Initial commit
[wrt350n-kernel.git] / arch / parisc / kernel / time.c
blob24be86bba94d6bdf93618109bb490bf6fbe68205
1 /*
2 * linux/arch/parisc/kernel/time.c
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/param.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/time.h>
22 #include <linux/init.h>
23 #include <linux/smp.h>
24 #include <linux/profile.h>
25 #include <linux/clocksource.h>
27 #include <asm/uaccess.h>
28 #include <asm/io.h>
29 #include <asm/irq.h>
30 #include <asm/param.h>
31 #include <asm/pdc.h>
32 #include <asm/led.h>
34 #include <linux/timex.h>
36 static unsigned long clocktick __read_mostly; /* timer cycles per tick */
39 * We keep time on PA-RISC Linux by using the Interval Timer which is
40 * a pair of registers; one is read-only and one is write-only; both
41 * accessed through CR16. The read-only register is 32 or 64 bits wide,
42 * and increments by 1 every CPU clock tick. The architecture only
43 * guarantees us a rate between 0.5 and 2, but all implementations use a
44 * rate of 1. The write-only register is 32-bits wide. When the lowest
45 * 32 bits of the read-only register compare equal to the write-only
46 * register, it raises a maskable external interrupt. Each processor has
47 * an Interval Timer of its own and they are not synchronised.
49 * We want to generate an interrupt every 1/HZ seconds. So we program
50 * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
51 * is programmed with the intended time of the next tick. We can be
52 * held off for an arbitrarily long period of time by interrupts being
53 * disabled, so we may miss one or more ticks.
55 irqreturn_t timer_interrupt(int irq, void *dev_id)
57 unsigned long now;
58 unsigned long next_tick;
59 unsigned long cycles_elapsed, ticks_elapsed;
60 unsigned long cycles_remainder;
61 unsigned int cpu = smp_processor_id();
62 struct cpuinfo_parisc *cpuinfo = &cpu_data[cpu];
64 /* gcc can optimize for "read-only" case with a local clocktick */
65 unsigned long cpt = clocktick;
67 profile_tick(CPU_PROFILING);
69 /* Initialize next_tick to the expected tick time. */
70 next_tick = cpuinfo->it_value;
72 /* Get current interval timer.
73 * CR16 reads as 64 bits in CPU wide mode.
74 * CR16 reads as 32 bits in CPU narrow mode.
76 now = mfctl(16);
78 cycles_elapsed = now - next_tick;
80 if ((cycles_elapsed >> 5) < cpt) {
81 /* use "cheap" math (add/subtract) instead
82 * of the more expensive div/mul method
84 cycles_remainder = cycles_elapsed;
85 ticks_elapsed = 1;
86 while (cycles_remainder > cpt) {
87 cycles_remainder -= cpt;
88 ticks_elapsed++;
90 } else {
91 cycles_remainder = cycles_elapsed % cpt;
92 ticks_elapsed = 1 + cycles_elapsed / cpt;
95 /* Can we differentiate between "early CR16" (aka Scenario 1) and
96 * "long delay" (aka Scenario 3)? I don't think so.
98 * We expected timer_interrupt to be delivered at least a few hundred
99 * cycles after the IT fires. But it's arbitrary how much time passes
100 * before we call it "late". I've picked one second.
102 if (unlikely(ticks_elapsed > HZ)) {
103 /* Scenario 3: very long delay? bad in any case */
104 printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
105 " cycles %lX rem %lX "
106 " next/now %lX/%lX\n",
107 cpu,
108 cycles_elapsed, cycles_remainder,
109 next_tick, now );
112 /* convert from "division remainder" to "remainder of clock tick" */
113 cycles_remainder = cpt - cycles_remainder;
115 /* Determine when (in CR16 cycles) next IT interrupt will fire.
116 * We want IT to fire modulo clocktick even if we miss/skip some.
117 * But those interrupts don't in fact get delivered that regularly.
119 next_tick = now + cycles_remainder;
121 cpuinfo->it_value = next_tick;
123 /* Skip one clocktick on purpose if we are likely to miss next_tick.
124 * We want to avoid the new next_tick being less than CR16.
125 * If that happened, itimer wouldn't fire until CR16 wrapped.
126 * We'll catch the tick we missed on the tick after that.
128 if (!(cycles_remainder >> 13))
129 next_tick += cpt;
131 /* Program the IT when to deliver the next interrupt. */
132 /* Only bottom 32-bits of next_tick are written to cr16. */
133 mtctl(next_tick, 16);
136 /* Done mucking with unreliable delivery of interrupts.
137 * Go do system house keeping.
140 if (!--cpuinfo->prof_counter) {
141 cpuinfo->prof_counter = cpuinfo->prof_multiplier;
142 update_process_times(user_mode(get_irq_regs()));
145 if (cpu == 0) {
146 write_seqlock(&xtime_lock);
147 do_timer(ticks_elapsed);
148 write_sequnlock(&xtime_lock);
151 return IRQ_HANDLED;
155 unsigned long profile_pc(struct pt_regs *regs)
157 unsigned long pc = instruction_pointer(regs);
159 if (regs->gr[0] & PSW_N)
160 pc -= 4;
162 #ifdef CONFIG_SMP
163 if (in_lock_functions(pc))
164 pc = regs->gr[2];
165 #endif
167 return pc;
169 EXPORT_SYMBOL(profile_pc);
172 /* clock source code */
174 static cycle_t read_cr16(void)
176 return get_cycles();
179 static struct clocksource clocksource_cr16 = {
180 .name = "cr16",
181 .rating = 300,
182 .read = read_cr16,
183 .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
184 .mult = 0, /* to be set */
185 .shift = 22,
186 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
189 #ifdef CONFIG_SMP
190 int update_cr16_clocksource(void)
192 /* since the cr16 cycle counters are not synchronized across CPUs,
193 we'll check if we should switch to a safe clocksource: */
194 if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
195 clocksource_change_rating(&clocksource_cr16, 0);
196 return 1;
199 return 0;
201 #else
202 int update_cr16_clocksource(void)
204 return 0; /* no change */
206 #endif /*CONFIG_SMP*/
208 void __init start_cpu_itimer(void)
210 unsigned int cpu = smp_processor_id();
211 unsigned long next_tick = mfctl(16) + clocktick;
213 mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
215 cpu_data[cpu].it_value = next_tick;
218 void __init time_init(void)
220 static struct pdc_tod tod_data;
221 unsigned long current_cr16_khz;
223 clocktick = (100 * PAGE0->mem_10msec) / HZ;
225 start_cpu_itimer(); /* get CPU 0 started */
227 /* register at clocksource framework */
228 current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */
229 clocksource_cr16.mult = clocksource_khz2mult(current_cr16_khz,
230 clocksource_cr16.shift);
231 clocksource_register(&clocksource_cr16);
233 if (pdc_tod_read(&tod_data) == 0) {
234 unsigned long flags;
236 write_seqlock_irqsave(&xtime_lock, flags);
237 xtime.tv_sec = tod_data.tod_sec;
238 xtime.tv_nsec = tod_data.tod_usec * 1000;
239 set_normalized_timespec(&wall_to_monotonic,
240 -xtime.tv_sec, -xtime.tv_nsec);
241 write_sequnlock_irqrestore(&xtime_lock, flags);
242 } else {
243 printk(KERN_ERR "Error reading tod clock\n");
244 xtime.tv_sec = 0;
245 xtime.tv_nsec = 0;