Initial commit
[wrt350n-kernel.git] / drivers / md / dm-crypt.c
blobb04f98df94ea310db726b91be82eacf090a71ae1
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2007 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
7 */
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <asm/atomic.h>
22 #include <linux/scatterlist.h>
23 #include <asm/page.h>
24 #include <asm/unaligned.h>
26 #include "dm.h"
28 #define DM_MSG_PREFIX "crypt"
29 #define MESG_STR(x) x, sizeof(x)
32 * context holding the current state of a multi-part conversion
34 struct convert_context {
35 struct completion restart;
36 struct bio *bio_in;
37 struct bio *bio_out;
38 unsigned int offset_in;
39 unsigned int offset_out;
40 unsigned int idx_in;
41 unsigned int idx_out;
42 sector_t sector;
43 atomic_t pending;
47 * per bio private data
49 struct dm_crypt_io {
50 struct dm_target *target;
51 struct bio *base_bio;
52 struct work_struct work;
54 struct convert_context ctx;
56 atomic_t pending;
57 int error;
58 sector_t sector;
61 struct dm_crypt_request {
62 struct scatterlist sg_in;
63 struct scatterlist sg_out;
66 struct crypt_config;
68 struct crypt_iv_operations {
69 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
70 const char *opts);
71 void (*dtr)(struct crypt_config *cc);
72 const char *(*status)(struct crypt_config *cc);
73 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
77 * Crypt: maps a linear range of a block device
78 * and encrypts / decrypts at the same time.
80 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
81 struct crypt_config {
82 struct dm_dev *dev;
83 sector_t start;
86 * pool for per bio private data, crypto requests and
87 * encryption requeusts/buffer pages
89 mempool_t *io_pool;
90 mempool_t *req_pool;
91 mempool_t *page_pool;
92 struct bio_set *bs;
94 struct workqueue_struct *io_queue;
95 struct workqueue_struct *crypt_queue;
97 * crypto related data
99 struct crypt_iv_operations *iv_gen_ops;
100 char *iv_mode;
101 union {
102 struct crypto_cipher *essiv_tfm;
103 int benbi_shift;
104 } iv_gen_private;
105 sector_t iv_offset;
106 unsigned int iv_size;
109 * Layout of each crypto request:
111 * struct ablkcipher_request
112 * context
113 * padding
114 * struct dm_crypt_request
115 * padding
116 * IV
118 * The padding is added so that dm_crypt_request and the IV are
119 * correctly aligned.
121 unsigned int dmreq_start;
122 struct ablkcipher_request *req;
124 char cipher[CRYPTO_MAX_ALG_NAME];
125 char chainmode[CRYPTO_MAX_ALG_NAME];
126 struct crypto_ablkcipher *tfm;
127 unsigned long flags;
128 unsigned int key_size;
129 u8 key[0];
132 #define MIN_IOS 16
133 #define MIN_POOL_PAGES 32
134 #define MIN_BIO_PAGES 8
136 static struct kmem_cache *_crypt_io_pool;
138 static void clone_init(struct dm_crypt_io *, struct bio *);
139 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
142 * Different IV generation algorithms:
144 * plain: the initial vector is the 32-bit little-endian version of the sector
145 * number, padded with zeros if necessary.
147 * essiv: "encrypted sector|salt initial vector", the sector number is
148 * encrypted with the bulk cipher using a salt as key. The salt
149 * should be derived from the bulk cipher's key via hashing.
151 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
152 * (needed for LRW-32-AES and possible other narrow block modes)
154 * null: the initial vector is always zero. Provides compatibility with
155 * obsolete loop_fish2 devices. Do not use for new devices.
