2 * Generic pidhash and scalable, time-bounded PID allocator
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/bootmem.h>
28 #include <linux/hash.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/init_task.h>
32 #define pid_hashfn(nr, ns) \
33 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
34 static struct hlist_head
*pid_hash
;
35 static int pidhash_shift
;
36 struct pid init_struct_pid
= INIT_STRUCT_PID
;
38 int pid_max
= PID_MAX_DEFAULT
;
40 #define RESERVED_PIDS 300
42 int pid_max_min
= RESERVED_PIDS
+ 1;
43 int pid_max_max
= PID_MAX_LIMIT
;
45 #define BITS_PER_PAGE (PAGE_SIZE*8)
46 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
48 static inline int mk_pid(struct pid_namespace
*pid_ns
,
49 struct pidmap
*map
, int off
)
51 return (map
- pid_ns
->pidmap
)*BITS_PER_PAGE
+ off
;
54 #define find_next_offset(map, off) \
55 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
58 * PID-map pages start out as NULL, they get allocated upon
59 * first use and are never deallocated. This way a low pid_max
60 * value does not cause lots of bitmaps to be allocated, but
61 * the scheme scales to up to 4 million PIDs, runtime.
63 struct pid_namespace init_pid_ns
= {
65 .refcount
= ATOMIC_INIT(2),
68 [ 0 ... PIDMAP_ENTRIES
-1] = { ATOMIC_INIT(BITS_PER_PAGE
), NULL
}
72 .child_reaper
= &init_task
,
75 int is_global_init(struct task_struct
*tsk
)
77 return tsk
== init_pid_ns
.child_reaper
;
81 * Note: disable interrupts while the pidmap_lock is held as an
82 * interrupt might come in and do read_lock(&tasklist_lock).
84 * If we don't disable interrupts there is a nasty deadlock between
85 * detach_pid()->free_pid() and another cpu that does
86 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
87 * read_lock(&tasklist_lock);
89 * After we clean up the tasklist_lock and know there are no
90 * irq handlers that take it we can leave the interrupts enabled.
91 * For now it is easier to be safe than to prove it can't happen.
94 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(pidmap_lock
);
96 static fastcall
void free_pidmap(struct pid_namespace
*pid_ns
, int pid
)
98 struct pidmap
*map
= pid_ns
->pidmap
+ pid
/ BITS_PER_PAGE
;
99 int offset
= pid
& BITS_PER_PAGE_MASK
;
101 clear_bit(offset
, map
->page
);
102 atomic_inc(&map
->nr_free
);
105 static int alloc_pidmap(struct pid_namespace
*pid_ns
)
107 int i
, offset
, max_scan
, pid
, last
= pid_ns
->last_pid
;
113 offset
= pid
& BITS_PER_PAGE_MASK
;
114 map
= &pid_ns
->pidmap
[pid
/BITS_PER_PAGE
];
115 max_scan
= (pid_max
+ BITS_PER_PAGE
- 1)/BITS_PER_PAGE
- !offset
;
116 for (i
= 0; i
<= max_scan
; ++i
) {
117 if (unlikely(!map
->page
)) {
118 void *page
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
120 * Free the page if someone raced with us
123 spin_lock_irq(&pidmap_lock
);
128 spin_unlock_irq(&pidmap_lock
);
129 if (unlikely(!map
->page
))
132 if (likely(atomic_read(&map
->nr_free
))) {
134 if (!test_and_set_bit(offset
, map
->page
)) {
135 atomic_dec(&map
->nr_free
);
136 pid_ns
->last_pid
= pid
;
139 offset
= find_next_offset(map
, offset
);
140 pid
= mk_pid(pid_ns
, map
, offset
);
142 * find_next_offset() found a bit, the pid from it
143 * is in-bounds, and if we fell back to the last
144 * bitmap block and the final block was the same
145 * as the starting point, pid is before last_pid.
