[MIPS] Workaround for 4Kc machine check exception
[wrt350n-kernel.git] / arch / mips / mm / tlbex.c
blob6c425b052442e3444ea4dcbe36ffc71ef4e15d25
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Synthesize TLB refill handlers at runtime.
8 * Copyright (C) 2004,2005,2006 by Thiemo Seufer
9 * Copyright (C) 2005 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
12 * ... and the days got worse and worse and now you see
13 * I've gone completly out of my mind.
15 * They're coming to take me a away haha
16 * they're coming to take me a away hoho hihi haha
17 * to the funny farm where code is beautiful all the time ...
19 * (Condolences to Napoleon XIV)
22 #include <stdarg.h>
24 #include <linux/mm.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/string.h>
28 #include <linux/init.h>
30 #include <asm/pgtable.h>
31 #include <asm/cacheflush.h>
32 #include <asm/mmu_context.h>
33 #include <asm/inst.h>
34 #include <asm/elf.h>
35 #include <asm/smp.h>
36 #include <asm/war.h>
38 static __init int __maybe_unused r45k_bvahwbug(void)
40 /* XXX: We should probe for the presence of this bug, but we don't. */
41 return 0;
44 static __init int __maybe_unused r4k_250MHZhwbug(void)
46 /* XXX: We should probe for the presence of this bug, but we don't. */
47 return 0;
50 static __init int __maybe_unused bcm1250_m3_war(void)
52 return BCM1250_M3_WAR;
55 static __init int __maybe_unused r10000_llsc_war(void)
57 return R10000_LLSC_WAR;
61 * Found by experiment: At least some revisions of the 4kc throw under
62 * some circumstances a machine check exception, triggered by invalid
63 * values in the index register. Delaying the tlbp instruction until
64 * after the next branch, plus adding an additional nop in front of
65 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
66 * why; it's not an issue caused by the core RTL.
69 static __init int __attribute__((unused)) m4kc_tlbp_war(void)
71 return (current_cpu_data.processor_id & 0xffff00) ==
72 (PRID_COMP_MIPS | PRID_IMP_4KC);
76 * A little micro-assembler, intended for TLB refill handler
77 * synthesizing. It is intentionally kept simple, does only support
78 * a subset of instructions, and does not try to hide pipeline effects
79 * like branch delay slots.
82 enum fields
84 RS = 0x001,
85 RT = 0x002,
86 RD = 0x004,
87 RE = 0x008,
88 SIMM = 0x010,
89 UIMM = 0x020,
90 BIMM = 0x040,
91 JIMM = 0x080,
92 FUNC = 0x100,
93 SET = 0x200
96 #define OP_MASK 0x3f
97 #define OP_SH 26
98 #define RS_MASK 0x1f
99 #define RS_SH 21
100 #define RT_MASK 0x1f
101 #define RT_SH 16
102 #define RD_MASK 0x1f
103 #define RD_SH 11
104 #define RE_MASK 0x1f
105 #define RE_SH 6
106 #define IMM_MASK 0xffff
107 #define IMM_SH 0
108 #define JIMM_MASK 0x3ffffff
109 #define JIMM_SH 0
110 #define FUNC_MASK 0x3f
111 #define FUNC_SH 0
112 #define SET_MASK 0x7
113 #define SET_SH 0
115 enum opcode {
116 insn_invalid,
117 insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
118 insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
119 insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0,
120 insn_dsll, insn_dsll32, insn_dsra, insn_dsrl, insn_dsrl32,
121 insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld,
122 insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0,
123 insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
124 insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi,
125 insn_tlbwr, insn_xor, insn_xori
128 struct insn {
129 enum opcode opcode;
130 u32 match;
131 enum fields fields;
134 /* This macro sets the non-variable bits of an instruction. */
135 #define M(a, b, c, d, e, f) \
136 ((a) << OP_SH \
137 | (b) << RS_SH \
138 | (c) << RT_SH \
139 | (d) << RD_SH \
140 | (e) << RE_SH \
141 | (f) << FUNC_SH)
143 static __initdata struct insn insn_table[] = {
144 { insn_addiu, M(addiu_op,0,0,0,0,0), RS | RT | SIMM },
145 { insn_addu, M(spec_op,0,0,0,0,addu_op), RS | RT | RD },
146 { insn_and, M(spec_op,0,0,0,0,and_op), RS | RT | RD },
147 { insn_andi, M(andi_op,0,0,0,0,0), RS | RT | UIMM },
148 { insn_beq, M(beq_op,0,0,0,0,0), RS | RT | BIMM },
149 { insn_beql, M(beql_op,0,0,0,0,0), RS | RT | BIMM },
150 { insn_bgez, M(bcond_op,0,bgez_op,0,0,0), RS | BIMM },
151 { insn_bgezl, M(bcond_op,0,bgezl_op,0,0,0), RS | BIMM },
152 { insn_bltz, M(bcond_op,0,bltz_op,0,0,0), RS | BIMM },
153 { insn_bltzl, M(bcond_op,0,bltzl_op,0,0,0), RS | BIMM },
154 { insn_bne, M(bne_op,0,0,0,0,0), RS | RT | BIMM },
155 { insn_daddiu, M(daddiu_op,0,0,0,0,0), RS | RT | SIMM },
156 { insn_daddu, M(spec_op,0,0,0,0,daddu_op), RS | RT | RD },
157 { insn_dmfc0, M(cop0_op,dmfc_op,0,0,0,0), RT | RD | SET},
158 { insn_dmtc0, M(cop0_op,dmtc_op,0,0,0,0), RT | RD | SET},
159 { insn_dsll, M(spec_op,0,0,0,0,dsll_op), RT | RD | RE },
160 { insn_dsll32, M(spec_op,0,0,0,0,dsll32_op), RT | RD | RE },
161 { insn_dsra, M(spec_op,0,0,0,0,dsra_op), RT | RD | RE },
162 { insn_dsrl, M(spec_op,0,0,0,0,dsrl_op), RT | RD | RE },
163 { insn_dsrl32, M(spec_op,0,0,0,0,dsrl32_op), RT | RD | RE },
164 { insn_dsubu, M(spec_op,0,0,0,0,dsubu_op), RS | RT | RD },
165 { insn_eret, M(cop0_op,cop_op,0,0,0,eret_op), 0 },
166 { insn_j, M(j_op,0,0,0,0,0), JIMM },
167 { insn_jal, M(jal_op,0,0,0,0,0), JIMM },
168 { insn_jr, M(spec_op,0,0,0,0,jr_op), RS },
169 { insn_ld, M(ld_op,0,0,0,0,0), RS | RT | SIMM },
170 { insn_ll, M(ll_op,0,0,0,0,0), RS | RT | SIMM },
171 { insn_lld, M(lld_op,0,0,0,0,0), RS | RT | SIMM },
172 { insn_lui, M(lui_op,0,0,0,0,0), RT | SIMM },
173 { insn_lw, M(lw_op,0,0,0,0,0), RS | RT | SIMM },
174 { insn_mfc0, M(cop0_op,mfc_op,0,0,0,0), RT | RD | SET},
175 { insn_mtc0, M(cop0_op,mtc_op,0,0,0,0), RT | RD | SET},
176 { insn_ori, M(ori_op,0,0,0,0,0), RS | RT | UIMM },
177 { insn_rfe, M(cop0_op,cop_op,0,0,0,rfe_op), 0 },
178 { insn_sc, M(sc_op,0,0,0,0,0), RS | RT | SIMM },
179 { insn_scd, M(scd_op,0,0,0,0,0), RS | RT | SIMM },
180 { insn_sd, M(sd_op,0,0,0,0,0), RS | RT | SIMM },
181 { insn_sll, M(spec_op,0,0,0,0,sll_op), RT | RD | RE },
182 { insn_sra, M(spec_op,0,0,0,0,sra_op), RT | RD | RE },
183 { insn_srl, M(spec_op,0,0,0,0,srl_op), RT | RD | RE },
184 { insn_subu, M(spec_op,0,0,0,0,subu_op), RS | RT | RD },
185 { insn_sw, M(sw_op,0,0,0,0,0), RS | RT | SIMM },
186 { insn_tlbp, M(cop0_op,cop_op,0,0,0,tlbp_op), 0 },
187 { insn_tlbwi, M(cop0_op,cop_op,0,0,0,tlbwi_op), 0 },
188 { insn_tlbwr, M(cop0_op,cop_op,0,0,0,tlbwr_op), 0 },
189 { insn_xor, M(spec_op,0,0,0,0,xor_op), RS | RT | RD },
190 { insn_xori, M(xori_op,0,0,0,0,0), RS | RT | UIMM },
191 { insn_invalid, 0, 0 }
194 #undef M
196 static __init u32 build_rs(u32 arg)
198 if (arg & ~RS_MASK)
199 printk(KERN_WARNING "TLB synthesizer field overflow\n");
201 return (arg & RS_MASK) << RS_SH;
204 static __init u32 build_rt(u32 arg)
