1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
40 #include "extent_map.h"
41 #include "heartbeat.h"
44 #include "localalloc.h"
50 #include "buffer_head_io.h"
52 DEFINE_SPINLOCK(trans_inc_lock
);
54 static int ocfs2_force_read_journal(struct inode
*inode
);
55 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
57 static int __ocfs2_recovery_thread(void *arg
);
58 static int ocfs2_commit_cache(struct ocfs2_super
*osb
);
59 static int ocfs2_wait_on_mount(struct ocfs2_super
*osb
);
60 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
62 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
64 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
66 static int ocfs2_commit_thread(void *arg
);
68 static int ocfs2_commit_cache(struct ocfs2_super
*osb
)
73 struct ocfs2_journal
*journal
= NULL
;
77 journal
= osb
->journal
;
79 /* Flush all pending commits and checkpoint the journal. */
80 down_write(&journal
->j_trans_barrier
);
82 if (atomic_read(&journal
->j_num_trans
) == 0) {
83 up_write(&journal
->j_trans_barrier
);
84 mlog(0, "No transactions for me to flush!\n");
88 journal_lock_updates(journal
->j_journal
);
89 status
= journal_flush(journal
->j_journal
);
90 journal_unlock_updates(journal
->j_journal
);
92 up_write(&journal
->j_trans_barrier
);
97 old_id
= ocfs2_inc_trans_id(journal
);
99 flushed
= atomic_read(&journal
->j_num_trans
);
100 atomic_set(&journal
->j_num_trans
, 0);
101 up_write(&journal
->j_trans_barrier
);
103 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
104 journal
->j_trans_id
, flushed
);
106 ocfs2_kick_vote_thread(osb
);
107 wake_up(&journal
->j_checkpointed
);
113 /* pass it NULL and it will allocate a new handle object for you. If
114 * you pass it a handle however, it may still return error, in which
115 * case it has free'd the passed handle for you. */
116 handle_t
*ocfs2_start_trans(struct ocfs2_super
*osb
, int max_buffs
)
118 journal_t
*journal
= osb
->journal
->j_journal
;
121 BUG_ON(!osb
|| !osb
->journal
->j_journal
);
123 if (ocfs2_is_hard_readonly(osb
))
124 return ERR_PTR(-EROFS
);
126 BUG_ON(osb
->journal
->j_state
== OCFS2_JOURNAL_FREE
);
127 BUG_ON(max_buffs
<= 0);
129 /* JBD might support this, but our journalling code doesn't yet. */
130 if (journal_current_handle()) {
131 mlog(ML_ERROR
, "Recursive transaction attempted!\n");
135 down_read(&osb
->journal
->j_trans_barrier
);
137 handle
= journal_start(journal
, max_buffs
);
138 if (IS_ERR(handle
)) {
139 up_read(&osb
->journal
->j_trans_barrier
);
141 mlog_errno(PTR_ERR(handle
));
143 if (is_journal_aborted(journal
)) {
144 ocfs2_abort(osb
->sb
, "Detected aborted journal");
145 handle
= ERR_PTR(-EROFS
);
148 if (!ocfs2_mount_local(osb
))
149 atomic_inc(&(osb
->journal
->j_num_trans
));
155 int ocfs2_commit_trans(struct ocfs2_super
*osb
,
159 struct ocfs2_journal
*journal
= osb
->journal
;
163 ret
= journal_stop(handle
);
167 up_read(&journal
->j_trans_barrier
);
173 * 'nblocks' is what you want to add to the current
174 * transaction. extend_trans will either extend the current handle by
175 * nblocks, or commit it and start a new one with nblocks credits.
177 * WARNING: This will not release any semaphores or disk locks taken
178 * during the transaction, so make sure they were taken *before*
179 * start_trans or we'll have ordering deadlocks.
181 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
182 * good because transaction ids haven't yet been recorded on the
183 * cluster locks associated with this handle.
185 int ocfs2_extend_trans(handle_t
*handle
, int nblocks
)
194 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks
);
196 status
= journal_extend(handle
, nblocks
);
203 mlog(0, "journal_extend failed, trying journal_restart\n");
204 status
= journal_restart(handle
, nblocks
);
218 int ocfs2_journal_access(handle_t
*handle
,
220 struct buffer_head
*bh
,
229 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
230 (unsigned long long)bh
->b_blocknr
, type
,
231 (type
== OCFS2_JOURNAL_ACCESS_CREATE
) ?