157 * plumb: unimplemented, see:
158 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
161 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
163 memset(iv, 0, cc->iv_size);
164 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
166 return 0;
169 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
170 const char *opts)
172 struct crypto_cipher *essiv_tfm;
173 struct crypto_hash *hash_tfm;
174 struct hash_desc desc;
175 struct scatterlist sg;
176 unsigned int saltsize;
177 u8 *salt;
178 int err;
180 if (opts == NULL) {
181 ti->error = "Digest algorithm missing for ESSIV mode";
182 return -EINVAL;
185 /* Hash the cipher key with the given hash algorithm */
186 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
187 if (IS_ERR(hash_tfm)) {
188 ti->error = "Error initializing ESSIV hash";
189 return PTR_ERR(hash_tfm);
192 saltsize = crypto_hash_digestsize(hash_tfm);
193 salt = kmalloc(saltsize, GFP_KERNEL);
194 if (salt == NULL) {
195 ti->error = "Error kmallocing salt storage in ESSIV";
196 crypto_free_hash(hash_tfm);
197 return -ENOMEM;
200 sg_init_one(&sg, cc->key, cc->key_size);
201 desc.tfm = hash_tfm;
202 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
203 err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
204 crypto_free_hash(hash_tfm);
206 if (err) {
207 ti->error = "Error calculating hash in ESSIV";
208 kfree(salt);
209 return err;
212 /* Setup the essiv_tfm with the given salt */
213 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
214 if (IS_ERR(essiv_tfm)) {
215 ti->error = "Error allocating crypto tfm for ESSIV";
216 kfree(salt);
217 return PTR_ERR(essiv_tfm);
219 if (crypto_cipher_blocksize(essiv_tfm) !=
220 crypto_ablkcipher_ivsize(cc->tfm)) {
221 ti->error = "Block size of ESSIV cipher does "
222 "not match IV size of block cipher";
223 crypto_free_cipher(essiv_tfm);
224 kfree(salt);
225 return -EINVAL;
227 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
228 if (err) {
229 ti->error = "Failed to set key for ESSIV cipher";
230 crypto_free_cipher(essiv_tfm);
231 kfree(salt);
232 return err;
234 kfree(salt);
236 cc->iv_gen_private.essiv_tfm = essiv_tfm;
237 return 0;
240 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
242 crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
243 cc->iv_gen_private.essiv_tfm = NULL;
246 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
248 memset(iv, 0, cc->iv_size);
249 *(u64 *)iv = cpu_to_le64(sector);
250 crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
251 return 0;
254 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
255 const char *opts)
257 unsigned bs = crypto_ablkcipher_blocksize(cc->tfm);
258 int log = ilog2(bs);
260 /* we need to calculate how far we must shift the sector count
261 * to get the cipher block count, we use this shift in _gen */
263 if (1 << log != bs) {
264 ti->error = "cypher blocksize is not a power of 2";
265 return -EINVAL;
268 if (log > 9) {
269 ti->error = "cypher blocksize is > 512";
270 return -EINVAL;
273 cc->iv_gen_private.benbi_shift = 9 - log;
275 return 0;
278 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
282 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
284 __be64 val;
286 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
288 val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
289 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
291 return 0;
294 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
296 memset(iv, 0, cc->iv_size);
298 return 0;
301 static struct crypt_iv_operations crypt_iv_plain_ops = {
302 .generator = crypt_iv_plain_gen
305 static struct crypt_iv_operations crypt_iv_essiv_ops = {
306 .ctr = crypt_iv_essiv_ctr,
307 .dtr = crypt_iv_essiv_dtr,
308 .generator = crypt_iv_essiv_gen
311 static struct crypt_iv_operations crypt_iv_benbi_ops = {
312 .ctr = crypt_iv_benbi_ctr,
313 .dtr = crypt_iv_benbi_dtr,
314 .generator = crypt_iv_benbi_gen
317 static struct crypt_iv_operations crypt_iv_null_ops = {
318 .generator = crypt_iv_null_gen
321 static void crypt_convert_init(struct crypt_config *cc,
322 struct convert_context *ctx,
323 struct bio *bio_out, struct bio *bio_in,
324 sector_t sector)
326 ctx->bio_in = bio_in;
327 ctx->bio_out = bio_out;
328 ctx->offset_in = 0;
329 ctx->offset_out = 0;
330 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
331 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
332 ctx->sector = sector + cc->iv_offset;
333 init_completion(&ctx->restart);
335 * Crypto operation can be asynchronous,
336 * ctx->pending is increased after request submission.
337 * We need to ensure that we don't call the crypt finish
338 * operation before pending got incremented
339 * (dependent on crypt submission return code).