206 if (arg & ~RT_MASK)
207 printk(KERN_WARNING "TLB synthesizer field overflow\n");
209 return (arg & RT_MASK) << RT_SH;
212 static __init u32 build_rd(u32 arg)
214 if (arg & ~RD_MASK)
215 printk(KERN_WARNING "TLB synthesizer field overflow\n");
217 return (arg & RD_MASK) << RD_SH;
220 static __init u32 build_re(u32 arg)
222 if (arg & ~RE_MASK)
223 printk(KERN_WARNING "TLB synthesizer field overflow\n");
225 return (arg & RE_MASK) << RE_SH;
228 static __init u32 build_simm(s32 arg)
230 if (arg > 0x7fff || arg < -0x8000)
231 printk(KERN_WARNING "TLB synthesizer field overflow\n");
233 return arg & 0xffff;
236 static __init u32 build_uimm(u32 arg)
238 if (arg & ~IMM_MASK)
239 printk(KERN_WARNING "TLB synthesizer field overflow\n");
241 return arg & IMM_MASK;
244 static __init u32 build_bimm(s32 arg)
246 if (arg > 0x1ffff || arg < -0x20000)
247 printk(KERN_WARNING "TLB synthesizer field overflow\n");
249 if (arg & 0x3)
250 printk(KERN_WARNING "Invalid TLB synthesizer branch target\n");
252 return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
255 static __init u32 build_jimm(u32 arg)
257 if (arg & ~((JIMM_MASK) << 2))
258 printk(KERN_WARNING "TLB synthesizer field overflow\n");
260 return (arg >> 2) & JIMM_MASK;
263 static __init u32 build_func(u32 arg)
265 if (arg & ~FUNC_MASK)
266 printk(KERN_WARNING "TLB synthesizer field overflow\n");
268 return arg & FUNC_MASK;
271 static __init u32 build_set(u32 arg)
273 if (arg & ~SET_MASK)
274 printk(KERN_WARNING "TLB synthesizer field overflow\n");
276 return arg & SET_MASK;
280 * The order of opcode arguments is implicitly left to right,
281 * starting with RS and ending with FUNC or IMM.
283 static void __init build_insn(u32 **buf, enum opcode opc, ...)
285 struct insn *ip = NULL;
286 unsigned int i;
287 va_list ap;
288 u32 op;
290 for (i = 0; insn_table[i].opcode != insn_invalid; i++)
291 if (insn_table[i].opcode == opc) {
292 ip = &insn_table[i];
293 break;
296 if (!ip)
297 panic("Unsupported TLB synthesizer instruction %d", opc);
299 op = ip->match;
300 va_start(ap, opc);
301 if (ip->fields & RS) op |= build_rs(va_arg(ap, u32));
302 if (ip->fields & RT) op |= build_rt(va_arg(ap, u32));
303 if (ip->fields & RD) op |= build_rd(va_arg(ap, u32));
304 if (ip->fields & RE) op |= build_re(va_arg(ap, u32));
305 if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32));
306 if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32));
307 if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32));
308 if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32));
309 if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32));
310 if (ip->fields & SET) op |= build_set(va_arg(ap, u32));
311 va_end(ap);
313 **buf = op;
314 (*buf)++;
317 #define I_u1u2u3(op) \
318 static inline void __init i##op(u32 **buf, unsigned int a, \
319 unsigned int b, unsigned int c) \
321 build_insn(buf, insn##op, a, b, c); \
324 #define I_u2u1u3(op) \
325 static inline void __init i##op(u32 **buf, unsigned int a, \
326 unsigned int b, unsigned int c) \
328 build_insn(buf, insn##op, b, a, c); \
331 #define I_u3u1u2(op) \
332 static inline void __init i##op(u32 **buf, unsigned int a, \
333 unsigned int b, unsigned int c) \
335 build_insn(buf, insn##op, b, c, a); \
338 #define I_u1u2s3(op) \
339 static inline void __init i##op(u32 **buf, unsigned int a, \
340 unsigned int b, signed int c) \
342 build_insn(buf, insn##op, a, b, c); \
345 #define I_u2s3u1(op) \
346 static inline void __init i##op(u32 **buf, unsigned int a, \
347 signed int b, unsigned int c) \
349 build_insn(buf, insn##op, c, a, b); \
352 #define I_u2u1s3(op) \
353 static inline void __init i##op(u32 **buf, unsigned int a, \
354 unsigned int b, signed int c) \
356 build_insn(buf, insn##op, b, a, c); \
359 #define I_u1u2(op) \
360 static inline void __init i##op(u32 **buf, unsigned int a, \
361 unsigned int b) \
363 build_insn(buf, insn##op, a, b); \
366 #define I_u1s2(op) \
367 static inline void __init i##op(u32 **buf, unsigned int a, \
368 signed int b) \
370 build_insn(buf, insn##op, a, b); \
373 #define I_u1(op) \
374 static inline void __init i##op(u32 **buf, unsigned int a) \
376 build_insn(buf, insn##op, a); \
379 #define I_0(op) \
380 static inline void __init i##op(u32 **buf) \
382 build_insn(buf, insn##op); \
385 I_u2u1s3(_addiu);
386 I_u3u1u2(_addu);
387 I_u2u1u3(_andi);
388 I_u3u1u2(_and);
389 I_u1u2s3(_beq);
390 I_u1u2s3(_beql);
391 I_u1s2(_bgez);
392 I_u1s2(_bgezl);
393 I_u1s2(_bltz);
394 I_u1s2(_bltzl);
395 I_u1u2s3(_bne);
396 I_u1u2u3(_dmfc0);
397 I_u1u2u3(_dmtc0);
398 I_u2u1s3(_daddiu);
399 I_u3u1u2(_daddu);
400 I_u2u1u3(_dsll);
401 I_u2u1u3(_dsll32);
402 I_u2u1u3(_dsra);
403 I_u2u1u3(_dsrl);
404 I_u2u1u3(_dsrl32);
405 I_u3u1u2(_dsubu);
406 I_0(_eret);
407 I_u1(_j);
408 I_u1(_jal);
409 I_u1(_jr);
410 I_u2s3u1(_ld);
411 I_u2s3u1(_ll);
412 I_u2s3u1(_lld);
413 I_u1s2(_lui);
414 I_u2s3u1(_lw);
415 I_u1u2u3(_mfc0);
416 I_u1u2u3(_mtc0);
417 I_u2u1u3(_ori);
418 I_0(_rfe);
419 I_u2s3u1(_sc);
420 I_u2s3u1(_scd);
421 I_u2s3u1(_sd);
422 I_u2u1u3(_sll);
423 I_u2u1u3(_sra);
424 I_u2u1u3(_srl);
425 I_u3u1u2(_subu);
426 I_u2s3u1(_sw);
427 I_0(_tlbp);
428 I_0(_tlbwi);
429 I_0(_tlbwr);
430 I_u3u1u2(_xor)
431 I_u2u1u3(_xori);
434 * handling labels
437 enum label_id {
438 label_invalid,
439 label_second_part,
440 label_leave,
441 #ifdef MODULE_START
442 label_module_alloc,
443 #endif
444 label_vmalloc,
445 label_vmalloc_done,
446 label_tlbw_hazard,
447 label_split,
448 label_nopage_tlbl,
449 label_nopage_tlbs,
450 label_nopage_tlbm,
451 label_smp_pgtable_change,
452 label_r3000_write_probe_fail,
455 struct label {
456 u32 *addr;
457 enum label_id lab;
460 static __init void build_label(struct label **lab, u32 *addr,
461 enum label_id l)
463 (*lab)->addr = addr;
464 (*lab)->lab = l;
465 (*lab)++;
468 #define L_LA(lb) \
469 static inline void l##lb(struct label **lab, u32 *addr) \
471 build_label(lab, addr, label##lb); \
474 L_LA(_second_part)
475 L_LA(_leave)
476 #ifdef MODULE_START
477 L_LA(_module_alloc)
478 #endif
479 L_LA(_vmalloc)
480 L_LA(_vmalloc_done)
481 L_LA(_tlbw_hazard)
482 L_LA(_split)
483 L_LA(_nopage_tlbl)
484 L_LA(_nopage_tlbs)
485 L_LA(_nopage_tlbm)
486 L_LA(_smp_pgtable_change)
487 L_LA(_r3000_write_probe_fail)
489 /* convenience macros for instructions */
490 #ifdef CONFIG_64BIT
491 # define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off)
492 # define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off)
493 # define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh)
494 # define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh)
495 # define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh)
496 # define i_MFC0(buf, rt, rd...) i_dmfc0(buf, rt, rd)