232 "OCFS2_JOURNAL_ACCESS_CREATE" :
233 "OCFS2_JOURNAL_ACCESS_WRITE",
236 /* we can safely remove this assertion after testing. */
237 if (!buffer_uptodate(bh
)) {
238 mlog(ML_ERROR
, "giving me a buffer that's not uptodate!\n");
239 mlog(ML_ERROR
, "b_blocknr=%llu\n",
240 (unsigned long long)bh
->b_blocknr
);
244 /* Set the current transaction information on the inode so
245 * that the locking code knows whether it can drop it's locks
246 * on this inode or not. We're protected from the commit
247 * thread updating the current transaction id until
248 * ocfs2_commit_trans() because ocfs2_start_trans() took
249 * j_trans_barrier for us. */
250 ocfs2_set_inode_lock_trans(OCFS2_SB(inode
->i_sb
)->journal
, inode
);
252 mutex_lock(&OCFS2_I(inode
)->ip_io_mutex
);
254 case OCFS2_JOURNAL_ACCESS_CREATE
:
255 case OCFS2_JOURNAL_ACCESS_WRITE
:
256 status
= journal_get_write_access(handle
, bh
);
259 case OCFS2_JOURNAL_ACCESS_UNDO
:
260 status
= journal_get_undo_access(handle
, bh
);
265 mlog(ML_ERROR
, "Uknown access type!\n");
267 mutex_unlock(&OCFS2_I(inode
)->ip_io_mutex
);
270 mlog(ML_ERROR
, "Error %d getting %d access to buffer!\n",
277 int ocfs2_journal_dirty(handle_t
*handle
,
278 struct buffer_head
*bh
)
282 mlog_entry("(bh->b_blocknr=%llu)\n",
283 (unsigned long long)bh
->b_blocknr
);
285 status
= journal_dirty_metadata(handle
, bh
);
287 mlog(ML_ERROR
, "Could not dirty metadata buffer. "
288 "(bh->b_blocknr=%llu)\n",
289 (unsigned long long)bh
->b_blocknr
);
295 int ocfs2_journal_dirty_data(handle_t
*handle
,
296 struct buffer_head
*bh
)
298 int err
= journal_dirty_data(handle
, bh
);
301 /* TODO: When we can handle it, abort the handle and go RO on
307 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * 5)
309 void ocfs2_set_journal_params(struct ocfs2_super
*osb
)
311 journal_t
*journal
= osb
->journal
->j_journal
;
313 spin_lock(&journal
->j_state_lock
);
314 journal
->j_commit_interval
= OCFS2_DEFAULT_COMMIT_INTERVAL
;
315 if (osb
->s_mount_opt
& OCFS2_MOUNT_BARRIER
)
316 journal
->j_flags
|= JFS_BARRIER
;
318 journal
->j_flags
&= ~JFS_BARRIER
;
319 spin_unlock(&journal
->j_state_lock
);
322 int ocfs2_journal_init(struct ocfs2_journal
*journal
, int *dirty
)
325 struct inode
*inode
= NULL
; /* the journal inode */
326 journal_t
*j_journal
= NULL
;
327 struct ocfs2_dinode
*di
= NULL
;
328 struct buffer_head
*bh
= NULL
;
329 struct ocfs2_super
*osb
;
336 osb
= journal
->j_osb
;
338 /* already have the inode for our journal */
339 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
346 if (is_bad_inode(inode
)) {
347 mlog(ML_ERROR
, "access error (bad inode)\n");
354 SET_INODE_JOURNAL(inode
);
355 OCFS2_I(inode
)->ip_open_count
++;
357 /* Skip recovery waits here - journal inode metadata never
358 * changes in a live cluster so it can be considered an
359 * exception to the rule. */
360 status
= ocfs2_meta_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
362 if (status
!= -ERESTARTSYS
)
363 mlog(ML_ERROR
, "Could not get lock on journal!\n");
368 di
= (struct ocfs2_dinode
*)bh
->b_data
;
370 if (inode
->i_size
< OCFS2_MIN_JOURNAL_SIZE
) {
371 mlog(ML_ERROR
, "Journal file size (%lld) is too small!\n",
377 mlog(0, "inode->i_size = %lld\n", inode
->i_size
);
378 mlog(0, "inode->i_blocks = %llu\n",
379 (unsigned long long)inode
->i_blocks
);
380 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode
)->ip_clusters
);
382 /* call the kernels journal init function now */
383 j_journal
= journal_init_inode(inode
);
384 if (j_journal
== NULL
) {
385 mlog(ML_ERROR
, "Linux journal layer error\n");
390 mlog(0, "Returned from journal_init_inode\n");
391 mlog(0, "j_journal->j_maxlen = %u\n", j_journal
->j_maxlen
);
393 *dirty
= (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
394 OCFS2_JOURNAL_DIRTY_FL
);
396 journal
->j_journal
= j_journal
;
397 journal
->j_inode
= inode
;
400 ocfs2_set_journal_params(osb
);
402 journal
->j_state