147 } while (offset
< BITS_PER_PAGE
&& pid
< pid_max
&&
148 (i
!= max_scan
|| pid
< last
||
149 !((last
+1) & BITS_PER_PAGE_MASK
)));
151 if (map
< &pid_ns
->pidmap
[(pid_max
-1)/BITS_PER_PAGE
]) {
155 map
= &pid_ns
->pidmap
[0];
156 offset
= RESERVED_PIDS
;
157 if (unlikely(last
== offset
))
160 pid
= mk_pid(pid_ns
, map
, offset
);
165 static int next_pidmap(struct pid_namespace
*pid_ns
, int last
)
168 struct pidmap
*map
, *end
;
170 offset
= (last
+ 1) & BITS_PER_PAGE_MASK
;
171 map
= &pid_ns
->pidmap
[(last
+ 1)/BITS_PER_PAGE
];
172 end
= &pid_ns
->pidmap
[PIDMAP_ENTRIES
];
173 for (; map
< end
; map
++, offset
= 0) {
174 if (unlikely(!map
->page
))
176 offset
= find_next_bit((map
)->page
, BITS_PER_PAGE
, offset
);
177 if (offset
< BITS_PER_PAGE
)
178 return mk_pid(pid_ns
, map
, offset
);
183 fastcall
void put_pid(struct pid
*pid
)
185 struct pid_namespace
*ns
;
190 ns
= pid
->numbers
[pid
->level
].ns
;
191 if ((atomic_read(&pid
->count
) == 1) ||
192 atomic_dec_and_test(&pid
->count
)) {
193 kmem_cache_free(ns
->pid_cachep
, pid
);
194 if (ns
!= &init_pid_ns
)
198 EXPORT_SYMBOL_GPL(put_pid
);
200 static void delayed_put_pid(struct rcu_head
*rhp
)
202 struct pid
*pid
= container_of(rhp
, struct pid
, rcu
);
206 fastcall
void free_pid(struct pid
*pid
)
208 /* We can be called with write_lock_irq(&tasklist_lock) held */
212 spin_lock_irqsave(&pidmap_lock
, flags
);
213 hlist_del_rcu(&pid
->pid_chain
);
214 spin_unlock_irqrestore(&pidmap_lock
, flags
);
216 for (i
= 0; i
<= pid
->level
; i
++)
217 free_pidmap(pid
->numbers
[i
].ns
, pid
->numbers
[i
].nr
);
219 call_rcu(&pid
->rcu
, delayed_put_pid
);
222 struct pid
*alloc_pid(struct pid_namespace
*ns
)
227 struct pid_namespace
*tmp
;
229 pid
= kmem_cache_alloc(ns
->pid_cachep
, GFP_KERNEL
);
234 for (i
= ns
->level
; i
>= 0; i
--) {
235 nr
= alloc_pidmap(tmp
);
239 pid
->numbers
[i
].nr
= nr
;
240 pid
->numbers
[i
].ns
= tmp
;
244 if (ns
!= &init_pid_ns
)
247 pid
->level
= ns
->level
;
248 pid
->nr
= pid
->numbers
[0].nr
;
249 atomic_set(&pid
->count
, 1);
250 for (type
= 0; type
< PIDTYPE_MAX
; ++type
)
251 INIT_HLIST_HEAD(&pid
->tasks
[type
]);
253 spin_lock_irq(&pidmap_lock
);
254 hlist_add_head_rcu(&pid
->pid_chain
, &pid_hash
[pid_hashfn(pid
->nr
, ns
)]);
255 spin_unlock_irq(&pidmap_lock
);
261 for (i
++; i
<= ns
->level
; i
++)
262 free_pidmap(pid
->numbers
[i
].ns
, pid
->numbers
[i
].nr
);
264 kmem_cache_free(ns
->pid_cachep
, pid
);
269 struct pid
* fastcall
find_pid(int nr
)
271 struct hlist_node
*elem
;
274 hlist_for_each_entry_rcu(pid
, elem
,
275 &pid_hash
[pid_hashfn(nr
, &init_pid_ns
)], pid_chain
) {
281 EXPORT_SYMBOL_GPL(find_pid
);
284 * attach_pid() must be called with the tasklist_lock write-held.
