc_task_t
*task
)
852 spin_lock_irq(&rtc_lock
);
853 spin_lock(&rtc_task_lock
);
854 if (rtc_callback
!= task
) {
855 spin_unlock(&rtc_task_lock
);
856 spin_unlock_irq(&rtc_lock
);
861 /* disable controls */
862 if (!hpet_mask_rtc_irq_bit(RTC_PIE
| RTC_AIE
| RTC_UIE
)) {
863 tmp
= CMOS_READ(RTC_CONTROL
);
867 CMOS_WRITE(tmp
, RTC_CONTROL
);
868 CMOS_READ(RTC_INTR_FLAGS
);
870 if (rtc_status
& RTC_TIMER_ON
) {
871 rtc_status
&= ~RTC_TIMER_ON
;
872 del_timer(&rtc_irq_timer
);
874 rtc_status
&= ~RTC_IS_OPEN
;
875 spin_unlock(&rtc_task_lock
);
876 spin_unlock_irq(&rtc_lock
);
880 EXPORT_SYMBOL(rtc_unregister
);
882 int rtc_control(rtc_task_t
*task
, unsigned int cmd
, unsigned long arg
)
888 if (cmd
!= RTC_PIE_ON
&& cmd
!= RTC_PIE_OFF
&& cmd
!= RTC_IRQP_SET
)
890 spin_lock_irqsave(&rtc_task_lock
, flags
);
891 if (rtc_callback
!= task
) {
892 spin_unlock_irqrestore(&rtc_task_lock
, flags
);
895 spin_unlock_irqrestore(&rtc_task_lock
, flags
);
896 return rtc_do_ioctl(cmd
, arg
, 1);
899 EXPORT_SYMBOL(rtc_control
);
902 * The various file operations we support.
905 static const struct file_operations rtc_fops
= {
906 .owner
= THIS_MODULE
,
914 .release
= rtc_release
,
915 .fasync
= rtc_fasync
,
918 static struct miscdevice rtc_dev
= {
924 #ifdef CONFIG_PROC_FS
925 static const struct file_operations rtc_proc_fops
= {
926 .owner
= THIS_MODULE
,
927 .open
= rtc_proc_open
,
930 .release
= single_release
,
934 static resource_size_t rtc_size
;
936 static struct resource
* __init
rtc_request_region(resource_size_t size
)
941 r
= request_region(RTC_PORT(0), size
, "rtc");
943 r
= request_mem_region(RTC_PORT(0), size
, "rtc");
951 static void rtc_release_region(void)
954 release_region(RTC_PORT(0), rtc_size
);
956 release_mem_region(RTC_PORT(0), rtc_size
);
959 static int __init
rtc_init(void)
961 #ifdef CONFIG_PROC_FS
962 struct proc_dir_entry
*ent
;
964 #if defined(__alpha__) || defined(__mips__)
965 unsigned int year
, ctrl
;
968 #ifdef CONFIG_SPARC32
969 struct linux_ebus
*ebus
;
970 struct linux_ebus_device
*edev
;
974 irq_handler_t rtc_int_handler_ptr
;
978 #ifdef CONFIG_SPARC32
979 for_each_ebus(ebus
) {
980 for_each_ebusdev(edev
, ebus
) {
981 if (strcmp(edev
->prom_node
->name
, "rtc") == 0) {
982 rtc_port
= edev
->resource
[0].start
;
983 rtc_irq
= edev
->irqs
[0];
989 printk(KERN_ERR
"rtc_init: no PC rtc found\n");
993 if (rtc_irq
== PCI_IRQ_NONE
) {
999 * XXX Interrupt pin #7 in Espresso is shared between RTC and
1000 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
1002 if (request_irq(rtc_irq
, rtc_interrupt
, IRQF_SHARED
, "rtc",
1003 (void *)&rtc_port
)) {
1005 printk(KERN_ERR
"rtc: cannot register IRQ %d\n", rtc_irq
);
1010 r
= rtc_request_region(RTC_IO_EXTENT
);
1013 * If we've already requested a smaller range (for example, because
1014 * PNPBIOS or ACPI told us how the device is configured), the request
1015 * above might fail because it's too big.
1017 * If so, request just the range we actually use.