341 atomic_set(&ctx->pending, 2);
344 static int crypt_convert_block(struct crypt_config *cc,
345 struct convert_context *ctx,
346 struct ablkcipher_request *req)
348 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
349 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
350 struct dm_crypt_request *dmreq;
351 u8 *iv;
352 int r = 0;
354 dmreq = (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
355 iv = (u8 *)ALIGN((unsigned long)(dmreq + 1),
356 crypto_ablkcipher_alignmask(cc->tfm) + 1);
358 sg_init_table(&dmreq->sg_in, 1);
359 sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
360 bv_in->bv_offset + ctx->offset_in);
362 sg_init_table(&dmreq->sg_out, 1);
363 sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
364 bv_out->bv_offset + ctx->offset_out);
366 ctx->offset_in += 1 << SECTOR_SHIFT;
367 if (ctx->offset_in >= bv_in->bv_len) {
368 ctx->offset_in = 0;
369 ctx->idx_in++;
372 ctx->offset_out += 1 << SECTOR_SHIFT;
373 if (ctx->offset_out >= bv_out->bv_len) {
374 ctx->offset_out = 0;
375 ctx->idx_out++;
378 if (cc->iv_gen_ops) {
379 r = cc->iv_gen_ops->generator(cc, iv, ctx->sector);
380 if (r < 0)
381 return r;
384 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
385 1 << SECTOR_SHIFT, iv);
387 if (bio_data_dir(ctx->bio_in) == WRITE)
388 r = crypto_ablkcipher_encrypt(req);
389 else
390 r = crypto_ablkcipher_decrypt(req);
392 return r;
395 static void kcryptd_async_done(struct crypto_async_request *async_req,
396 int error);
397 static void crypt_alloc_req(struct crypt_config *cc,
398 struct convert_context *ctx)
400 if (!cc->req)
401 cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
402 ablkcipher_request_set_tfm(cc->req, cc->tfm);
403 ablkcipher_request_set_callback(cc->req, CRYPTO_TFM_REQ_MAY_BACKLOG |
404 CRYPTO_TFM_REQ_MAY_SLEEP,
405 kcryptd_async_done, ctx);
409 * Encrypt / decrypt data from one bio to another one (can be the same one)
411 static int crypt_convert(struct crypt_config *cc,
412 struct convert_context *ctx)
414 int r = 0;
416 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
417 ctx->idx_out < ctx->bio_out->bi_vcnt) {
419 crypt_alloc_req(cc, ctx);
421 r = crypt_convert_block(cc, ctx, cc->req);
423 switch (r) {
424 case -EBUSY:
425 wait_for_completion(&ctx->restart);
426 INIT_COMPLETION(ctx->restart);
427 /* fall through*/
428 case -EINPROGRESS:
429 atomic_inc(&ctx->pending);
430 cc->req = NULL;
431 r = 0;
432 /* fall through*/
433 case 0:
434 ctx->sector++;
435 continue;
438 break;
442 * If there are pending crypto operation run async
443 * code. Otherwise process return code synchronously.
444 * The step of 2 ensures that async finish doesn't
445 * call crypto finish too early.
447 if (atomic_sub_return(2, &ctx->pending))
448 return -EINPROGRESS;
450 return r;
453 static void dm_crypt_bio_destructor(struct bio *bio)
455 struct dm_crypt_io *io = bio->bi_private;
456 struct crypt_config *cc = io->target->private;
458 bio_free(bio, cc->bs);
462 * Generate a new unfragmented bio with the given size
463 * This should never violate the device limitations
464 * May return a smaller bio when running out of pages
466 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
468 struct crypt_config *cc = io->target->private;
469 struct bio *clone;
470 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
471 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
472 unsigned i, len;
473 struct page *page;
475 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
476 if (!clone)
477 return NULL;
479 clone_init(io, clone);
481 for (i = 0; i < nr_iovecs; i++) {
482 page = mempool_alloc(cc->page_pool, gfp_mask);
483 if (!page)
484 break;
487 * if additional pages cannot be allocated without waiting,
488 * return a partially allocated bio, the caller will then try
489 * to allocate additional bios while submitting this partial bio
491 if (i == (MIN_BIO_PAGES - 1))
492 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
494 len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
496 if (!bio_add_page(clone, page, len, 0)) {
497 mempool_free(page, cc->page_pool);
498 break;
501 size -= len;
504 if (!clone->bi_size) {
505 bio_put(clone);
506 return NULL;
509 return clone;
512 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
514 unsigned int i;
515 struct bio_vec *bv;
517 for (i = 0; i < clone->bi_vcnt; i++) {
518 bv = bio_iovec_idx(clone, i);
519 BUG_ON(!bv->bv_page);
520 mempool_free(bv->bv_page, cc->page_pool);
521 bv->bv_page = NULL;
526 * One of the bios was finished. Check for completion of
527 * the whole request and correctly clean up the buffer.
