Initial commit
[wrt350n-kernel.git] / arch / v850 / kernel / rte_cb.c
blob43018e1edebd13b6bf84558ef32628c13056c0af
1 /*
2 * include/asm-v850/rte_cb.c -- Midas lab RTE-CB series of evaluation boards
4 * Copyright (C) 2001,02,03 NEC Electronics Corporation
5 * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org>
7 * This file is subject to the terms and conditions of the GNU General
8 * Public License. See the file COPYING in the main directory of this
9 * archive for more details.
11 * Written by Miles Bader <miles@gnu.org>
14 #include <linux/init.h>
15 #include <linux/irq.h>
16 #include <linux/fs.h>
17 #include <linux/module.h>
18 #include <linux/kernel.h>
20 #include <asm/machdep.h>
21 #include <asm/v850e_uart.h>
23 #include "mach.h"
25 static void led_tick (void);
27 /* LED access routines. */
28 extern unsigned read_leds (int pos, char *buf, int len);
29 extern unsigned write_leds (int pos, const char *buf, int len);
31 #ifdef CONFIG_RTE_CB_MULTI
32 extern void multi_init (void);
33 #endif
36 void __init rte_cb_early_init (void)
38 v850e_intc_disable_irqs ();
40 #ifdef CONFIG_RTE_CB_MULTI
41 multi_init ();
42 #endif
45 void __init mach_setup (char **cmdline)
47 #ifdef CONFIG_RTE_MB_A_PCI
48 /* Probe for Mother-A, and print a message if we find it. */
49 *(volatile unsigned long *)MB_A_SRAM_ADDR = 0xDEADBEEF;
50 if (*(volatile unsigned long *)MB_A_SRAM_ADDR == 0xDEADBEEF) {
51 *(volatile unsigned long *)MB_A_SRAM_ADDR = 0x12345678;
52 if (*(volatile unsigned long *)MB_A_SRAM_ADDR == 0x12345678)
53 printk (KERN_INFO
54 " NEC SolutionGear/Midas lab"
55 " RTE-MOTHER-A motherboard\n");
57 #endif /* CONFIG_RTE_MB_A_PCI */
59 mach_tick = led_tick;
62 void machine_restart (char *__unused)
64 #ifdef CONFIG_RESET_GUARD
65 disable_reset_guard ();
66 #endif
67 asm ("jmp r0"); /* Jump to the reset vector. */
70 /* This says `HALt.' in LEDese. */
71 static unsigned char halt_leds_msg[] = { 0x76, 0x77, 0x38, 0xF8 };
73 void machine_halt (void)
75 #ifdef CONFIG_RESET_GUARD
76 disable_reset_guard ();
77 #endif
79 /* Ignore all interrupts. */
80 local_irq_disable ();
82 /* Write a little message. */
83 write_leds (0, halt_leds_msg, sizeof halt_leds_msg);
85 /* Really halt. */
86 for (;;)
87 asm ("halt; nop; nop; nop; nop; nop");
90 void machine_power_off (void)
92 machine_halt ();
96 /* Animated LED display for timer tick. */
98 #define TICK_UPD_FREQ 6
99 static int tick_frames[][10] = {
100 { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, -1 },
101 { 0x63, 0x5c, -1 },
102 { 0x5c, 0x00, -1 },
103 { 0x63, 0x00, -1 },
104 { -1 }
107 static void led_tick ()
109 static unsigned counter = 0;
111 if (++counter == (HZ / TICK_UPD_FREQ)) {
112 /* Which frame we're currently displaying for each digit. */
113 static unsigned frame_nums[LED_NUM_DIGITS] = { 0 };
114 /* Display image. */
115 static unsigned char image[LED_NUM_DIGITS] = { 0 };
116 unsigned char prev_image[LED_NUM_DIGITS];
117 int write_to_leds = 1; /* true if we should actually display */
118 int digit;
120 /* We check to see if the physical LEDs contains what we last
121 wrote to them; if not, we suppress display (this is so that
122 users can write to the LEDs, and not have their output
123 overwritten). As a special case, we start writing again if
124 all the LEDs are blank, or our display image is all zeros
125 (indicating that this is the initial update, when the actual
126 LEDs might contain random data). */
127 read_leds (0, prev_image, LED_NUM_DIGITS);
128 for (digit = 0; digit < LED_NUM_DIGITS; digit++)
129 if (image[digit] != prev_image[digit]
130 && image[digit] && prev_image[digit])
132 write_to_leds = 0;
133 break;
136 /* Update display image. */
137 for (digit = 0;
138 digit < LED_NUM_DIGITS && tick_frames[digit][0] >= 0;
139 digit++)
141 int frame = tick_frames[digit][frame_nums[digit]];
142 if (frame < 0) {
143 image[digit] = tick_frames[digit][0];
144 frame_nums[digit] = 1;
145 } else {
146 image[digit] = frame;
147 frame_nums[digit]++;
148 break;
152 if (write_to_leds)
153 /* Write the display image to the physical LEDs. */
154 write_leds (0, image, LED_NUM_DIGITS);
156 counter = 0;
161 /* Mother-A interrupts. */
163 #ifdef CONFIG_RTE_GBUS_INT
165 #define L GBUS_INT_PRIORITY_LOW
166 #define M GBUS_INT_PRIORITY_MEDIUM
167 #define H GBUS_INT_PRIORITY_HIGH
169 static struct gbus_int_irq_init gbus_irq_inits[] = {
170 #ifdef CONFIG_RTE_MB_A_PCI
171 { "MB_A_LAN", IRQ_MB_A_LAN, 1, 1, L },
172 { "MB_A_PCI1", IRQ_MB_A_PCI1(0), IRQ_MB_A_PCI1_NUM, 1, L },
173 { "MB_A_PCI2", IRQ_MB_A_PCI2(0), IRQ_MB_A_PCI2_NUM, 1, L },
174 { "MB_A_EXT", IRQ_MB_A_EXT(0), IRQ_MB_A_EXT_NUM, 1, L },
175 { "MB_A_USB_OC",IRQ_MB_A_USB_OC(0), IRQ_MB_A_USB_OC_NUM, 1, L },
176 { "MB_A_PCMCIA_OC",IRQ_MB_A_PCMCIA_OC, 1, 1, L },
177 #endif
178 { 0 }
180 #define NUM_GBUS_IRQ_INITS (ARRAY_SIZE(gbus_irq_inits) - 1)
182 static struct hw_interrupt_type gbus_hw_itypes[NUM_GBUS_IRQ_INITS];
184 #endif /* CONFIG_RTE_GBUS_INT */
187 void __init rte_cb_init_irqs (void)
189 #ifdef CONFIG_RTE_GBUS_INT
190 gbus_int_init_irqs ();
191 gbus_int_init_irq_types (gbus_irq_inits, gbus_hw_itypes);
192 #endif /* CONFIG_RTE_GBUS_INT */