286 int fastcall
attach_pid(struct task_struct
*task
, enum pid_type type
,
289 struct pid_link
*link
;
291 link
= &task
->pids
[type
];
293 hlist_add_head_rcu(&link
->node
, &pid
->tasks
[type
]);
298 void fastcall
detach_pid(struct task_struct
*task
, enum pid_type type
)
300 struct pid_link
*link
;
304 link
= &task
->pids
[type
];
307 hlist_del_rcu(&link
->node
);
310 for (tmp
= PIDTYPE_MAX
; --tmp
>= 0; )
311 if (!hlist_empty(&pid
->tasks
[tmp
]))
317 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
318 void fastcall
transfer_pid(struct task_struct
*old
, struct task_struct
*new,
321 new->pids
[type
].pid
= old
->pids
[type
].pid
;
322 hlist_replace_rcu(&old
->pids
[type
].node
, &new->pids
[type
].node
);
323 old
->pids
[type
].pid
= NULL
;
326 struct task_struct
* fastcall
pid_task(struct pid
*pid
, enum pid_type type
)
328 struct task_struct
*result
= NULL
;
330 struct hlist_node
*first
;
331 first
= rcu_dereference(pid
->tasks
[type
].first
);
333 result
= hlist_entry(first
, struct task_struct
, pids
[(type
)].node
);
339 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
341 struct task_struct
*find_task_by_pid_type(int type
, int nr
)
343 return pid_task(find_pid(nr
), type
);
346 EXPORT_SYMBOL(find_task_by_pid_type
);
348 struct pid
*get_task_pid(struct task_struct
*task
, enum pid_type type
)
352 pid
= get_pid(task
->pids
[type
].pid
);
357 struct task_struct
*fastcall
get_pid_task(struct pid
*pid
, enum pid_type type
)
359 struct task_struct
*result
;
361 result
= pid_task(pid
, type
);
363 get_task_struct(result
);
368 struct pid
*find_get_pid(pid_t nr
)
373 pid
= get_pid(find_pid(nr
));
380 * Used by proc to find the first pid that is greater then or equal to nr.
382 * If there is a pid at nr this function is exactly the same as find_pid.
384 struct pid
*find_ge_pid(int nr
)
392 nr
= next_pidmap(task_active_pid_ns(current
), nr
);
397 EXPORT_SYMBOL_GPL(find_get_pid
);
402 struct kmem_cache
*cachep
;
403 struct list_head list
;
406 static LIST_HEAD(pid_caches_lh
);
407 static DEFINE_MUTEX(pid_caches_mutex
);
410 * creates the kmem cache to allocate pids from.
411 * @nr_ids: the number of numerical ids this pid will have to carry
414 static struct kmem_cache
*create_pid_cachep(int nr_ids
)
416 struct pid_cache
*pcache
;
417 struct kmem_cache
*cachep
;
419 mutex_lock(&pid_caches_mutex
);
420 list_for_each_entry (pcache
, &pid_caches_lh
, list
)
421 if (pcache
->nr_ids
== nr_ids
)
424 pcache
= kmalloc(sizeof(struct pid_cache
), GFP_KERNEL
);
428 snprintf(pcache
->name
, sizeof(pcache
->name
), "pid_%d", nr_ids
);
429 cachep
= kmem_cache_create(pcache
->name
,
430 /* FIXME add numerical ids here */
431 sizeof(struct pid
), 0, SLAB_HWCACHE_ALIGN
, NULL
);
435 pcache
->nr_ids
= nr_ids
;
436 pcache
->cachep
= cachep
;
437 list_add(&pcache
->list
, &pid_caches_lh
);
439 mutex_unlock(&pid_caches_mutex
);
440 return pcache
->cachep
;
445 mutex_unlock(&pid_caches_mutex
);
449 struct pid_namespace
*copy_pid_ns(unsigned long flags
, struct pid_namespace
*old_ns
)
456 void free_pid_ns(struct kref
*kref
)
458 struct pid_namespace
*ns
;
460 ns
= container_of(kref
, struct pid_namespace
, kref
);
465 * The pid hash table is scaled according to the amount of memory in the
466 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
469 void __init
pidhash_init(void)
472 unsigned long megabytes
= nr_kernel_pages
>> (20 - PAGE_SHIFT
);
474 pidhash_shift
= max(4, fls(megabytes
* 4));
475 pidhash_shift
= min(12, pidhash_shift
);
476 pidhash_size
= 1 << pidhash_shift
;
478 printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
479 pidhash_size
, pidhash_shift
,
480 pidhash_size
* sizeof(struct hlist_head
));
482 pid_hash
= alloc_bootmem(pidhash_size
* sizeof(*(pid_hash
)));
484 panic("Could not alloc pidhash!\n");
485 for (i
= 0; i
< pidhash_size
; i
++)
486 INIT_HLIST_HEAD(&pid_hash
[i
]);
489 void __init
pidmap_init(void)
491 init_pid_ns
.pidmap
[0].page
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
492 /* Reserve PID 0. We never call free_pidmap(0) */
493 set_bit(0, init_pid_ns
.pidmap
[0].page
);
494 atomic_dec(&init_pid_ns
.pidmap
[0].nr_free
);
496 init_pid_ns
.pid_cachep
= create_pid_cachep(1);
497 if (init_pid_ns
.pid_cachep
== NULL
)
498 panic("Can't create pid_1 cachep\n");