529 static void crypt_dec_pending(struct dm_crypt_io *io)
531 struct crypt_config *cc = io->target->private;
533 if (!atomic_dec_and_test(&io->pending))
534 return;
536 bio_endio(io->base_bio, io->error);
537 mempool_free(io, cc->io_pool);
541 * kcryptd/kcryptd_io:
543 * Needed because it would be very unwise to do decryption in an
544 * interrupt context.
546 * kcryptd performs the actual encryption or decryption.
548 * kcryptd_io performs the IO submission.
550 * They must be separated as otherwise the final stages could be
551 * starved by new requests which can block in the first stages due
552 * to memory allocation.
554 static void crypt_endio(struct bio *clone, int error)
556 struct dm_crypt_io *io = clone->bi_private;
557 struct crypt_config *cc = io->target->private;
558 unsigned rw = bio_data_dir(clone);
560 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
561 error = -EIO;
564 * free the processed pages
566 if (rw == WRITE)
567 crypt_free_buffer_pages(cc, clone);
569 bio_put(clone);
571 if (rw == READ && !error) {
572 kcryptd_queue_crypt(io);
573 return;
576 if (unlikely(error))
577 io->error = error;
579 crypt_dec_pending(io);
582 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
584 struct crypt_config *cc = io->target->private;
586 clone->bi_private = io;
587 clone->bi_end_io = crypt_endio;
588 clone->bi_bdev = cc->dev->bdev;
589 clone->bi_rw = io->base_bio->bi_rw;
590 clone->bi_destructor = dm_crypt_bio_destructor;
593 static void kcryptd_io_read(struct dm_crypt_io *io)
595 struct crypt_config *cc = io->target->private;
596 struct bio *base_bio = io->base_bio;
597 struct bio *clone;
599 atomic_inc(&io->pending);
602 * The block layer might modify the bvec array, so always
603 * copy the required bvecs because we need the original
604 * one in order to decrypt the whole bio data *afterwards*.
606 clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
607 if (unlikely(!clone)) {
608 io->error = -ENOMEM;
609 crypt_dec_pending(io);
610 return;
613 clone_init(io, clone);
614 clone->bi_idx = 0;
615 clone->bi_vcnt = bio_segments(base_bio);
616 clone->bi_size = base_bio->bi_size;
617 clone->bi_sector = cc->start + io->sector;
618 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
619 sizeof(struct bio_vec) * clone->bi_vcnt);
621 generic_make_request(clone);
624 static void kcryptd_io_write(struct dm_crypt_io *io)
626 struct bio *clone = io->ctx.bio_out;
628 generic_make_request(clone);
631 static void kcryptd_io(struct work_struct *work)
633 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
635 if (bio_data_dir(io->base_bio) == READ)
636 kcryptd_io_read(io);
637 else
638 kcryptd_io_write(io);
641 static void kcryptd_queue_io(struct dm_crypt_io *io)
643 struct crypt_config *cc = io->target->private;
645 INIT_WORK(&io->work, kcryptd_io);
646 queue_work(cc->io_queue, &io->work);
649 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
650 int error, int async)
652 struct bio *clone = io->ctx.bio_out;
653 struct crypt_config *cc = io->target->private;
655 if (unlikely(error < 0)) {
656 crypt_free_buffer_pages(cc, clone);
657 bio_put(clone);
658 io->error = -EIO;
659 return;
662 /* crypt_convert should have filled the clone bio */
663 BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
665 clone->bi_sector = cc->start + io->sector;
666 io->sector += bio_sectors(clone);
668 if (async)
669 kcryptd_queue_io(io);
670 else {
671 atomic_inc(&io->pending);
672 generic_make_request(clone);
676 static void kcryptd_crypt_write_convert_loop(struct dm_crypt_io *io)
678 struct crypt_config *cc = io->target->private;
679 struct bio *clone;
680 unsigned remaining = io->base_bio->bi_size;
681 int r;
684 * The allocated buffers can be smaller than the whole bio,
685 * so repeat the whole process until all the data can be handled.