= OCFS2_JOURNAL_LOADED
;
408 ocfs2_meta_unlock(inode
, 1);
412 OCFS2_I(inode
)->ip_open_count
--;
421 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
426 struct ocfs2_journal
*journal
= osb
->journal
;
427 struct buffer_head
*bh
= journal
->j_bh
;
428 struct ocfs2_dinode
*fe
;
432 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
433 if (!OCFS2_IS_VALID_DINODE(fe
)) {
434 /* This is called from startup/shutdown which will
435 * handle the errors in a specific manner, so no need
436 * to call ocfs2_error() here. */
437 mlog(ML_ERROR
, "Journal dinode %llu has invalid "
439 (unsigned long long)le64_to_cpu(fe
->i_blkno
), 7,
445 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
447 flags
|= OCFS2_JOURNAL_DIRTY_FL
;
449 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
450 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
452 status
= ocfs2_write_block(osb
, bh
, journal
->j_inode
);
462 * If the journal has been kmalloc'd it needs to be freed after this
465 void ocfs2_journal_shutdown(struct ocfs2_super
*osb
)
467 struct ocfs2_journal
*journal
= NULL
;
469 struct inode
*inode
= NULL
;
470 int num_running_trans
= 0;
476 journal
= osb
->journal
;
480 inode
= journal
->j_inode
;
482 if (journal
->j_state
!= OCFS2_JOURNAL_LOADED
)
485 /* need to inc inode use count as journal_destroy will iput. */
489 num_running_trans
= atomic_read(&(osb
->journal
->j_num_trans
));
490 if (num_running_trans
> 0)
491 mlog(0, "Shutting down journal: must wait on %d "
492 "running transactions!\n",
495 /* Do a commit_cache here. It will flush our journal, *and*
496 * release any locks that are still held.
497 * set the SHUTDOWN flag and release the trans lock.
498 * the commit thread will take the trans lock for us below. */
499 journal
->j_state
= OCFS2_JOURNAL_IN_SHUTDOWN
;
501 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
502 * drop the trans_lock (which we want to hold until we
503 * completely destroy the journal. */
504 if (osb
->commit_task
) {
505 /* Wait for the commit thread */
506 mlog(0, "Waiting for ocfs2commit to exit....\n");
507 kthread_stop(osb
->commit_task
);
508 osb
->commit_task
= NULL
;
511 BUG_ON(atomic_read(&(osb
->journal
->j_num_trans
)) != 0);
513 if (ocfs2_mount_local(osb
)) {
514 journal_lock_updates(journal
->j_journal
);
515 status
= journal_flush(journal
->j_journal
);
516 journal_unlock_updates(journal
->j_journal
);
523 * Do not toggle if flush was unsuccessful otherwise
524 * will leave dirty metadata in a "clean" journal
526 status
= ocfs2_journal_toggle_dirty(osb
, 0);
531 /* Shutdown the kernel journal system */
532 journal_destroy(journal
->j_journal
);
534 OCFS2_I(inode
)->ip_open_count
--;
536 /* unlock our journal */
537 ocfs2_meta_unlock(inode
, 1);
539 brelse(journal
->j_bh
);
540 journal
->j_bh
= NULL
;
542 journal
->j_state
= OCFS2_JOURNAL_FREE
;
544 // up_write(&journal->j_trans_barrier);
551 static void ocfs2_clear_journal_error(struct super_block
*sb
,
557 olderr
= journal_errno(journal
);
559 mlog(ML_ERROR
, "File system error %d recorded in "
560 "journal %u.\n", olderr
, slot
);
561 mlog(ML_ERROR
, "File system on device %s needs checking.\n",
564 journal_ack_err(journal
);
565 journal_clear_err(journal
);
569 int ocfs2_journal_load(struct ocfs2_journal
*journal
, int local
)
572 struct ocfs2_super
*osb
;
579 osb
= journal
->j_osb
;
581 status
= journal_load(journal
->j_journal
);
583 mlog(ML_ERROR
, "Failed to load journal!\n");
587 ocfs2_clear_journal_error(osb
->sb
, journal
->j_journal
, osb
->slot_num
);
589 status
= ocfs2_journal_toggle_dirty(osb
, 1);
595 /* Launch the commit thread */
597 osb
->commit_task
= kthread_run(ocfs2_commit_thread
, osb
,
599 if (IS_ERR(osb
->commit_task
)) {
600 status
= PTR_ERR(osb
->commit_task
);
601 osb
->commit_task
= NULL
;
602 mlog(ML_ERROR
, "unable to launch ocfs2commit thread, "
607 osb
->commit_task
= NULL
;
615 /* 'full' flag tells us whether we clear out all blocks or if we just