497 # define i_MTC0(buf, rt, rd...) i_dmtc0(buf, rt, rd)
498 # define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val)
499 # define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd)
500 # define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd)
501 # define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off)
502 # define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off)
503 #else
504 # define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off)
505 # define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off)
506 # define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh)
507 # define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh)
508 # define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh)
509 # define i_MFC0(buf, rt, rd...) i_mfc0(buf, rt, rd)
510 # define i_MTC0(buf, rt, rd...) i_mtc0(buf, rt, rd)
511 # define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val)
512 # define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd)
513 # define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd)
514 # define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off)
515 # define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off)
516 #endif
518 #define i_b(buf, off) i_beq(buf, 0, 0, off)
519 #define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off)
520 #define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off)
521 #define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off)
522 #define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off)
523 #define i_move(buf, a, b) i_ADDU(buf, a, 0, b)
524 #define i_nop(buf) i_sll(buf, 0, 0, 0)
525 #define i_ssnop(buf) i_sll(buf, 0, 0, 1)
526 #define i_ehb(buf) i_sll(buf, 0, 0, 3)
528 #ifdef CONFIG_64BIT
529 static __init int __maybe_unused in_compat_space_p(long addr)
531 /* Is this address in 32bit compat space? */
532 return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
535 static __init int __maybe_unused rel_highest(long val)
537 return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
540 static __init int __maybe_unused rel_higher(long val)
542 return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
544 #endif
546 static __init int rel_hi(long val)
548 return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
551 static __init int rel_lo(long val)
553 return ((val & 0xffff) ^ 0x8000) - 0x8000;
556 static __init void i_LA_mostly(u32 **buf, unsigned int rs, long addr)
558 #ifdef CONFIG_64BIT
559 if (!in_compat_space_p(addr)) {
560 i_lui(buf, rs, rel_highest(addr));
561 if (rel_higher(addr))
562 i_daddiu(buf, rs, rs, rel_higher(addr));
563 if (rel_hi(addr)) {
564 i_dsll(buf, rs, rs, 16);
565 i_daddiu(buf, rs, rs, rel_hi(addr));
566 i_dsll(buf, rs, rs, 16);
567 } else
568 i_dsll32(buf, rs, rs, 0);
569 } else
570 #endif
571 i_lui(buf, rs, rel_hi(addr));
574 static __init void __maybe_unused i_LA(u32 **buf, unsigned int rs,
575 long addr)
577 i_LA_mostly(buf, rs, addr);
578 if (rel_lo(addr))
579 i_ADDIU(buf, rs, rs, rel_lo(addr));
583 * handle relocations
586 struct reloc {
587 u32 *addr;
588 unsigned int type;
589 enum label_id lab;
592 static __init void r_mips_pc16(struct reloc **rel, u32 *addr,
593 enum label_id l)
595 (*rel)->addr = addr;
596 (*rel)->type = R_MIPS_PC16;
597 (*rel)->lab = l;
598 (*rel)++;
601 static inline void __resolve_relocs(struct reloc *rel, struct label *lab)
603 long laddr = (long)lab->addr;
604 long raddr = (long)rel->addr;
606 switch (rel->type) {
607 case R_MIPS_PC16:
608 *rel->addr |= build_bimm(laddr - (raddr + 4));
609 break;
611 default:
612 panic("Unsupported TLB synthesizer relocation %d",
613 rel->type);
617 static __init void resolve_relocs(struct reloc *rel, struct label *lab)
619 struct label *l;
621 for (; rel->lab != label_invalid; rel++)
622 for (l = lab; l->lab != label_invalid; l++)
623 if (rel->lab == l->lab)
624 __resolve_relocs(rel, l);
627 static __init void move_relocs(struct reloc *rel, u32 *first, u32 *end,
628 long off)
630 for (; rel->lab != label_invalid; rel++)
631 if (rel->addr >= first && rel->addr < end)
632 rel->addr += off;
635 static __init void move_labels(struct label *lab, u32 *first, u32 *end,
636 long off)
638 for (; lab->lab != label_invalid; lab++)
639 if (lab->addr >= first && lab->addr < end)
640 lab->addr += off;
643 static __init void copy_handler(struct reloc *rel, struct label *lab,
644 u32 *first, u32 *end, u32 *target)
646 long off = (long)(target - first);
648 memcpy(target, first, (end - first) * sizeof(u32));
650 move_relocs(rel, first, end, off);
651 move_labels(lab, first, end, off);
654 static __init int __maybe_unused insn_has_bdelay(struct reloc *rel,
655 u32 *addr)
657 for (; rel->lab != label_invalid; rel++) {
658 if (rel->addr == addr
659 && (rel->type == R_MIPS_PC16
660 || rel->type == R_MIPS_26))
661 return 1;
664 return 0;
667 /* convenience functions for labeled branches */
668 static void __init __maybe_unused
669 il_bltz(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
671 r_mips_pc16(r, *p, l);
672 i_bltz(p, reg, 0);
675 static void __init __maybe_unused il_b(u32 **p, struct reloc **r,
676 enum label_id l)
678 r_mips_pc16(r, *p, l);
679 i_b(p, 0);
682 static void __init il_beqz(u32 **p, struct reloc **r, unsigned int reg,
683 enum label_id l)
685 r_mips_pc16(r, *p, l);
686 i_beqz(p, reg, 0);
689 static void __init __maybe_unused
690 il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
692 r_mips_pc16(r, *p, l);
693 i_beqzl(p, reg, 0);
696 static void __init il_bnez(u32 **p, struct reloc **r, unsigned int reg,
697 enum label_id l)
699 r_mips_pc16(r, *p, l);
700 i_bnez(p, reg, 0);
703 static void __init il_bgezl(u32 **p, struct reloc **r, unsigned int reg,
704 enum label_id l)
706 r_mips_pc16(r, *p, l);
707 i_bgezl(p, reg, 0);
710 static void __init __maybe_unused
711 il_bgez(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
713 r_mips_pc16(r, *p, l);
714 i_bgez(p, reg, 0);
717 /* The only general purpose registers allowed in TLB handlers. */
718 #define K0 26
719 #define K1 27
721 /* Some CP0 registers */
722 #define C0_INDEX 0, 0
723 #define C0_ENTRYLO0 2, 0
724 #define C0_TCBIND 2, 2
725 #define C0_ENTRYLO1 3, 0
726 #define C0_CONTEXT 4, 0
727 #define C0_BADVADDR 8, 0
728 #define C0_ENTRYHI 10, 0
729 #define C0_EPC 14, 0
730 #define C0_XCONTEXT 20, 0
732 #ifdef CONFIG_64BIT
733 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT)
734 #else
735 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT)
736 #endif
738 /* The worst case length of the handler is around 18 instructions for
739 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
740 * Maximum space available is 32 instructions for R3000 and 64
741 * instructions for R4000.
