Initial commit
[wrt350n-kernel.git] / arch / mips / sgi-ip27 / ip27-irq.c
blob1bb692a3b31948d2a9abb4a13e7f5049ae38886a
1 /*
2 * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
4 * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
5 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
6 * Copyright (C) 1999 - 2001 Kanoj Sarcar
7 */
9 #undef DEBUG
11 #include <linux/init.h>
12 #include <linux/irq.h>
13 #include <linux/errno.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/timex.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/kernel.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/delay.h>
25 #include <linux/bitops.h>
27 #include <asm/bootinfo.h>
28 #include <asm/io.h>
29 #include <asm/mipsregs.h>
30 #include <asm/system.h>
32 #include <asm/processor.h>
33 #include <asm/pci/bridge.h>
34 #include <asm/sn/addrs.h>
35 #include <asm/sn/agent.h>
36 #include <asm/sn/arch.h>
37 #include <asm/sn/hub.h>
38 #include <asm/sn/intr.h>
41 * Linux has a controller-independent x86 interrupt architecture.
42 * every controller has a 'controller-template', that is used
43 * by the main code to do the right thing. Each driver-visible
44 * interrupt source is transparently wired to the apropriate
45 * controller. Thus drivers need not be aware of the
46 * interrupt-controller.
48 * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
49 * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
50 * (IO-APICs assumed to be messaging to Pentium local-APICs)
52 * the code is designed to be easily extended with new/different
53 * interrupt controllers, without having to do assembly magic.
56 extern asmlinkage void ip27_irq(void);
58 extern struct bridge_controller *irq_to_bridge[];
59 extern int irq_to_slot[];
62 * use these macros to get the encoded nasid and widget id
63 * from the irq value
65 #define IRQ_TO_BRIDGE(i) irq_to_bridge[(i)]
66 #define SLOT_FROM_PCI_IRQ(i) irq_to_slot[i]
68 static inline int alloc_level(int cpu, int irq)
70 struct hub_data *hub = hub_data(cpu_to_node(cpu));
71 struct slice_data *si = cpu_data[cpu].data;
72 int level;
74 level = find_first_zero_bit(hub->irq_alloc_mask, LEVELS_PER_SLICE);
75 if (level >= LEVELS_PER_SLICE)
76 panic("Cpu %d flooded with devices\n", cpu);
78 __set_bit(level, hub->irq_alloc_mask);
79 si->level_to_irq[level] = irq;
81 return level;
84 static inline int find_level(cpuid_t *cpunum, int irq)
86 int cpu, i;
88 for_each_online_cpu(cpu) {
89 struct slice_data *si = cpu_data[cpu].data;
91 for (i = BASE_PCI_IRQ; i < LEVELS_PER_SLICE; i++)
92 if (si->level_to_irq[i] == irq) {
93 *cpunum = cpu;
95 return i;
99 panic("Could not identify cpu/level for irq %d\n", irq);
103 * Find first bit set
105 static int ms1bit(unsigned long x)
107 int b = 0, s;
109 s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
110 s = 8; if (x >> 8 == 0) s = 0; b += s; x >>= s;
111 s = 4; if (x >> 4 == 0) s = 0; b += s; x >>= s;
112 s = 2; if (x >> 2 == 0) s = 0; b += s; x >>= s;
113 s = 1; if (x >> 1 == 0) s = 0; b += s;
115 return b;
119 * This code is unnecessarily complex, because we do IRQF_DISABLED
120 * intr enabling. Basically, once we grab the set of intrs we need
121 * to service, we must mask _all_ these interrupts; firstly, to make
122 * sure the same intr does not intr again, causing recursion that
123 * can lead to stack overflow. Secondly, we can not just mask the
124 * one intr we are do_IRQing, because the non-masked intrs in the
125 * first set might intr again, causing multiple servicings of the
126 * same intr. This effect is mostly seen for intercpu intrs.
