x86: convert cpuinfo_x86 array to a per_cpu array
[wrt350n-kernel.git] / arch / x86 / kernel / time_64.c
blobc821edc32216b88c674d2a704f105fdf063c1014
1 /*
2 * "High Precision Event Timer" based timekeeping.
4 * Copyright (c) 1991,1992,1995 Linus Torvalds
5 * Copyright (c) 1994 Alan Modra
6 * Copyright (c) 1995 Markus Kuhn
7 * Copyright (c) 1996 Ingo Molnar
8 * Copyright (c) 1998 Andrea Arcangeli
9 * Copyright (c) 2002,2006 Vojtech Pavlik
10 * Copyright (c) 2003 Andi Kleen
11 * RTC support code taken from arch/i386/kernel/timers/time_hpet.c
14 #include <linux/kernel.h>
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/init.h>
18 #include <linux/mc146818rtc.h>
19 #include <linux/time.h>
20 #include <linux/ioport.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/sysdev.h>
24 #include <linux/bcd.h>
25 #include <linux/notifier.h>
26 #include <linux/cpu.h>
27 #include <linux/kallsyms.h>
28 #include <linux/acpi.h>
29 #include <linux/clockchips.h>
31 #ifdef CONFIG_ACPI
32 #include <acpi/achware.h> /* for PM timer frequency */
33 #include <acpi/acpi_bus.h>
34 #endif
35 #include <asm/i8253.h>
36 #include <asm/pgtable.h>
37 #include <asm/vsyscall.h>
38 #include <asm/timex.h>
39 #include <asm/proto.h>
40 #include <asm/hpet.h>
41 #include <asm/sections.h>
42 #include <linux/hpet.h>
43 #include <asm/apic.h>
44 #include <asm/hpet.h>
45 #include <asm/mpspec.h>
46 #include <asm/nmi.h>
47 #include <asm/vgtod.h>
49 DEFINE_SPINLOCK(rtc_lock);
50 EXPORT_SYMBOL(rtc_lock);
52 volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
54 unsigned long profile_pc(struct pt_regs *regs)
56 unsigned long pc = instruction_pointer(regs);
58 /* Assume the lock function has either no stack frame or a copy
59 of eflags from PUSHF
60 Eflags always has bits 22 and up cleared unlike kernel addresses. */
61 if (!user_mode(regs) && in_lock_functions(pc)) {
62 unsigned long *sp = (unsigned long *)regs->rsp;
63 if (sp[0] >> 22)
64 return sp[0];
65 if (sp[1] >> 22)
66 return sp[1];
68 return pc;
70 EXPORT_SYMBOL(profile_pc);
73 * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
74 * ms after the second nowtime has started, because when nowtime is written
75 * into the registers of the CMOS clock, it will jump to the next second
76 * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
77 * sheet for details.
80 static int set_rtc_mmss(unsigned long nowtime)
82 int retval = 0;
83 int real_seconds, real_minutes, cmos_minutes;
84 unsigned char control, freq_select;
87 * IRQs are disabled when we're called from the timer interrupt,
88 * no need for spin_lock_irqsave()
91 spin_lock(&rtc_lock);
94 * Tell the clock it's being set and stop it.
97 control = CMOS_READ(RTC_CONTROL);
98 CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
100 freq_select = CMOS_READ(RTC_FREQ_SELECT);
101 CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
103 cmos_minutes = CMOS_READ(RTC_MINUTES);
104 BCD_TO_BIN(cmos_minutes);
107 * since we're only adjusting minutes and seconds, don't interfere with hour
108 * overflow. This avoids messing with unknown time zones but requires your RTC
109 * not to be off by more than 15 minutes. Since we're calling it only when
110 * our clock is externally synchronized using NTP, this shouldn't be a problem.