743 * We deliberately chose a buffer size of 128, so we won't scribble
744 * over anything important on overflow before we panic.
746 static __initdata u32 tlb_handler[128];
748 /* simply assume worst case size for labels and relocs */
749 static __initdata struct label labels[128];
750 static __initdata struct reloc relocs[128];
753 * The R3000 TLB handler is simple.
755 static void __init build_r3000_tlb_refill_handler(void)
757 long pgdc = (long)pgd_current;
758 u32 *p;
759 int i;
761 memset(tlb_handler, 0, sizeof(tlb_handler));
762 p = tlb_handler;
764 i_mfc0(&p, K0, C0_BADVADDR);
765 i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */
766 i_lw(&p, K1, rel_lo(pgdc), K1);
767 i_srl(&p, K0, K0, 22); /* load delay */
768 i_sll(&p, K0, K0, 2);
769 i_addu(&p, K1, K1, K0);
770 i_mfc0(&p, K0, C0_CONTEXT);
771 i_lw(&p, K1, 0, K1); /* cp0 delay */
772 i_andi(&p, K0, K0, 0xffc); /* load delay */
773 i_addu(&p, K1, K1, K0);
774 i_lw(&p, K0, 0, K1);
775 i_nop(&p); /* load delay */
776 i_mtc0(&p, K0, C0_ENTRYLO0);
777 i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
778 i_tlbwr(&p); /* cp0 delay */
779 i_jr(&p, K1);
780 i_rfe(&p); /* branch delay */
782 if (p > tlb_handler + 32)
783 panic("TLB refill handler space exceeded");
785 pr_info("Synthesized TLB refill handler (%u instructions).\n",
786 (unsigned int)(p - tlb_handler));
788 pr_debug("\t.set push\n");
789 pr_debug("\t.set noreorder\n");
790 for (i = 0; i < (p - tlb_handler); i++)
791 pr_debug("\t.word 0x%08x\n", tlb_handler[i]);
792 pr_debug("\t.set pop\n");
794 memcpy((void *)ebase, tlb_handler, 0x80);
798 * The R4000 TLB handler is much more complicated. We have two
799 * consecutive handler areas with 32 instructions space each.
800 * Since they aren't used at the same time, we can overflow in the
801 * other one.To keep things simple, we first assume linear space,
802 * then we relocate it to the final handler layout as needed.
804 static __initdata u32 final_handler[64];
807 * Hazards
809 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
810 * 2. A timing hazard exists for the TLBP instruction.
812 * stalling_instruction
813 * TLBP
815 * The JTLB is being read for the TLBP throughout the stall generated by the
816 * previous instruction. This is not really correct as the stalling instruction
817 * can modify the address used to access the JTLB. The failure symptom is that
818 * the TLBP instruction will use an address created for the stalling instruction
819 * and not the address held in C0_ENHI and thus report the wrong results.
821 * The software work-around is to not allow the instruction preceding the TLBP
822 * to stall - make it an NOP or some other instruction guaranteed not to stall.
824 * Errata 2 will not be fixed. This errata is also on the R5000.
826 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
828 static __init void __maybe_unused build_tlb_probe_entry(u32 **p)
830 switch (current_cpu_data.cputype) {
831 /* Found by experiment: R4600 v2.0 needs this, too. */
832 case CPU_R4600:
833 case CPU_R5000:
834 case CPU_R5000A:
835 case CPU_NEVADA:
836 i_nop(p);
837 i_tlbp(p);
838 break;
840 default:
841 i_tlbp(p);
842 break;
847 * Write random or indexed TLB entry, and care about the hazards from
848 * the preceeding mtc0 and for the following eret.
850 enum tlb_write_entry { tlb_random, tlb_indexed };
852 static __init void build_tlb_write_entry(u32 **p, struct label **l,
853 struct reloc **r,
854 enum tlb_write_entry wmode)
856 void(*tlbw)(u32 **) = NULL;
858 switch (wmode) {
859 case tlb_random: tlbw = i_tlbwr; break;
860 case tlb_indexed: tlbw = i_tlbwi; break;
863 switch (current_cpu_data.cputype) {
864 case CPU_R4000PC:
865 case CPU_R4000SC:
866 case CPU_R4000MC:
867 case CPU_R4400PC:
868 case CPU_R4400SC:
869 case CPU_R4400MC:
871 * This branch uses up a mtc0 hazard nop slot and saves
872 * two nops after the tlbw instruction.
874 il_bgezl(p, r, 0, label_tlbw_hazard);
875 tlbw(p);
876 l_tlbw_hazard(l, *p);
877 i_nop(p);
878 break;
880 case CPU_R4600:
881 case CPU_R4700:
882 case CPU_R5000:
883 case CPU_R5000A:
884 i_nop(p);
885 tlbw(p);
886 i_nop(p);
887 break;
889 case CPU_R4300:
890 case CPU_5KC:
891 case CPU_TX49XX:
892 case CPU_AU1000:
893 case CPU_AU1100:
894 case CPU_AU1500:
895 case CPU_AU1550:
896 case CPU_AU1200:
897 case CPU_PR4450:
898 i_nop(p);
899 tlbw(p);
900 break;
902 case CPU_R10000:
903 case CPU_R12000:
904 case CPU_R14000:
905 case CPU_4KC:
906 case CPU_SB1:
907 case CPU_SB1A:
908 case CPU_4KSC:
909 case CPU_20KC:
910 case CPU_25KF:
911 case CPU_LOONGSON2:
912 if (m4kc_tlbp_war())
913 i_nop(p);
914 tlbw(p);
915 break;
917 case CPU_NEVADA:
918 i_nop(p); /* QED specifies 2 nops hazard */
920 * This branch uses up a mtc0 hazard nop slot and saves
921 * a nop after the tlbw instruction.
923 il_bgezl(p, r, 0, label_tlbw_hazard);
924 tlbw(p);
925 l_tlbw_hazard(l, *p);
926 break;
928 case CPU_RM7000:
929 i_nop(p);
930 i_nop(p);
931 i_nop(p);
932 i_nop(p);
933 tlbw(p);
934 break;
936 case CPU_4KEC:
937 case CPU_24K:
938 case CPU_34K:
939 case CPU_74K:
940 i_ehb(p);
941 tlbw(p);
942 break;
944 case CPU_RM9000:
946 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
947 * use of the JTLB for instructions should not occur for 4
948 * cpu cycles and use for data translations should not occur
949 * for 3 cpu cycles.