1020 r
= rtc_request_region(RTC_IO_EXTENT_USED
);
1025 printk(KERN_ERR
"rtc: I/O resource %lx is not free.\n",
1026 (long)(RTC_PORT(0)));
1031 if (is_hpet_enabled()) {
1034 rtc_int_handler_ptr
= hpet_rtc_interrupt
;
1035 err
= hpet_register_irq_handler(rtc_interrupt
);
1037 printk(KERN_WARNING
"hpet_register_irq_handler failed "
1042 rtc_int_handler_ptr
= rtc_interrupt
;
1045 if (request_irq(RTC_IRQ
, rtc_int_handler_ptr
, IRQF_DISABLED
,
1047 /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
1049 printk(KERN_ERR
"rtc: IRQ %d is not free.\n", RTC_IRQ
);
1050 rtc_release_region();
1054 hpet_rtc_timer_init();
1058 #endif /* CONFIG_SPARC32 vs. others */
1060 if (misc_register(&rtc_dev
)) {
1062 free_irq(RTC_IRQ
, NULL
);
1063 hpet_unregister_irq_handler(rtc_interrupt
);
1066 rtc_release_region();
1070 #ifdef CONFIG_PROC_FS
1071 ent
= create_proc_entry("driver/rtc", 0, NULL
);
1073 ent
->proc_fops
= &rtc_proc_fops
;
1075 printk(KERN_WARNING
"rtc: Failed to register with procfs.\n");
1078 #if defined(__alpha__) || defined(__mips__)
1081 /* Each operating system on an Alpha uses its own epoch.
1082 Let's try to guess which one we are using now. */
1084 if (rtc_is_updating() != 0)
1087 spin_lock_irq(&rtc_lock
);
1088 year
= CMOS_READ(RTC_YEAR
);
1089 ctrl
= CMOS_READ(RTC_CONTROL
);
1090 spin_unlock_irq(&rtc_lock
);
1092 if (!(ctrl
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
)
1093 BCD_TO_BIN(year
); /* This should never happen... */
1097 guess
= "SRM (post-2000)";
1098 } else if (year
>= 20 && year
< 48) {
1100 guess
= "ARC console";
1101 } else if (year
>= 48 && year
< 72) {
1103 guess
= "Digital UNIX";
1104 #if defined(__mips__)
1105 } else if (year
>= 72 && year
< 74) {
1107 guess
= "Digital DECstation";
1109 } else if (year
>= 70) {
1111 guess
= "Standard PC (1900)";
1115 printk(KERN_INFO
"rtc: %s epoch (%lu) detected\n",
1119 if (rtc_has_irq
== 0)
1122 spin_lock_irq(&rtc_lock
);
1124 if (!hpet_set_periodic_freq(rtc_freq
)) {
1126 * Initialize periodic frequency to CMOS reset default,
1129 CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT
) & 0xF0) | 0x06),
1132 spin_unlock_irq(&rtc_lock
);
1136 (void) init_sysctl();
1138 printk(KERN_INFO
"Real Time Clock Driver v" RTC_VERSION
"\n");
1143 static void __exit
rtc_exit(void)
1146 remove_proc_entry("driver/rtc", NULL
);
1147 misc_deregister(&rtc_dev
);
1149 #ifdef CONFIG_SPARC32
1151 free_irq(rtc_irq
, &rtc_port
);
1153 rtc_release_region();
1156 free_irq(RTC_IRQ
, NULL
);
1157 hpet_unregister_irq_handler(hpet_rtc_interrupt
);
1160 #endif /* CONFIG_SPARC32 */
1163 module_init(rtc_init
);
1164 module_exit(rtc_exit
);
1168 * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1169 * (usually during an IDE disk interrupt, with IRQ unmasking off)
1170 * Since the interrupt handler doesn't get called, the IRQ status
1171 * byte doesn't get read, and the RTC stops generating interrupts.
1172 * A timer is set, and will call this function if/when that happens.
1173 * To get it out of this stalled state, we just read the status.
1174 * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1175 * (You *really* shouldn't be trying to use a non-realtime system
1176 * for something that requires a steady > 1KHz signal anyways.)