113 real_seconds = nowtime % 60;
114 real_minutes = nowtime / 60;
115 if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
116 real_minutes += 30; /* correct for half hour time zone */
117 real_minutes %= 60;
119 if (abs(real_minutes - cmos_minutes) >= 30) {
120 printk(KERN_WARNING "time.c: can't update CMOS clock "
121 "from %d to %d\n", cmos_minutes, real_minutes);
122 retval = -1;
123 } else {
124 BIN_TO_BCD(real_seconds);
125 BIN_TO_BCD(real_minutes);
126 CMOS_WRITE(real_seconds, RTC_SECONDS);
127 CMOS_WRITE(real_minutes, RTC_MINUTES);
131 * The following flags have to be released exactly in this order, otherwise the
132 * DS12887 (popular MC146818A clone with integrated battery and quartz) will
133 * not reset the oscillator and will not update precisely 500 ms later. You
134 * won't find this mentioned in the Dallas Semiconductor data sheets, but who
135 * believes data sheets anyway ... -- Markus Kuhn
138 CMOS_WRITE(control, RTC_CONTROL);
139 CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
141 spin_unlock(&rtc_lock);
143 return retval;
146 int update_persistent_clock(struct timespec now)
148 return set_rtc_mmss(now.tv_sec);
151 static irqreturn_t timer_event_interrupt(int irq, void *dev_id)
153 add_pda(irq0_irqs, 1);
155 global_clock_event->event_handler(global_clock_event);
157 return IRQ_HANDLED;
160 unsigned long read_persistent_clock(void)
162 unsigned int year, mon, day, hour, min, sec;
163 unsigned long flags;
164 unsigned century = 0;
166 spin_lock_irqsave(&rtc_lock, flags);
168 do {
169 sec = CMOS_READ(RTC_SECONDS);
170 min = CMOS_READ(RTC_MINUTES);
171 hour = CMOS_READ(RTC_HOURS);
172 day = CMOS_READ(RTC_DAY_OF_MONTH);
173 mon = CMOS_READ(RTC_MONTH);
174 year = CMOS_READ(RTC_YEAR);
175 #ifdef CONFIG_ACPI
176 if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
177 acpi_gbl_FADT.century)
178 century = CMOS_READ(acpi_gbl_FADT.century);
179 #endif
180 } while (sec != CMOS_READ(RTC_SECONDS));
182 spin_unlock_irqrestore(&rtc_lock, flags);
185 * We know that x86-64 always uses BCD format, no need to check the
186 * config register.
189 BCD_TO_BIN(sec);
190 BCD_TO_BIN(min);
191 BCD_TO_BIN(hour);
192 BCD_TO_BIN(day);
193 BCD_TO_BIN(mon);
194 BCD_TO_BIN(year);
196 if (century) {
197 BCD_TO_BIN(century);
198 year += century * 100;
199 printk(KERN_INFO "Extended CMOS year: %d\n", century * 100);
200 } else {
202 * x86-64 systems only exists since 2002.
203 * This will work up to Dec 31, 2100
205 year += 2000;
208 return mktime(year, mon, day, hour, min, sec);
211 /* calibrate_cpu is used on systems with fixed rate TSCs to determine
212 * processor frequency */
213 #define TICK_COUNT 100000000
214 static unsigned int __init tsc_calibrate_cpu_khz(void)
216 int tsc_start, tsc_now;
217 int i, no_ctr_free;
218 unsigned long evntsel3 = 0, pmc3 = 0, pmc_now = 0;
219 unsigned long flags;
221 for (i = 0; i < 4; i++)
222 if (avail_to_resrv_perfctr_nmi_bit(i))
223 break;
224 no_ctr_free = (i == 4);
225 if (no_ctr_free) {
226 i = 3;
227 rdmsrl(MSR_K7_EVNTSEL3, evntsel3);
228 wrmsrl(MSR_K7_EVNTSEL3, 0);
229 rdmsrl(MSR_K7_PERFCTR3, pmc3);
230 } else {
231 reserve_perfctr_nmi(MSR_K7_PERFCTR0 + i);
232 reserve_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
234 local_irq_save(flags);
235 /* start meauring cycles, incrementing from 0 */
236 wrmsrl(MSR_K7_PERFCTR0 + i, 0);
237 wrmsrl(MSR_K7_EVNTSEL0 + i, 1 << 22 | 3 << 16 | 0x76);
238 rdtscl(tsc_start);
239 do {
240 rdmsrl(MSR_K7_PERFCTR0 + i, pmc_now);
241 tsc_now = get_cycles_sync();
242 } while ((tsc_now - tsc_start) < TICK_COUNT);
244 local_irq_restore(flags);
245 if (no_ctr_free) {
246 wrmsrl(MSR_K7_EVNTSEL3, 0);
247 wrmsrl(MSR_K7_PERFCTR3, pmc3);
248 wrmsrl(MSR_K7_EVNTSEL3, evntsel3);
249 } else {
250 release_perfctr_nmi(MSR_K7_PERFCTR0 + i);
251 release_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
254 return pmc_now * tsc_khz / (tsc_now - tsc_start);
257 static struct irqaction irq0 = {
258 .handler = timer_event_interrupt,
259 .flags = IRQF_DISABLED | IRQF_IRQPOLL | IRQF_NOBALANCING,
260 .mask = CPU_MASK_NONE,
261 .name = "timer"
264 void __init time_init(void)
266 if (!hpet_enable())
267 setup_pit_timer();
269 setup_irq(0, &irq0);
271 tsc_calibrate();
273 cpu_khz = tsc_khz;
274 if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
275 boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
276 boot_cpu_data.x86 == 16)
277 cpu_khz = tsc_calibrate_cpu_khz();
279 if (unsynchronized_tsc())
280 mark_tsc_unstable("TSCs unsynchronized");
282 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
283 vgetcpu_mode = VGETCPU_RDTSCP;
284 else
285 vgetcpu_mode = VGETCPU_LSL;
287 printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
288 cpu_khz / 1000, cpu_khz % 1000);
289 init_tsc_clocksource();