616 * mark the journal clean */
617 int ocfs2_journal_wipe(struct ocfs2_journal
*journal
, int full
)
625 status
= journal_wipe(journal
->j_journal
, full
);
631 status
= ocfs2_journal_toggle_dirty(journal
->j_osb
, 0);
641 * JBD Might read a cached version of another nodes journal file. We
642 * don't want this as this file changes often and we get no
643 * notification on those changes. The only way to be sure that we've
644 * got the most up to date version of those blocks then is to force
645 * read them off disk. Just searching through the buffer cache won't
646 * work as there may be pages backing this file which are still marked
647 * up to date. We know things can't change on this file underneath us
648 * as we have the lock by now :)
650 static int ocfs2_force_read_journal(struct inode
*inode
)
654 u64 v_blkno
, p_blkno
, p_blocks
, num_blocks
;
655 #define CONCURRENT_JOURNAL_FILL 32ULL
656 struct buffer_head
*bhs
[CONCURRENT_JOURNAL_FILL
];
660 memset(bhs
, 0, sizeof(struct buffer_head
*) * CONCURRENT_JOURNAL_FILL
);
662 num_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, inode
->i_size
);
664 while (v_blkno
< num_blocks
) {
665 status
= ocfs2_extent_map_get_blocks(inode
, v_blkno
,
666 &p_blkno
, &p_blocks
, NULL
);
672 if (p_blocks
> CONCURRENT_JOURNAL_FILL
)
673 p_blocks
= CONCURRENT_JOURNAL_FILL
;
675 /* We are reading journal data which should not
676 * be put in the uptodate cache */
677 status
= ocfs2_read_blocks(OCFS2_SB(inode
->i_sb
),
678 p_blkno
, p_blocks
, bhs
, 0,
685 for(i
= 0; i
< p_blocks
; i
++) {
694 for(i
= 0; i
< CONCURRENT_JOURNAL_FILL
; i
++)
701 struct ocfs2_la_recovery_item
{
702 struct list_head lri_list
;
704 struct ocfs2_dinode
*lri_la_dinode
;
705 struct ocfs2_dinode
*lri_tl_dinode
;
708 /* Does the second half of the recovery process. By this point, the
709 * node is marked clean and can actually be considered recovered,
710 * hence it's no longer in the recovery map, but there's still some
711 * cleanup we can do which shouldn't happen within the recovery thread
712 * as locking in that context becomes very difficult if we are to take
713 * recovering nodes into account.
715 * NOTE: This function can and will sleep on recovery of other nodes
716 * during cluster locking, just like any other ocfs2 process.
718 void ocfs2_complete_recovery(struct work_struct
*work
)
721 struct ocfs2_journal
*journal
=
722 container_of(work
, struct ocfs2_journal
, j_recovery_work
);
723 struct ocfs2_super
*osb
= journal
->j_osb
;
724 struct ocfs2_dinode
*la_dinode
, *tl_dinode
;
725 struct ocfs2_la_recovery_item
*item
, *n
;
726 LIST_HEAD(tmp_la_list
);
730 mlog(0, "completing recovery from keventd\n");
732 spin_lock(&journal
->j_lock
);
733 list_splice_init(&journal
->j_la_cleanups
, &tmp_la_list
);
734 spin_unlock(&journal
->j_lock
);
736 list_for_each_entry_safe(item
, n
, &tmp_la_list
, lri_list
) {
737 list_del_init(&item
->lri_list
);
739 mlog(0, "Complete recovery for slot %d\n", item
->lri_slot
);
741 la_dinode
= item
->lri_la_dinode
;
743 mlog(0, "Clean up local alloc %llu\n",
744 (unsigned long long)le64_to_cpu(la_dinode
->i_blkno
));
746 ret
= ocfs2_complete_local_alloc_recovery(osb
,
754 tl_dinode
= item
->lri_tl_dinode
;
756 mlog(0, "Clean up truncate log %llu\n",
757 (unsigned long long)le64_to_cpu(tl_dinode
->i_blkno
));
759 ret
= ocfs2_complete_truncate_log_recovery(osb
,
767 ret
= ocfs2_recover_orphans(osb
, item
->lri_slot
);
774 mlog(0, "Recovery completion\n");
778 /* NOTE: This function always eats your references to la_dinode and
779 * tl_dinode, either manually on error, or by passing them to
780 * ocfs2_complete_recovery */
781 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
783 struct ocfs2_dinode
*la_dinode
,
784 struct ocfs2_dinode
*tl_dinode
)
786 struct ocfs2_la_recovery_item
*item
;
788 item
= kmalloc(sizeof(struct ocfs2_la_recovery_item
), GFP_NOFS
);