127 * Kanoj 05.13.00
130 static void ip27_do_irq_mask0(void)
132 int irq, swlevel;
133 hubreg_t pend0, mask0;
134 cpuid_t cpu = smp_processor_id();
135 int pi_int_mask0 =
136 (cputoslice(cpu) == 0) ? PI_INT_MASK0_A : PI_INT_MASK0_B;
138 /* copied from Irix intpend0() */
139 pend0 = LOCAL_HUB_L(PI_INT_PEND0);
140 mask0 = LOCAL_HUB_L(pi_int_mask0);
142 pend0 &= mask0; /* Pick intrs we should look at */
143 if (!pend0)
144 return;
146 swlevel = ms1bit(pend0);
147 #ifdef CONFIG_SMP
148 if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
149 LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
150 } else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
151 LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
152 } else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
153 LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
154 smp_call_function_interrupt();
155 } else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
156 LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
157 smp_call_function_interrupt();
158 } else
159 #endif
161 /* "map" swlevel to irq */
162 struct slice_data *si = cpu_data[cpu].data;
164 irq = si->level_to_irq[swlevel];
165 do_IRQ(irq);
168 LOCAL_HUB_L(PI_INT_PEND0);
171 static void ip27_do_irq_mask1(void)
173 int irq, swlevel;
174 hubreg_t pend1, mask1;
175 cpuid_t cpu = smp_processor_id();
176 int pi_int_mask1 = (cputoslice(cpu) == 0) ? PI_INT_MASK1_A : PI_INT_MASK1_B;
177 struct slice_data *si = cpu_data[cpu].data;
179 /* copied from Irix intpend0() */
180 pend1 = LOCAL_HUB_L(PI_INT_PEND1);
181 mask1 = LOCAL_HUB_L(pi_int_mask1);
183 pend1 &= mask1; /* Pick intrs we should look at */
184 if (!pend1)
185 return;
187 swlevel = ms1bit(pend1);
188 /* "map" swlevel to irq */
189 irq = si->level_to_irq[swlevel];
190 LOCAL_HUB_CLR_INTR(swlevel);
191 do_IRQ(irq);
193 LOCAL_HUB_L(PI_INT_PEND1);
196 static void ip27_prof_timer(void)
198 panic("CPU %d got a profiling interrupt", smp_processor_id());
201 static void ip27_hub_error(void)
203 panic("CPU %d got a hub error interrupt", smp_processor_id());
206 static int intr_connect_level(int cpu, int bit)
208 nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
209 struct slice_data *si = cpu_data[cpu].data;
211 set_bit(bit, si->irq_enable_mask);
213 if (!cputoslice(cpu)) {
214 REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
215 REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
216 } else {
217 REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
218 REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
221 return 0;
224 static int intr_disconnect_level(int cpu, int bit)
226 nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
227 struct slice_data *si = cpu_data[cpu].data;
229 clear_bit(bit, si->irq_enable_mask);
231 if (!cputoslice(cpu)) {
232 REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
233 REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
234 } else {
235 REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
236 REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
239 return 0;
242 /* Startup one of the (PCI ...) IRQs routes over a bridge. */
243 static unsigned int startup_bridge_irq(unsigned int irq)
245 struct bridge_controller *bc;
246 bridgereg_t device;
247 bridge_t *bridge;
248 int pin, swlevel;
249 cpuid_t cpu;
251 pin = SLOT_FROM_PCI_IRQ(irq);
252 bc = IRQ_TO_BRIDGE(irq);
253 bridge = bc->base;
255 pr_debug("bridge_startup(): irq= 0x%x pin=%d\n", irq, pin);
257 * "map" irq to a swlevel greater than 6 since the first 6 bits
258 * of INT_PEND0 are taken
260 swlevel = find_level(&cpu, irq);
261 bridge->b_int_addr[pin].addr = (0x20000 | swlevel | (bc->nasid << 8));
262 bridge->b_int_enable |= (1 << pin);
263 bridge->b_int_enable |= 0x7ffffe00; /* more stuff in int_enable */
266 * Enable sending of an interrupt clear packt to the hub on a high to
267 * low transition of the interrupt pin.
269 * IRIX sets additional bits in the address which are documented as
270 * reserved in the bridge docs.
272 bridge->b_int_mode |= (1UL << pin);
275 * We assume the bridge to have a 1:1 mapping between devices
276 * (slots) and intr pins.