951 i_ssnop(p);
952 i_ssnop(p);
953 i_ssnop(p);
954 i_ssnop(p);
955 tlbw(p);
956 i_ssnop(p);
957 i_ssnop(p);
958 i_ssnop(p);
959 i_ssnop(p);
960 break;
962 case CPU_VR4111:
963 case CPU_VR4121:
964 case CPU_VR4122:
965 case CPU_VR4181:
966 case CPU_VR4181A:
967 i_nop(p);
968 i_nop(p);
969 tlbw(p);
970 i_nop(p);
971 i_nop(p);
972 break;
974 case CPU_VR4131:
975 case CPU_VR4133:
976 case CPU_R5432:
977 i_nop(p);
978 i_nop(p);
979 tlbw(p);
980 break;
982 default:
983 panic("No TLB refill handler yet (CPU type: %d)",
984 current_cpu_data.cputype);
985 break;
989 #ifdef CONFIG_64BIT
991 * TMP and PTR are scratch.
992 * TMP will be clobbered, PTR will hold the pmd entry.
994 static __init void
995 build_get_pmde64(u32 **p, struct label **l, struct reloc **r,
996 unsigned int tmp, unsigned int ptr)
998 long pgdc = (long)pgd_current;
1001 * The vmalloc handling is not in the hotpath.
1003 i_dmfc0(p, tmp, C0_BADVADDR);
1004 #ifdef MODULE_START
1005 il_bltz(p, r, tmp, label_module_alloc);
1006 #else
1007 il_bltz(p, r, tmp, label_vmalloc);
1008 #endif
1009 /* No i_nop needed here, since the next insn doesn't touch TMP. */
1011 #ifdef CONFIG_SMP
1012 # ifdef CONFIG_MIPS_MT_SMTC
1014 * SMTC uses TCBind value as "CPU" index
1016 i_mfc0(p, ptr, C0_TCBIND);
1017 i_dsrl(p, ptr, ptr, 19);
1018 # else
1020 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
1021 * stored in CONTEXT.
1023 i_dmfc0(p, ptr, C0_CONTEXT);
1024 i_dsrl(p, ptr, ptr, 23);
1025 #endif
1026 i_LA_mostly(p, tmp, pgdc);
1027 i_daddu(p, ptr, ptr, tmp);
1028 i_dmfc0(p, tmp, C0_BADVADDR);
1029 i_ld(p, ptr, rel_lo(pgdc), ptr);
1030 #else
1031 i_LA_mostly(p, ptr, pgdc);
1032 i_ld(p, ptr, rel_lo(pgdc), ptr);
1033 #endif
1035 l_vmalloc_done(l, *p);
1037 if (PGDIR_SHIFT - 3 < 32) /* get pgd offset in bytes */
1038 i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3);
1039 else
1040 i_dsrl32(p, tmp, tmp, PGDIR_SHIFT - 3 - 32);
1042 i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
1043 i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
1044 i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1045 i_ld(p, ptr, 0, ptr); /* get pmd pointer */
1046 i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
1047 i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
1048 i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
1052 * BVADDR is the faulting address, PTR is scratch.
1053 * PTR will hold the pgd for vmalloc.
1055 static __init void
1056 build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r,
1057 unsigned int bvaddr, unsigned int ptr)
1059 long swpd = (long)swapper_pg_dir;
1061 #ifdef MODULE_START
1062 long modd = (long)module_pg_dir;
1064 l_module_alloc(l, *p);
1066 * Assumption:
1067 * VMALLOC_START >= 0xc000000000000000UL
1068 * MODULE_START >= 0xe000000000000000UL
1070 i_SLL(p, ptr, bvaddr, 2);
1071 il_bgez(p, r, ptr, label_vmalloc);
1073 if (in_compat_space_p(MODULE_START) && !rel_lo(MODULE_START)) {
1074 i_lui(p, ptr, rel_hi(MODULE_START)); /* delay slot */
1075 } else {
1076 /* unlikely configuration */
1077 i_nop(p); /* delay slot */
1078 i_LA(p, ptr, MODULE_START);
1080 i_dsubu(p, bvaddr, bvaddr, ptr);
1082 if (in_compat_space_p(modd) && !rel_lo(modd)) {
1083 il_b(p, r, label_vmalloc_done);
1084 i_lui(p, ptr, rel_hi(modd));
1085 } else {
1086 i_LA_mostly(p, ptr, modd);
1087 il_b(p, r, label_vmalloc_done);
1088 i_daddiu(p, ptr, ptr, rel_lo(modd));
1091 l_vmalloc(l, *p);
1092 if (in_compat_space_p(MODULE_START) && !rel_lo(MODULE_START) &&
1093 MODULE_START << 32 == VMALLOC_START)
1094 i_dsll32(p, ptr, ptr, 0); /* typical case */
1095 else
1096 i_LA(p, ptr, VMALLOC_START);
1097 #else
1098 l_vmalloc(l, *p);
1099 i_LA(p, ptr, VMALLOC_START);
1100 #endif
1101 i_dsubu(p, bvaddr, bvaddr, ptr);
1103 if (in_compat_space_p(swpd) && !rel_lo(swpd)) {
1104 il_b(p, r, label_vmalloc_done);
1105 i_lui(p, ptr, rel_hi(swpd));
1106 } else {
1107 i_LA_mostly(p, ptr, swpd);
1108 il_b(p, r, label_vmalloc_done);
1109 i_daddiu(p, ptr, ptr, rel_lo(swpd));
1113 #else /* !CONFIG_64BIT */
1116 * TMP and PTR are scratch.
1117 * TMP will be clobbered, PTR will hold the pgd entry.
1119 static __init void __maybe_unused
1120 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
1122 long pgdc = (long)pgd_current;
1124 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
1125 #ifdef CONFIG_SMP
1126 #ifdef CONFIG_MIPS_MT_SMTC
1128 * SMTC uses TCBind value as "CPU" index
1130 i_mfc0(p, ptr, C0_TCBIND);
1131 i_LA_mostly(p, tmp, pgdc);
1132 i_srl(p, ptr, ptr, 19);
1133 #else
1135 * smp_processor_id() << 3 is stored in CONTEXT.
1137 i_mfc0(p, ptr, C0_CONTEXT);
1138 i_LA_mostly(p, tmp, pgdc);
1139 i_srl(p, ptr, ptr, 23);
1140 #endif
1141 i_addu(p, ptr, tmp, ptr);
1142 #else
1143 i_LA_mostly(p, ptr, pgdc);
1144 #endif
1145 i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1146 i_lw(p, ptr, rel_lo(pgdc), ptr);
1147 i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
1148 i_sll(p, tmp, tmp, PGD_T_LOG2);
1149 i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
1152 #endif /* !CONFIG_64BIT */
1154 static __init void build_adjust_context(u32 **p, unsigned int ctx)
1156 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
1157 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1159 switch (current_cpu_data.cputype) {
1160 case CPU_VR41XX:
1161 case CPU_VR4111:
1162 case CPU_VR4121:
1163 case CPU_VR4122:
1164 case CPU_VR4131:
1165 case CPU_VR4181:
1166 case CPU_VR4181A:
1167 case CPU_VR4133:
1168 shift += 2;
1169 break;
1171 default:
1172 break;
1175 if (shift)
1176 i_SRL(p, ctx, ctx, shift);
1177 i_andi(p, ctx, ctx, mask);
1180 static __init void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1183 * Bug workaround for the Nevada. It seems as if under certain
1184 * circumstances the move from cp0_context might produce a
1185 * bogus result when the mfc0 instruction and its consumer are
1186 * in a different cacheline or a load instruction, probably any
1187 * memory reference, is between them.
1189 switch (current_cpu_data.cputype) {
1190 case CPU_NEVADA:
1191 i_LW(p, ptr, 0, ptr);
1192 GET_CONTEXT(p, tmp); /* get context reg */
1193 break;
1195 default:
1196 GET_CONTEXT(p, tmp); /* get context reg */
1197 i_LW(p, ptr, 0, ptr);
1198 break;
1201 build_adjust_context(p, tmp);
1202 i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1205 static __init void build_update_entries(u32 **p, unsigned int tmp,
1206 unsigned int ptep)
1209 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1210 * Kernel is a special case. Only a few CPUs use it.