1179 static void rtc_dropped_irq(unsigned long data
)
1183 spin_lock_irq(&rtc_lock
);
1185 if (hpet_rtc_dropped_irq()) {
1186 spin_unlock_irq(&rtc_lock
);
1190 /* Just in case someone disabled the timer from behind our back... */
1191 if (rtc_status
& RTC_TIMER_ON
)
1192 mod_timer(&rtc_irq_timer
, jiffies
+ HZ
/rtc_freq
+ 2*HZ
/100);
1194 rtc_irq_data
+= ((rtc_freq
/HZ
)<<8);
1195 rtc_irq_data
&= ~0xff;
1196 rtc_irq_data
|= (CMOS_READ(RTC_INTR_FLAGS
) & 0xF0); /* restart */
1200 spin_unlock_irq(&rtc_lock
);
1202 if (printk_ratelimit()) {
1203 printk(KERN_WARNING
"rtc: lost some interrupts at %ldHz.\n",
1207 /* Now we have new data */
1208 wake_up_interruptible(&rtc_wait
);
1210 kill_fasync(&rtc_async_queue
, SIGIO
, POLL_IN
);
1214 #ifdef CONFIG_PROC_FS
1216 * Info exported via "/proc/driver/rtc".
1219 static int rtc_proc_show(struct seq_file
*seq
, void *v
)
1221 #define YN(bit) ((ctrl & bit) ? "yes" : "no")
1222 #define NY(bit) ((ctrl & bit) ? "no" : "yes")
1224 unsigned char batt
, ctrl
;
1227 spin_lock_irq(&rtc_lock
);
1228 batt
= CMOS_READ(RTC_VALID
) & RTC_VRT
;
1229 ctrl
= CMOS_READ(RTC_CONTROL
);
1231 spin_unlock_irq(&rtc_lock
);
1234 rtc_get_rtc_time(&tm
);
1237 * There is no way to tell if the luser has the RTC set for local
1238 * time or for Universal Standard Time (GMT). Probably local though.
1241 "rtc_time\t: %02d:%02d:%02d\n"
1242 "rtc_date\t: %04d-%02d-%02d\n"
1243 "rtc_epoch\t: %04lu\n",
1244 tm
.tm_hour
, tm
.tm_min
, tm
.tm_sec
,
1245 tm
.tm_year
+ 1900, tm
.tm_mon
+ 1, tm
.tm_mday
, epoch
);
1247 get_rtc_alm_time(&tm
);
1250 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1251 * match any value for that particular field. Values that are
1252 * greater than a valid time, but less than 0xc0 shouldn't appear.
1254 seq_puts(seq
, "alarm\t\t: ");
1255 if (tm
.tm_hour
<= 24)
1256 seq_printf(seq
, "%02d:", tm
.tm_hour
);
1258 seq_puts(seq
, "**:");
1260 if (tm
.tm_min
<= 59)
1261 seq_printf(seq
, "%02d:", tm
.tm_min
);
1263 seq_puts(seq
, "**:");
1265 if (tm
.tm_sec
<= 59)
1266 seq_printf(seq
, "%02d\n", tm
.tm_sec
);
1268 seq_puts(seq
, "**\n");
1271 "DST_enable\t: %s\n"
1274 "square_wave\t: %s\n"
1276 "update_IRQ\t: %s\n"
1277 "periodic_IRQ\t: %s\n"
1278 "periodic_freq\t: %ld\n"
1279 "batt_status\t: %s\n",
1288 batt
? "okay" : "dead");
1295 static int rtc_proc_open(struct inode
*inode
, struct file
*file
)
1297 return single_open(file
, rtc_proc_show
, NULL
);
1301 void rtc_get_rtc_time(struct rtc_time
*rtc_tm
)
1303 unsigned long uip_watchdog
= jiffies
, flags
;
1305 #ifdef CONFIG_MACH_DECSTATION
1306 unsigned int real_year
;
1310 * read RTC once any update in progress is done. The update
1311 * can take just over 2ms. We wait 20ms. There is no need to
1312 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1313 * If you need to know *exactly* when a second has started, enable
1314 * periodic update complete interrupts, (via ioctl) and then
1315 * immediately read /dev/rtc which will block until you get the IRQ.
1316 * Once the read clears, read the RTC time (again via ioctl). Easy.
1319 while (rtc_is_updating() != 0 && jiffies
- uip_watchdog
< 2*HZ
/100)
1323 * Only the values that we read from the RTC are set. We leave
1324 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1325 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1326 * only updated by the RTC when initially set to a non-zero value.