278 device = bridge->b_int_device;
279 device &= ~(7 << (pin*3));
280 device |= (pin << (pin*3));
281 bridge->b_int_device = device;
283 bridge->b_wid_tflush;
285 intr_connect_level(cpu, swlevel);
287 return 0; /* Never anything pending. */
290 /* Shutdown one of the (PCI ...) IRQs routes over a bridge. */
291 static void shutdown_bridge_irq(unsigned int irq)
293 struct bridge_controller *bc = IRQ_TO_BRIDGE(irq);
294 bridge_t *bridge = bc->base;
295 int pin, swlevel;
296 cpuid_t cpu;
298 pr_debug("bridge_shutdown: irq 0x%x\n", irq);
299 pin = SLOT_FROM_PCI_IRQ(irq);
302 * map irq to a swlevel greater than 6 since the first 6 bits
303 * of INT_PEND0 are taken
305 swlevel = find_level(&cpu, irq);
306 intr_disconnect_level(cpu, swlevel);
308 bridge->b_int_enable &= ~(1 << pin);
309 bridge->b_wid_tflush;
312 static inline void enable_bridge_irq(unsigned int irq)
314 cpuid_t cpu;
315 int swlevel;
317 swlevel = find_level(&cpu, irq); /* Criminal offence */
318 intr_connect_level(cpu, swlevel);
321 static inline void disable_bridge_irq(unsigned int irq)
323 cpuid_t cpu;
324 int swlevel;
326 swlevel = find_level(&cpu, irq); /* Criminal offence */
327 intr_disconnect_level(cpu, swlevel);
330 static struct irq_chip bridge_irq_type = {
331 .name = "bridge",
332 .startup = startup_bridge_irq,
333 .shutdown = shutdown_bridge_irq,
334 .ack = disable_bridge_irq,
335 .mask = disable_bridge_irq,
336 .mask_ack = disable_bridge_irq,
337 .unmask = enable_bridge_irq,
340 void __devinit register_bridge_irq(unsigned int irq)
342 set_irq_chip_and_handler(irq, &bridge_irq_type, handle_level_irq);
345 int __devinit request_bridge_irq(struct bridge_controller *bc)
347 int irq = allocate_irqno();
348 int swlevel, cpu;
349 nasid_t nasid;
351 if (irq < 0)
352 return irq;
355 * "map" irq to a swlevel greater than 6 since the first 6 bits
356 * of INT_PEND0 are taken
358 cpu = bc->irq_cpu;
359 swlevel = alloc_level(cpu, irq);
360 if (unlikely(swlevel < 0)) {
361 free_irqno(irq);
363 return -EAGAIN;
366 /* Make sure it's not already pending when we connect it. */
367 nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
368 REMOTE_HUB_CLR_INTR(nasid, swlevel);
370 intr_connect_level(cpu, swlevel);
372 register_bridge_irq(irq);
374 return irq;
377 asmlinkage void plat_irq_dispatch(void)
379 unsigned long pending = read_c0_cause() & read_c0_status();
380 extern unsigned int rt_timer_irq;
382 if (pending & CAUSEF_IP4)
383 do_IRQ(rt_timer_irq);
384 else if (pending & CAUSEF_IP2) /* PI_INT_PEND_0 or CC_PEND_{A|B} */
385 ip27_do_irq_mask0();
386 else if (pending & CAUSEF_IP3) /* PI_INT_PEND_1 */
387 ip27_do_irq_mask1();
388 else if (pending & CAUSEF_IP5)
389 ip27_prof_timer();
390 else if (pending & CAUSEF_IP6)
391 ip27_hub_error();
394 void __init arch_init_irq(void)
398 void install_ipi(void)
400 int slice = LOCAL_HUB_L(PI_CPU_NUM);
401 int cpu = smp_processor_id();
402 struct slice_data *si = cpu_data[cpu].data;
403 struct hub_data *hub = hub_data(cpu_to_node(cpu));
404 int resched, call;
406 resched = CPU_RESCHED_A_IRQ + slice;
407 __set_bit(resched, hub->irq_alloc_mask);
408 __set_bit(resched, si->irq_enable_mask);
409 LOCAL_HUB_CLR_INTR(resched);
411 call = CPU_CALL_A_IRQ + slice;
412 __set_bit(call, hub->irq_alloc_mask);
413 __set_bit(call, si->irq_enable_mask);
414 LOCAL_HUB_CLR_INTR(call);
416 if (slice == 0) {
417 LOCAL_HUB_S(PI_INT_MASK0_A, si->irq_enable_mask[0]);
418 LOCAL_HUB_S(PI_INT_MASK1_A, si->irq_enable_mask[1]);
419 } else {
420 LOCAL_HUB_S(PI_INT_MASK0_B, si->irq_enable_mask[0]);
421 LOCAL_HUB_S(PI_INT_MASK1_B, si->irq_enable_mask[1]);