1212 #ifdef CONFIG_64BIT_PHYS_ADDR
1213 if (cpu_has_64bits) {
1214 i_ld(p, tmp, 0, ptep); /* get even pte */
1215 i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1216 i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
1217 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1218 i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
1219 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1220 } else {
1221 int pte_off_even = sizeof(pte_t) / 2;
1222 int pte_off_odd = pte_off_even + sizeof(pte_t);
1224 /* The pte entries are pre-shifted */
1225 i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1226 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1227 i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1228 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1230 #else
1231 i_LW(p, tmp, 0, ptep); /* get even pte */
1232 i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1233 if (r45k_bvahwbug())
1234 build_tlb_probe_entry(p);
1235 i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
1236 if (r4k_250MHZhwbug())
1237 i_mtc0(p, 0, C0_ENTRYLO0);
1238 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1239 i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
1240 if (r45k_bvahwbug())
1241 i_mfc0(p, tmp, C0_INDEX);
1242 if (r4k_250MHZhwbug())
1243 i_mtc0(p, 0, C0_ENTRYLO1);
1244 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1245 #endif
1248 static void __init build_r4000_tlb_refill_handler(void)
1250 u32 *p = tlb_handler;
1251 struct label *l = labels;
1252 struct reloc *r = relocs;
1253 u32 *f;
1254 unsigned int final_len;
1255 int i;
1257 memset(tlb_handler, 0, sizeof(tlb_handler));
1258 memset(labels, 0, sizeof(labels));
1259 memset(relocs, 0, sizeof(relocs));
1260 memset(final_handler, 0, sizeof(final_handler));
1263 * create the plain linear handler
1265 if (bcm1250_m3_war()) {
1266 i_MFC0(&p, K0, C0_BADVADDR);
1267 i_MFC0(&p, K1, C0_ENTRYHI);
1268 i_xor(&p, K0, K0, K1);
1269 i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1270 il_bnez(&p, &r, K0, label_leave);
1271 /* No need for i_nop */
1274 #ifdef CONFIG_64BIT
1275 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1276 #else
1277 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1278 #endif
1280 build_get_ptep(&p, K0, K1);
1281 build_update_entries(&p, K0, K1);
1282 build_tlb_write_entry(&p, &l, &r, tlb_random);
1283 l_leave(&l, p);
1284 i_eret(&p); /* return from trap */
1286 #ifdef CONFIG_64BIT
1287 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
1288 #endif
1291 * Overflow check: For the 64bit handler, we need at least one
1292 * free instruction slot for the wrap-around branch. In worst
1293 * case, if the intended insertion point is a delay slot, we
1294 * need three, with the second nop'ed and the third being
1295 * unused.
1297 /* Loongson2 ebase is different than r4k, we have more space */
1298 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1299 if ((p - tlb_handler) > 64)
1300 panic("TLB refill handler space exceeded");
1301 #else
1302 if (((p - tlb_handler) > 63)
1303 || (((p - tlb_handler) > 61)
1304 && insn_has_bdelay(relocs, tlb_handler + 29)))
1305 panic("TLB refill handler space exceeded");
1306 #endif
1309 * Now fold the handler in the TLB refill handler space.
1311 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1312 f = final_handler;
1313 /* Simplest case, just copy the handler. */
1314 copy_handler(relocs, labels, tlb_handler, p, f);
1315 final_len = p - tlb_handler;
1316 #else /* CONFIG_64BIT */
1317 f = final_handler + 32;
1318 if ((p - tlb_handler) <= 32) {
1319 /* Just copy the handler. */
1320 copy_handler(relocs, labels, tlb_handler, p, f);
1321 final_len = p - tlb_handler;
1322 } else {
1323 u32 *split = tlb_handler + 30;
1326 * Find the split point.
1328 if (insn_has_bdelay(relocs, split - 1))
1329 split--;
1331 /* Copy first part of the handler. */
1332 copy_handler(relocs, labels, tlb_handler, split, f);
1333 f += split - tlb_handler;
1335 /* Insert branch. */
1336 l_split(&l, final_handler);
1337 il_b(&f, &r, label_split);
1338 if (insn_has_bdelay(relocs, split))
1339 i_nop(&f);
1340 else {
1341 copy_handler(relocs, labels, split, split + 1, f);
1342 move_labels(labels, f, f + 1, -1);
1343 f++;
1344 split++;
1347 /* Copy the rest of the handler. */
1348 copy_handler(relocs, labels, split, p, final_handler);
1349 final_len = (f - (final_handler + 32)) + (p - split);
1351 #endif /* CONFIG_64BIT */
1353 resolve_relocs(relocs, labels);
1354 pr_info("Synthesized TLB refill handler (%u instructions).\n",
1355 final_len);
1357 f = final_handler;
1358 #if defined(CONFIG_64BIT) && !defined(CONFIG_CPU_LOONGSON2)
1359 if (final_len > 32)
1360 final_len = 64;
1361 else
1362 f = final_handler + 32;
1363 #endif /* CONFIG_64BIT */
1364 pr_debug("\t.set push\n");
1365 pr_debug("\t.set noreorder\n");
1366 for (i = 0; i < final_len; i++)
1367 pr_debug("\t.word 0x%08x\n", f[i]);
1368 pr_debug("\t.set pop\n");
1370 memcpy((void *)ebase, final_handler, 0x100);
1374 * TLB load/store/modify handlers.
1376 * Only the fastpath gets synthesized at runtime, the slowpath for
1377 * do_page_fault remains normal asm.
1379 extern void tlb_do_page_fault_0(void);
1380 extern void tlb_do_page_fault_1(void);
1382 #define __tlb_handler_align \
1383 __attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT)))
1386 * 128 instructions for the fastpath handler is generous and should
1387 * never be exceeded.
1389 #define FASTPATH_SIZE 128
1391 u32 __tlb_handler_align handle_tlbl[FASTPATH_SIZE];
1392 u32 __tlb_handler_align handle_tlbs[FASTPATH_SIZE];
1393 u32 __tlb_handler_align handle_tlbm[FASTPATH_SIZE];
1395 static void __init
1396 iPTE_LW(u32 **p, struct label **l, unsigned int pte, unsigned int ptr)
1398 #ifdef CONFIG_SMP
1399 # ifdef CONFIG_64BIT_PHYS_ADDR
1400 if (cpu_has_64bits)
1401 i_lld(p, pte, 0, ptr);
1402 else
1403 # endif
1404 i_LL(p, pte, 0, ptr);
1405 #else
1406 # ifdef CONFIG_64BIT_PHYS_ADDR
1407 if (cpu_has_64bits)
1408 i_ld(p, pte, 0, ptr);
1409 else
1410 # endif
1411 i_LW(p, pte, 0, ptr);
1412 #endif
1415 static void __init
1416 iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, unsigned int ptr,
1417 unsigned int mode)
1419 #ifdef CONFIG_64BIT_PHYS_ADDR
1420 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1421 #endif
1423 i_ori(p, pte, pte, mode);
1424 #ifdef CONFIG_SMP
1425 # ifdef CONFIG_64BIT_PHYS_ADDR
1426 if (cpu_has_64bits)
1427 i_scd(p, pte, 0, ptr);
1428 else
1429 # endif
1430 i_SC(p, pte, 0, ptr);
1432 if (r10000_llsc_war())
1433 il_beqzl(p, r, pte, label_smp_pgtable_change);
1434 else
1435 il_beqz(p, r, pte, label_smp_pgtable_change);
1437 # ifdef CONFIG_64BIT_PHYS_ADDR
1438 if (!cpu_has_64bits) {
1439 /* no i_nop needed */
1440 i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1441 i_ori(p, pte, pte, hwmode);
1442 i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1443 il_beqz(p, r, pte, label_smp_pgtable_change);
1444 /* no i_nop needed */
1445 i_lw(p, pte, 0, ptr);
1446 } else
1447 i_nop(p);
1448 # else
1449 i_nop(p);
1450 # endif
1451 #else
1452 # ifdef CONFIG_64BIT_PHYS_ADDR
1453 if (cpu_has_64bits)
1454 i_sd(p, pte, 0, ptr);
1455 else
1456 # endif
1457 i_SW(p, pte, 0, ptr);
1459 # ifdef CONFIG_64BIT_PHYS_ADDR
1460 if (!cpu_has_64bits) {
1461 i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1462 i_ori(p, pte, pte, hwmode);
1463 i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1464 i_lw(p, pte, 0, ptr);
1466 # endif
1467 #endif
1471 * Check if PTE is present, if not then jump to LABEL. PTR points to
1472 * the page table where this PTE is located, PTE will be re-loaded
1473 * with it's original value.