790 /* Though we wish to avoid it, we are in fact safe in
791 * skipping local alloc cleanup as fsck.ocfs2 is more
792 * than capable of reclaiming unused space. */
803 INIT_LIST_HEAD(&item
->lri_list
);
804 item
->lri_la_dinode
= la_dinode
;
805 item
->lri_slot
= slot_num
;
806 item
->lri_tl_dinode
= tl_dinode
;
808 spin_lock(&journal
->j_lock
);
809 list_add_tail(&item
->lri_list
, &journal
->j_la_cleanups
);
810 queue_work(ocfs2_wq
, &journal
->j_recovery_work
);
811 spin_unlock(&journal
->j_lock
);
814 /* Called by the mount code to queue recovery the last part of
815 * recovery for it's own slot. */
816 void ocfs2_complete_mount_recovery(struct ocfs2_super
*osb
)
818 struct ocfs2_journal
*journal
= osb
->journal
;
821 /* No need to queue up our truncate_log as regular
822 * cleanup will catch that. */
823 ocfs2_queue_recovery_completion(journal
,
825 osb
->local_alloc_copy
,
827 ocfs2_schedule_truncate_log_flush(osb
, 0);
829 osb
->local_alloc_copy
= NULL
;
834 static int __ocfs2_recovery_thread(void *arg
)
836 int status
, node_num
;
837 struct ocfs2_super
*osb
= arg
;
841 status
= ocfs2_wait_on_mount(osb
);
847 status
= ocfs2_super_lock(osb
, 1);
853 while(!ocfs2_node_map_is_empty(osb
, &osb
->recovery_map
)) {
854 node_num
= ocfs2_node_map_first_set_bit(osb
,
856 if (node_num
== O2NM_INVALID_NODE_NUM
) {
857 mlog(0, "Out of nodes to recover.\n");
861 status
= ocfs2_recover_node(osb
, node_num
);
864 "Error %d recovering node %d on device (%u,%u)!\n",
866 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
867 mlog(ML_ERROR
, "Volume requires unmount.\n");
871 ocfs2_recovery_map_clear(osb
, node_num
);
873 ocfs2_super_unlock(osb
, 1);
875 /* We always run recovery on our own orphan dir - the dead
876 * node(s) may have voted "no" on an inode delete earlier. A
877 * revote is therefore required. */
878 ocfs2_queue_recovery_completion(osb
->journal
, osb
->slot_num
, NULL
,
882 mutex_lock(&osb
->recovery_lock
);
884 !ocfs2_node_map_is_empty(osb
, &osb
->recovery_map
)) {
885 mutex_unlock(&osb
->recovery_lock
);
889 osb
->recovery_thread_task
= NULL
;
890 mb(); /* sync with ocfs2_recovery_thread_running */
891 wake_up(&osb
->recovery_event
);
893 mutex_unlock(&osb
->recovery_lock
);
896 /* no one is callint kthread_stop() for us so the kthread() api
897 * requires that we call do_exit(). And it isn't exported, but
898 * complete_and_exit() seems to be a minimal wrapper around it. */
899 complete_and_exit(NULL
, status
);
903 void ocfs2_recovery_thread(struct ocfs2_super
*osb
, int node_num
)
905 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
906 node_num
, osb
->node_num
);
908 mutex_lock(&osb
->recovery_lock
);
909 if (osb
->disable_recovery
)
912 /* People waiting on recovery will wait on
913 * the recovery map to empty. */
914 if (!ocfs2_recovery_map_set(osb
, node_num
))
915 mlog(0, "node %d already be in recovery.\n", node_num
);
917 mlog(0, "starting recovery thread...\n");
919 if (osb
->recovery_thread_task
)
922 osb
->recovery_thread_task
= kthread_run(__ocfs2_recovery_thread
, osb
,
924 if (IS_ERR(osb
->recovery_thread_task
)) {
925 mlog_errno((int)PTR_ERR(osb
->recovery_thread_task
));
926 osb
->recovery_thread_task
= NULL
;
930 mutex_unlock(&osb
->recovery_lock
);
931 wake_up(&osb
->recovery_event
);
936 /* Does the actual journal replay and marks the journal inode as
937 * clean. Will only replay if the journal inode is marked dirty. */
938 static int ocfs2_replay_journal(struct ocfs2_super
*osb
,
945 struct inode
*inode
= NULL
;
946 struct ocfs2_dinode
*fe
;
947 journal_t
*journal
= NULL
;
948 struct buffer_head
*bh
= NULL
;
950 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
957 if (is_bad_inode(inode
)) {
964 SET_INODE_JOURNAL(inode
);
966 status
= ocfs2_meta_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
968 mlog(0, "status returned from ocfs2_meta_lock=%d\n", status
);
969 if (status
!= -ERESTARTSYS
)
970 mlog(ML_ERROR