1328 spin_lock_irqsave(&rtc_lock
, flags
);
1329 rtc_tm
->tm_sec
= CMOS_READ(RTC_SECONDS
);
1330 rtc_tm
->tm_min
= CMOS_READ(RTC_MINUTES
);
1331 rtc_tm
->tm_hour
= CMOS_READ(RTC_HOURS
);
1332 rtc_tm
->tm_mday
= CMOS_READ(RTC_DAY_OF_MONTH
);
1333 rtc_tm
->tm_mon
= CMOS_READ(RTC_MONTH
);
1334 rtc_tm
->tm_year
= CMOS_READ(RTC_YEAR
);
1335 /* Only set from 2.6.16 onwards */
1336 rtc_tm
->tm_wday
= CMOS_READ(RTC_DAY_OF_WEEK
);
1338 #ifdef CONFIG_MACH_DECSTATION
1339 real_year
= CMOS_READ(RTC_DEC_YEAR
);
1341 ctrl
= CMOS_READ(RTC_CONTROL
);
1342 spin_unlock_irqrestore(&rtc_lock
, flags
);
1344 if (!(ctrl
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
1345 BCD_TO_BIN(rtc_tm
->tm_sec
);
1346 BCD_TO_BIN(rtc_tm
->tm_min
);
1347 BCD_TO_BIN(rtc_tm
->tm_hour
);
1348 BCD_TO_BIN(rtc_tm
->tm_mday
);
1349 BCD_TO_BIN(rtc_tm
->tm_mon
);
1350 BCD_TO_BIN(rtc_tm
->tm_year
);
1351 BCD_TO_BIN(rtc_tm
->tm_wday
);
1354 #ifdef CONFIG_MACH_DECSTATION
1355 rtc_tm
->tm_year
+= real_year
- 72;
1359 * Account for differences between how the RTC uses the values
1360 * and how they are defined in a struct rtc_time;
1362 rtc_tm
->tm_year
+= epoch
- 1900;
1363 if (rtc_tm
->tm_year
<= 69)
1364 rtc_tm
->tm_year
+= 100;
1369 static void get_rtc_alm_time(struct rtc_time
*alm_tm
)
1374 * Only the values that we read from the RTC are set. That
1375 * means only tm_hour, tm_min, and tm_sec.
1377 spin_lock_irq(&rtc_lock
);
1378 alm_tm
->tm_sec
= CMOS_READ(RTC_SECONDS_ALARM
);
1379 alm_tm
->tm_min
= CMOS_READ(RTC_MINUTES_ALARM
);
1380 alm_tm
->tm_hour
= CMOS_READ(RTC_HOURS_ALARM
);
1381 ctrl
= CMOS_READ(RTC_CONTROL
);
1382 spin_unlock_irq(&rtc_lock
);
1384 if (!(ctrl
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
1385 BCD_TO_BIN(alm_tm
->tm_sec
);
1386 BCD_TO_BIN(alm_tm
->tm_min
);
1387 BCD_TO_BIN(alm_tm
->tm_hour
);
1393 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1394 * Rumour has it that if you frob the interrupt enable/disable
1395 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1396 * ensure you actually start getting interrupts. Probably for
1397 * compatibility with older/broken chipset RTC implementations.
1398 * We also clear out any old irq data after an ioctl() that
1399 * meddles with the interrupt enable/disable bits.
1402 static void mask_rtc_irq_bit_locked(unsigned char bit
)
1406 if (hpet_mask_rtc_irq_bit(bit
))
1408 val
= CMOS_READ(RTC_CONTROL
);
1410 CMOS_WRITE(val
, RTC_CONTROL
);
1411 CMOS_READ(RTC_INTR_FLAGS
);
1416 static void set_rtc_irq_bit_locked(unsigned char bit
)
1420 if (hpet_set_rtc_irq_bit(bit
))
1422 val
= CMOS_READ(RTC_CONTROL
);
1424 CMOS_WRITE(val
, RTC_CONTROL
);
1425 CMOS_READ(RTC_INTR_FLAGS
);
1431 MODULE_AUTHOR("Paul Gortmaker");
1432 MODULE_LICENSE("GPL");
1433 MODULE_ALIAS_MISCDEV(RTC_MINOR
);