1475 static void __init
1476 build_pte_present(u32 **p, struct label **l, struct reloc **r,
1477 unsigned int pte, unsigned int ptr, enum label_id lid)
1479 i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1480 i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1481 il_bnez(p, r, pte, lid);
1482 iPTE_LW(p, l, pte, ptr);
1485 /* Make PTE valid, store result in PTR. */
1486 static void __init
1487 build_make_valid(u32 **p, struct reloc **r, unsigned int pte,
1488 unsigned int ptr)
1490 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1492 iPTE_SW(p, r, pte, ptr, mode);
1496 * Check if PTE can be written to, if not branch to LABEL. Regardless
1497 * restore PTE with value from PTR when done.
1499 static void __init
1500 build_pte_writable(u32 **p, struct label **l, struct reloc **r,
1501 unsigned int pte, unsigned int ptr, enum label_id lid)
1503 i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1504 i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1505 il_bnez(p, r, pte, lid);
1506 iPTE_LW(p, l, pte, ptr);
1509 /* Make PTE writable, update software status bits as well, then store
1510 * at PTR.
1512 static void __init
1513 build_make_write(u32 **p, struct reloc **r, unsigned int pte,
1514 unsigned int ptr)
1516 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1517 | _PAGE_DIRTY);
1519 iPTE_SW(p, r, pte, ptr, mode);
1523 * Check if PTE can be modified, if not branch to LABEL. Regardless
1524 * restore PTE with value from PTR when done.
1526 static void __init
1527 build_pte_modifiable(u32 **p, struct label **l, struct reloc **r,
1528 unsigned int pte, unsigned int ptr, enum label_id lid)
1530 i_andi(p, pte, pte, _PAGE_WRITE);
1531 il_beqz(p, r, pte, lid);
1532 iPTE_LW(p, l, pte, ptr);
1536 * R3000 style TLB load/store/modify handlers.
1540 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1541 * Then it returns.
1543 static void __init
1544 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1546 i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1547 i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1548 i_tlbwi(p);
1549 i_jr(p, tmp);
1550 i_rfe(p); /* branch delay */
1554 * This places the pte into ENTRYLO0 and writes it with tlbwi
1555 * or tlbwr as appropriate. This is because the index register
1556 * may have the probe fail bit set as a result of a trap on a
1557 * kseg2 access, i.e. without refill. Then it returns.
1559 static void __init
1560 build_r3000_tlb_reload_write(u32 **p, struct label **l, struct reloc **r,
1561 unsigned int pte, unsigned int tmp)
1563 i_mfc0(p, tmp, C0_INDEX);
1564 i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1565 il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1566 i_mfc0(p, tmp, C0_EPC); /* branch delay */
1567 i_tlbwi(p); /* cp0 delay */
1568 i_jr(p, tmp);
1569 i_rfe(p); /* branch delay */
1570 l_r3000_write_probe_fail(l, *p);
1571 i_tlbwr(p); /* cp0 delay */
1572 i_jr(p, tmp);
1573 i_rfe(p); /* branch delay */
1576 static void __init
1577 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1578 unsigned int ptr)
1580 long pgdc = (long)pgd_current;
1582 i_mfc0(p, pte, C0_BADVADDR);
1583 i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */
1584 i_lw(p, ptr, rel_lo(pgdc), ptr);
1585 i_srl(p, pte, pte, 22); /* load delay */
1586 i_sll(p, pte, pte, 2);
1587 i_addu(p, ptr, ptr, pte);
1588 i_mfc0(p, pte, C0_CONTEXT);
1589 i_lw(p, ptr, 0, ptr); /* cp0 delay */
1590 i_andi(p, pte, pte, 0xffc); /* load delay */
1591 i_addu(p, ptr, ptr, pte);
1592 i_lw(p, pte, 0, ptr);
1593 i_tlbp(p); /* load delay */
1596 static void __init build_r3000_tlb_load_handler(void)
1598 u32 *p = handle_tlbl;
1599 struct label *l = labels;
1600 struct reloc *r = relocs;
1601 int i;
1603 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1604 memset(labels, 0, sizeof(labels));
1605 memset(relocs, 0, sizeof(relocs));
1607 build_r3000_tlbchange_handler_head(&p, K0, K1);
1608 build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1609 i_nop(&p); /* load delay */
1610 build_make_valid(&p, &r, K0, K1);
1611 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1613 l_nopage_tlbl(&l, p);
1614 i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1615 i_nop(&p);
1617 if ((p - handle_tlbl) > FASTPATH_SIZE)
1618 panic("TLB load handler fastpath space exceeded");
1620 resolve_relocs(relocs, labels);
1621 pr_info("Synthesized TLB load handler fastpath (%u instructions).\n",
1622 (unsigned int)(p - handle_tlbl));
1624 pr_debug("\t.set push\n");
1625 pr_debug("\t.set noreorder\n");
1626 for (i = 0; i < (p - handle_tlbl); i++)
1627 pr_debug("\t.word 0x%08x\n", handle_tlbl[i]);
1628 pr_debug("\t.set pop\n");
1631 static void __init build_r3000_tlb_store_handler(void)
1633 u32 *p = handle_tlbs;
1634 struct label *l = labels;
1635 struct reloc *r = relocs;
1636 int i;
1638 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1639 memset(labels, 0, sizeof(labels));
1640 memset(relocs, 0, sizeof(relocs));
1642 build_r3000_tlbchange_handler_head(&p, K0, K1);
1643 build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1644 i_nop(&p); /* load delay */
1645 build_make_write(&p, &r, K0, K1);
1646 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1648 l_nopage_tlbs(&l, p);
1649 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1650 i_nop(&p);
1652 if ((p - handle_tlbs) > FASTPATH_SIZE)
1653 panic("TLB store handler fastpath space exceeded");
1655 resolve_relocs(relocs, labels);
1656 pr_info("Synthesized TLB store handler fastpath (%u instructions).\n",
1657 (unsigned int)(p - handle_tlbs));
1659 pr_debug("\t.set push\n");
1660 pr_debug("\t.set noreorder\n");
1661 for (i = 0; i < (p - handle_tlbs); i++)
1662 pr_debug("\t.word 0x%08x\n", handle_tlbs[i]);
1663 pr_debug("\t.set pop\n");
1666 static void __init build_r3000_tlb_modify_handler(void)
1668 u32 *p = handle_tlbm;
1669 struct label *l = labels;
1670 struct reloc *r = relocs;
1671 int i;
1673 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1674 memset(labels, 0, sizeof(labels));
1675 memset(relocs, 0, sizeof(relocs));
1677 build_r3000_tlbchange_handler_head(&p, K0, K1);
1678 build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1679 i_nop(&p); /* load delay */
1680 build_make_write(&p, &r, K0, K1);
1681 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1683 l_nopage_tlbm(&l, p);
1684 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1685 i_nop(&p);
1687 if ((p - handle_tlbm) > FASTPATH_SIZE)
1688 panic("TLB modify handler fastpath space exceeded");
1690 resolve_relocs(relocs, labels);
1691 pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n",
1692 (unsigned int)(p - handle_tlbm));
1694 pr_debug("\t.set push\n");
1695 pr_debug("\t.set noreorder\n");
1696 for (i = 0; i < (p - handle_tlbm); i++)
1697 pr_debug("\t.word 0x%08x\n", handle_tlbm[i]);
1698 pr_debug("\t.set pop\n");
1702 * R4000 style TLB load/store/modify handlers.