, "Could not lock journal!\n");
975 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
977 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
979 if (!(flags
& OCFS2_JOURNAL_DIRTY_FL
)) {
980 mlog(0, "No recovery required for node %d\n", node_num
);
984 mlog(ML_NOTICE
, "Recovering node %d from slot %d on device (%u,%u)\n",
986 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
988 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
);
990 status
= ocfs2_force_read_journal(inode
);
996 mlog(0, "calling journal_init_inode\n");
997 journal
= journal_init_inode(inode
);
998 if (journal
== NULL
) {
999 mlog(ML_ERROR
, "Linux journal layer error\n");
1004 status
= journal_load(journal
);
1009 journal_destroy(journal
);
1013 ocfs2_clear_journal_error(osb
->sb
, journal
, slot_num
);
1015 /* wipe the journal */
1016 mlog(0, "flushing the journal.\n");
1017 journal_lock_updates(journal
);
1018 status
= journal_flush(journal
);
1019 journal_unlock_updates(journal
);
1023 /* This will mark the node clean */
1024 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1025 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
1026 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
1028 status
= ocfs2_write_block(osb
, bh
, inode
);
1035 journal_destroy(journal
);
1038 /* drop the lock on this nodes journal */
1040 ocfs2_meta_unlock(inode
, 1);
1053 * Do the most important parts of node recovery:
1054 * - Replay it's journal
1055 * - Stamp a clean local allocator file
1056 * - Stamp a clean truncate log
1057 * - Mark the node clean
1059 * If this function completes without error, a node in OCFS2 can be
1060 * said to have been safely recovered. As a result, failure during the
1061 * second part of a nodes recovery process (local alloc recovery) is
1062 * far less concerning.
1064 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
1069 struct ocfs2_slot_info
*si
= osb
->slot_info
;
1070 struct ocfs2_dinode
*la_copy
= NULL
;
1071 struct ocfs2_dinode
*tl_copy
= NULL
;
1073 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1074 node_num
, osb
->node_num
);
1076 mlog(0, "checking node %d\n", node_num
);
1078 /* Should not ever be called to recover ourselves -- in that
1079 * case we should've called ocfs2_journal_load instead. */
1080 BUG_ON(osb
->node_num
== node_num
);
1082 slot_num
= ocfs2_node_num_to_slot(si
, node_num
);
1083 if (slot_num
== OCFS2_INVALID_SLOT
) {
1085 mlog(0, "no slot for this node, so no recovery required.\n");
1089 mlog(0, "node %d was using slot %d\n", node_num
, slot_num
);
1091 status
= ocfs2_replay_journal(osb
, node_num
, slot_num
);
1097 /* Stamp a clean local alloc file AFTER recovering the journal... */
1098 status
= ocfs2_begin_local_alloc_recovery(osb
, slot_num
, &la_copy
);
1104 /* An error from begin_truncate_log_recovery is not
1105 * serious enough to warrant halting the rest of
1107 status
= ocfs2_begin_truncate_log_recovery(osb
, slot_num
, &tl_copy
);
1111 /* Likewise, this would be a strange but ultimately not so
1112 * harmful place to get an error... */
1113 ocfs2_clear_slot(si
, slot_num
);
1114 status
= ocfs2_update_disk_slots(osb
, si
);
1118 /* This will kfree the memory pointed to by la_copy and tl_copy */
1119 ocfs2_queue_recovery_completion(osb
->journal
, slot_num
, la_copy
,
1129 /* Test node liveness by trylocking his journal. If we get the lock,
1130 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1131 * still alive (we couldn't get the lock) and < 0 on error. */
1132 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
1136 struct inode
*inode
= NULL
;
1138 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1140 if (inode
== NULL
) {
1141 mlog(ML_ERROR
, "access error\n");
1145 if (is_bad_inode(inode
)) {
1146 mlog(ML_ERROR
, "access error (bad inode)\n");
1152 SET_INODE_JOURNAL(inode
);
1154 flags
= OCFS2_META_LOCK_RECOVERY
| OCFS2_META_LOCK_NOQUEUE
;
1155 status
= ocfs2_meta_lock_full(inode
, NULL
, 1, flags
);
1157 if (status
!= -EAGAIN
)
1162 ocfs2_meta_unlock(inode
, 1);
1170 /* Call this underneath ocfs2_super_lock. It also assumes that the
1171 * slot info struct has been updated from disk. */
1172 int ocfs2_mark_dead_nodes(struct ocfs2_super
*osb
)
1174 int status
, i
, node_num
;
1175 struct ocfs2_slot_info
*si
= osb
->slot_info
;
1177 /* This is called with the super block cluster lock, so we
1178 * know that the slot map can't change underneath us. */
1180 spin_lock(&si
->si_lock
);
1181 for(i
= 0; i
< si
->si_num_slots
; i
++) {
1182 if (i
== osb
->slot_num
)
1184 if (ocfs2_is_empty_slot(si
, i
))
1187 node_num
= si
->si_global_node_nums
[i
];
1188 if (ocfs2_node_map_test_bit(osb
, &osb
->recovery_map
, node_num
))
1190 spin_unlock(&si
->si_lock
);
1192 /* Ok, we have a slot occupied by another node which
1193 * is not in the recovery map. We trylock his journal
1194 * file here to test if he's alive. */
1195 status
= ocfs2_trylock_journal(osb
, i
);
1197 /* Since we're called from mount, we know that
1198 * the recovery thread can't race us on
1199 * setting / checking the recovery bits. */
1200 ocfs2_recovery_thread(osb
, node_num
);
1201 } else if ((status
< 0) && (status
!= -EAGAIN
)) {
1206 spin_lock(&si
->si_lock
);
1208 spin_unlock(&si
->si_lock
);
1216 struct ocfs2_orphan_filldir_priv
{
1218 struct ocfs2_super
*osb
;
1221 static int ocfs2_orphan_filldir(void *priv
, const char *name
, int name_len
,
1222 loff_t pos
, u64 ino
, unsigned type
)
1224 struct ocfs2_orphan_filldir_priv
*p
= priv
;
1227 if (name_len
== 1 && !strncmp(".", name
, 1))
1229 if (name_len
== 2 && !strncmp("..", name
, 2))
1232 /* Skip bad inodes so that recovery can continue */
1233 iter
= ocfs2_iget(p
->osb
, ino
,
1234 OCFS2_FI_FLAG_ORPHAN_RECOVERY
);
1238 mlog(0, "queue orphan %llu\n",
1239 (unsigned long long)OCFS2_I(iter
)->ip_blkno
);
1240 /* No locking is required for the next_orphan queue as there
1241 * is only ever a single process doing orphan recovery. */
1242 OCFS2_I(iter
)->ip_next_orphan
= p
->head
;
1248 static int ocfs2_queue_orphans(struct ocfs2_super
*osb
,
1250 struct inode
**head
)
1253 struct inode
*orphan_dir_inode
= NULL
;
1254 struct ocfs2_orphan_filldir_priv priv
;
1260 orphan_dir_inode
= ocfs2_get_system_file_inode(osb
,
1261 ORPHAN_DIR_SYSTEM_INODE
,
1263 if (!orphan_dir_inode
) {
1269 mutex_lock(&orphan_dir_inode
->i_mutex
);
1270 status
= ocfs2_meta_lock(orphan_dir_inode
, NULL
, 0);
1276 status
= ocfs2_dir_foreach(orphan_dir_inode
, &pos
, &priv
,
1277 ocfs2_orphan_filldir
);
1285 ocfs2_meta_unlock(orphan_dir_inode
, 0);
1287 mutex_unlock(&orphan_dir_inode
->i_mutex
);
1288 iput(orphan_dir_inode
);
1292 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super
*osb
,
1297 spin_lock(&osb
->osb_lock
);
1298 ret
= !osb
->osb_orphan_wipes
[slot
];
1299 spin_unlock(&osb
->osb_lock
);
1303 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super
*osb
,
1306 spin_lock(&osb
->osb_lock
);
1307 /* Mark ourselves such that new processes in delete_inode()
1308 * know to quit early. */
1309 ocfs2_node_map_set_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
1310 while (osb
->osb_orphan_wipes
[slot
]) {
1311 /* If any processes are already in the middle of an
1312 * orphan wipe on this dir, then we need to wait for
1314 spin_unlock(&osb
->osb_lock
);
1315 wait_event_interruptible(osb
->osb_wipe_event
,
1316 ocfs2_orphan_recovery_can_continue(osb
, slot
));
1317 spin_lock(&osb
->osb_lock
);
1319 spin_unlock(&osb
->osb_lock
);
1322 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super
*osb
,
1325 ocfs2_node_map_clear_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
1329 * Orphan recovery. Each mounted node has it's own orphan dir which we
1330 * must run during recovery. Our strategy here is to build a list of
1331 * the inodes in the orphan dir and iget/iput them. The VFS does
1332 * (most) of the rest of the work.