1704 static void __init
1705 build_r4000_tlbchange_handler_head(u32 **p, struct label **l,
1706 struct reloc **r, unsigned int pte,
1707 unsigned int ptr)
1709 #ifdef CONFIG_64BIT
1710 build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
1711 #else
1712 build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
1713 #endif
1715 i_MFC0(p, pte, C0_BADVADDR);
1716 i_LW(p, ptr, 0, ptr);
1717 i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1718 i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1719 i_ADDU(p, ptr, ptr, pte);
1721 #ifdef CONFIG_SMP
1722 l_smp_pgtable_change(l, *p);
1723 # endif
1724 iPTE_LW(p, l, pte, ptr); /* get even pte */
1725 if (!m4kc_tlbp_war())
1726 build_tlb_probe_entry(p);
1729 static void __init
1730 build_r4000_tlbchange_handler_tail(u32 **p, struct label **l,
1731 struct reloc **r, unsigned int tmp,
1732 unsigned int ptr)
1734 i_ori(p, ptr, ptr, sizeof(pte_t));
1735 i_xori(p, ptr, ptr, sizeof(pte_t));
1736 build_update_entries(p, tmp, ptr);
1737 build_tlb_write_entry(p, l, r, tlb_indexed);
1738 l_leave(l, *p);
1739 i_eret(p); /* return from trap */
1741 #ifdef CONFIG_64BIT
1742 build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
1743 #endif
1746 static void __init build_r4000_tlb_load_handler(void)
1748 u32 *p = handle_tlbl;
1749 struct label *l = labels;
1750 struct reloc *r = relocs;
1751 int i;
1753 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1754 memset(labels, 0, sizeof(labels));
1755 memset(relocs, 0, sizeof(relocs));
1757 if (bcm1250_m3_war()) {
1758 i_MFC0(&p, K0, C0_BADVADDR);
1759 i_MFC0(&p, K1, C0_ENTRYHI);
1760 i_xor(&p, K0, K0, K1);
1761 i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1762 il_bnez(&p, &r, K0, label_leave);
1763 /* No need for i_nop */
1766 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1767 build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1768 if (m4kc_tlbp_war())
1769 build_tlb_probe_entry(&p);
1770 build_make_valid(&p, &r, K0, K1);
1771 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1773 l_nopage_tlbl(&l, p);
1774 i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1775 i_nop(&p);
1777 if ((p - handle_tlbl) > FASTPATH_SIZE)
1778 panic("TLB load handler fastpath space exceeded");
1780 resolve_relocs(relocs, labels);
1781 pr_info("Synthesized TLB load handler fastpath (%u instructions).\n",
1782 (unsigned int)(p - handle_tlbl));
1784 pr_debug("\t.set push\n");
1785 pr_debug("\t.set noreorder\n");
1786 for (i = 0; i < (p - handle_tlbl); i++)
1787 pr_debug("\t.word 0x%08x\n", handle_tlbl[i]);
1788 pr_debug("\t.set pop\n");
1791 static void __init build_r4000_tlb_store_handler(void)
1793 u32 *p = handle_tlbs;
1794 struct label *l = labels;
1795 struct reloc *r = relocs;
1796 int i;
1798 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1799 memset(labels, 0, sizeof(labels));
1800 memset(relocs, 0, sizeof(relocs));
1802 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1803 build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1804 if (m4kc_tlbp_war())
1805 build_tlb_probe_entry(&p);
1806 build_make_write(&p, &r, K0, K1);
1807 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1809 l_nopage_tlbs(&l, p);
1810 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1811 i_nop(&p);
1813 if ((p - handle_tlbs) > FASTPATH_SIZE)
1814 panic("TLB store handler fastpath space exceeded");
1816 resolve_relocs(relocs, labels);
1817 pr_info("Synthesized TLB store handler fastpath (%u instructions).\n",
1818 (unsigned int)(p - handle_tlbs));
1820 pr_debug("\t.set push\n");
1821 pr_debug("\t.set noreorder\n");
1822 for (i = 0; i < (p - handle_tlbs); i++)
1823 pr_debug("\t.word 0x%08x\n", handle_tlbs[i]);
1824 pr_debug("\t.set pop\n");
1827 static void __init build_r4000_tlb_modify_handler(void)
1829 u32 *p = handle_tlbm;
1830 struct label *l = labels;
1831 struct reloc *r = relocs;
1832 int i;
1834 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1835 memset(labels, 0, sizeof(labels));
1836 memset(relocs, 0, sizeof(relocs));
1838 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1839 build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1840 if (m4kc_tlbp_war())
1841 build_tlb_probe_entry(&p);
1842 /* Present and writable bits set, set accessed and dirty bits. */
1843 build_make_write(&p, &r, K0, K1);
1844 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1846 l_nopage_tlbm(&l, p);
1847 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1848 i_nop(&p);
1850 if ((p - handle_tlbm) > FASTPATH_SIZE)
1851 panic("TLB modify handler fastpath space exceeded");
1853 resolve_relocs(relocs, labels);
1854 pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n",
1855 (unsigned int)(p - handle_tlbm));
1857 pr_debug("\t.set push\n");
1858 pr_debug("\t.set noreorder\n");
1859 for (i = 0; i < (p - handle_tlbm); i++)
1860 pr_debug("\t.word 0x%08x\n", handle_tlbm[i]);
1861 pr_debug("\t.set pop\n");
1864 void __init build_tlb_refill_handler(void)
1867 * The refill handler is generated per-CPU, multi-node systems
1868 * may have local storage for it. The other handlers are only
1869 * needed once.
1871 static int run_once = 0;
1873 switch (current_cpu_data.cputype) {
1874 case CPU_R2000:
1875 case CPU_R3000:
1876 case CPU_R3000A:
1877 case CPU_R3081E:
1878 case CPU_TX3912:
1879 case CPU_TX3922:
1880 case CPU_TX3927:
1881 build_r3000_tlb_refill_handler();
1882 if (!run_once) {
1883 build_r3000_tlb_load_handler();
1884 build_r3000_tlb_store_handler();
1885 build_r3000_tlb_modify_handler();
1886 run_once++;
1888 break;
1890 case CPU_R6000:
1891 case CPU_R6000A:
1892 panic("No R6000 TLB refill handler yet");
1893 break;
1895 case CPU_R8000:
1896 panic("No R8000 TLB refill handler yet");
1897 break;
1899 default:
1900 build_r4000_tlb_refill_handler();
1901 if (!run_once) {
1902 build_r4000_tlb_load_handler();
1903 build_r4000_tlb_store_handler();
1904 build_r4000_tlb_modify_handler();
1905 run_once++;
1910 void __init flush_tlb_handlers(void)
1912 flush_icache_range((unsigned long)handle_tlbl,
1913 (unsigned long)handle_tlbl + sizeof(handle_tlbl));
1914 flush_icache_range((unsigned long)handle_tlbs,
1915 (unsigned long)handle_tlbs + sizeof(handle_tlbs));
1916 flush_icache_range((unsigned long)handle_tlbm,
1917 (unsigned long)handle_tlbm + sizeof(handle_tlbm));