1334 * Orphan recovery can happen at any time, not just mount so we have a
1335 * couple of extra considerations.
1337 * - We grab as many inodes as we can under the orphan dir lock -
1338 * doing iget() outside the orphan dir risks getting a reference on
1340 * - We must be sure not to deadlock with other processes on the
1341 * system wanting to run delete_inode(). This can happen when they go
1342 * to lock the orphan dir and the orphan recovery process attempts to
1343 * iget() inside the orphan dir lock. This can be avoided by
1344 * advertising our state to ocfs2_delete_inode().
1346 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
1350 struct inode
*inode
= NULL
;
1352 struct ocfs2_inode_info
*oi
;
1354 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot
);
1356 ocfs2_mark_recovering_orphan_dir(osb
, slot
);
1357 ret
= ocfs2_queue_orphans(osb
, slot
, &inode
);
1358 ocfs2_clear_recovering_orphan_dir(osb
, slot
);
1360 /* Error here should be noted, but we want to continue with as
1361 * many queued inodes as we've got. */
1366 oi
= OCFS2_I(inode
);
1367 mlog(0, "iput orphan %llu\n", (unsigned long long)oi
->ip_blkno
);
1369 iter
= oi
->ip_next_orphan
;
1371 spin_lock(&oi
->ip_lock
);
1372 /* Delete voting may have set these on the assumption
1373 * that the other node would wipe them successfully.
1374 * If they are still in the node's orphan dir, we need
1375 * to reset that state. */
1376 oi
->ip_flags
&= ~(OCFS2_INODE_DELETED
|OCFS2_INODE_SKIP_DELETE
);
1378 /* Set the proper information to get us going into
1379 * ocfs2_delete_inode. */
1380 oi
->ip_flags
|= OCFS2_INODE_MAYBE_ORPHANED
;
1381 spin_unlock(&oi
->ip_lock
);
1391 static int ocfs2_wait_on_mount(struct ocfs2_super
*osb
)
1393 /* This check is good because ocfs2 will wait on our recovery
1394 * thread before changing it to something other than MOUNTED
1396 wait_event(osb
->osb_mount_event
,
1397 atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED
||
1398 atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
);
1400 /* If there's an error on mount, then we may never get to the
1401 * MOUNTED flag, but this is set right before
1402 * dismount_volume() so we can trust it. */
1403 if (atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
) {
1404 mlog(0, "mount error, exiting!\n");
1411 static int ocfs2_commit_thread(void *arg
)
1414 struct ocfs2_super
*osb
= arg
;
1415 struct ocfs2_journal
*journal
= osb
->journal
;
1417 /* we can trust j_num_trans here because _should_stop() is only set in
1418 * shutdown and nobody other than ourselves should be able to start
1419 * transactions. committing on shutdown might take a few iterations
1420 * as final transactions put deleted inodes on the list */
1421 while (!(kthread_should_stop() &&
1422 atomic_read(&journal
->j_num_trans
) == 0)) {
1424 wait_event_interruptible(osb
->checkpoint_event
,
1425 atomic_read(&journal
->j_num_trans
)
1426 || kthread_should_stop());
1428 status
= ocfs2_commit_cache(osb
);
1432 if (kthread_should_stop() && atomic_read(&journal
->j_num_trans
)){
1434 "commit_thread: %u transactions pending on "
1436 atomic_read(&journal
->j_num_trans
));
1443 /* Look for a dirty journal without taking any cluster locks. Used for
1444 * hard readonly access to determine whether the file system journals
1445 * require recovery. */
1446 int ocfs2_check_journals_nolocks(struct ocfs2_super
*osb
)
1450 struct buffer_head
*di_bh
;
1451 struct ocfs2_dinode
*di
;
1452 struct inode
*journal
= NULL
;
1454 for(slot
= 0; slot
< osb
->max_slots
; slot
++) {
1455 journal
= ocfs2_get_system_file_inode(osb
,
1456 JOURNAL_SYSTEM_INODE
,
1458 if (!journal
|| is_bad_inode(journal
)) {
1465 ret
= ocfs2_read_block(osb
, OCFS2_I(journal
)->ip_blkno
, &di_bh
,
1472 di
= (struct ocfs2_dinode
*) di_bh
->b_data
;
1474 if (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
1475 OCFS2_JOURNAL_DIRTY_FL
)