687 while (remaining) {
688 clone = crypt_alloc_buffer(io, remaining);
689 if (unlikely(!clone)) {
690 io->error = -ENOMEM;
691 return;
694 io->ctx.bio_out = clone;
695 io->ctx.idx_out = 0;
697 remaining -= clone->bi_size;
699 r = crypt_convert(cc, &io->ctx);
701 if (r != -EINPROGRESS) {
702 kcryptd_crypt_write_io_submit(io, r, 0);
703 if (unlikely(r < 0))
704 return;
705 } else
706 atomic_inc(&io->pending);
708 /* out of memory -> run queues */
709 if (unlikely(remaining))
710 congestion_wait(WRITE, HZ/100);
714 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
716 struct crypt_config *cc = io->target->private;
719 * Prevent io from disappearing until this function completes.
721 atomic_inc(&io->pending);
723 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, io->sector);
724 kcryptd_crypt_write_convert_loop(io);
726 crypt_dec_pending(io);
729 static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
731 if (unlikely(error < 0))
732 io->error = -EIO;
734 crypt_dec_pending(io);
737 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
739 struct crypt_config *cc = io->target->private;
740 int r = 0;
742 atomic_inc(&io->pending);
744 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
745 io->sector);
747 r = crypt_convert(cc, &io->ctx);
749 if (r != -EINPROGRESS)
750 kcryptd_crypt_read_done(io, r);
752 crypt_dec_pending(io);
755 static void kcryptd_async_done(struct crypto_async_request *async_req,
756 int error)
758 struct convert_context *ctx = async_req->data;
759 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
760 struct crypt_config *cc = io->target->private;
762 if (error == -EINPROGRESS) {
763 complete(&ctx->restart);
764 return;
767 mempool_free(ablkcipher_request_cast(async_req), cc->req_pool);
769 if (!atomic_dec_and_test(&ctx->pending))
770 return;
772 if (bio_data_dir(io->base_bio) == READ)
773 kcryptd_crypt_read_done(io, error);
774 else
775 kcryptd_crypt_write_io_submit(io, error, 1);
778 static void kcryptd_crypt(struct work_struct *work)
780 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
782 if (bio_data_dir(io->base_bio) == READ)
783 kcryptd_crypt_read_convert(io);
784 else
785 kcryptd_crypt_write_convert(io);
788 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
790 struct crypt_config *cc = io->target->private;
792 INIT_WORK(&io->work, kcryptd_crypt);
793 queue_work(cc->crypt_queue, &io->work);
797 * Decode key from its hex representation
799 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
801 char buffer[3];
802 char *endp;
803 unsigned int i;
805 buffer[2] = '\0';
807 for (i = 0; i < size; i++) {
808 buffer[0] = *hex++;
809 buffer[1] = *hex++;
811 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
813 if (endp != &buffer[2])
814 return -EINVAL;
817 if (*hex != '\0')
818 return -EINVAL;
820 return 0;
824 * Encode key into its hex representation
826 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
828 unsigned int i;
830 for (i = 0; i < size; i++) {
831 sprintf(hex, "%02x", *key);
832 hex += 2;
833 key++;
837 static int crypt_set_key(struct crypt_config *cc, char *key)
839 unsigned key_size = strlen(key) >> 1;
841 if (cc->key_size && cc->key_size != key_size)
842 return -EINVAL;
844 cc->key_size = key_size; /* initial settings */
846 if ((!key_size && strcmp(key, "-")) ||
847 (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
848 return -EINVAL;
850 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
852 return 0;
855 static int crypt_wipe_key(struct crypt_config *cc)
857 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
858 memset(&cc->key, 0, cc->key_size * sizeof(u8));
859 return 0;
863 * Construct an encryption mapping:
864 * <cipher> <key> <iv_offset> <dev_path> <start>
866 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
868 struct crypt_config *cc;
869 struct crypto_ablkcipher *tfm;
870 char *tmp;
871 char *cipher;
872 char *chainmode;
873 char *ivmode;
874 char *ivopts;
875 unsigned int key_size;
876 unsigned long long tmpll;
878 if (argc != 5) {
879 ti->error = "Not enough arguments";
880 return -EINVAL;
883 tmp = argv[0];
884 cipher = strsep(&tmp, "-");
885 chainmode = strsep(&tmp, "-");
886 ivopts = strsep(&tmp, "-");
887 ivmode = strsep(&ivopts, ":");
889 if (tmp)
890 DMWARN("Unexpected additional cipher options");
892 key_size = strlen(argv[1]) >> 1;
894 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
895 if (cc == NULL) {
896 ti->error =
897 "Cannot allocate transparent encryption context";
898 return -ENOMEM;
901 if (crypt_set_key(cc, argv[1])) {
902 ti->error = "Error decoding key";
903 goto bad_cipher;
906 /* Compatiblity mode for old dm-crypt cipher strings */
907 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
908 chainmode = "cbc";
909 ivmode = "plain";
912 if (strcmp(chainmode, "ecb") && !ivmode) {
913 ti->error = "This chaining mode requires an IV mechanism";
914 goto bad_cipher;
917 if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
918 chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
919 ti->error = "Chain mode + cipher name is too long";
920 goto bad_cipher;
923 tfm = crypto_alloc_ablkcipher(cc->cipher, 0, 0);
924 if (IS_ERR(tfm)) {
925 ti->error = "Error allocating crypto tfm";
926 goto bad_cipher;
929 strcpy(cc->cipher, cipher);
930 strcpy(cc->chainmode, chainmode);
931 cc->tfm = tfm;
934 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
935 * See comments at iv code
938 if (ivmode == NULL)
939 cc->iv_gen_ops = NULL;
940 else if (strcmp(ivmode, "plain") == 0)
941 cc->iv_gen_ops = &crypt_iv_plain_ops;
942 else if (strcmp(ivmode, "essiv") == 0)
943 cc->iv_gen_ops = &crypt_iv_essiv_ops;
944 else if (strcmp(ivmode, "benbi") == 0)
945 cc->iv_gen_ops = &crypt_iv_benbi_ops;
946 else if (strcmp(ivmode, "null") == 0)
947 cc->iv_gen_ops = &crypt_iv_null_ops;
948 else {
949 ti->error = "Invalid IV mode";
950 goto bad_ivmode;
953 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
954 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
955 goto bad_ivmode;
957 cc->iv_size = crypto_ablkcipher_ivsize(tfm);
958 if (cc->iv_size)
959 /* at least a 64 bit sector number should fit in our buffer */
960 cc->iv_size = max(cc->iv_size,
961 (unsigned int)(sizeof(u64) / sizeof(u8)));
962 else {
963 if (cc->iv_gen_ops) {
964 DMWARN("Selected cipher does not support IVs");
965 if (cc->iv_gen_ops->dtr)
966 cc->iv_gen_ops->dtr(cc);
967 cc->iv_gen_ops = NULL;
971 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
972 if (!cc->io_pool) {
973 ti->error = "Cannot allocate crypt io mempool";
974 goto bad_slab_pool;
977 cc->dmreq_start = sizeof(struct ablkcipher_request);
978 cc->dmreq_start += crypto_ablkcipher_reqsize(tfm);
979 cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
980 cc->dmreq_start += crypto_ablkcipher_alignmask(tfm) &
981 ~(crypto_tfm_ctx_alignment() - 1);
983 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
984 sizeof(struct dm_crypt_request) + cc->iv_size);
985 if (!cc->req_pool) {
986 ti->error = "Cannot allocate crypt request mempool";
987 goto bad_req_pool;
989 cc->req = NULL;
991 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
992 if (!cc->page_pool) {
993 ti->error = "Cannot allocate page mempool";
994 goto bad_page_pool;
997 cc->bs = bioset_create(MIN_IOS, MIN_IOS);
998 if (!cc->bs) {
999 ti->error = "Cannot allocate crypt bioset";
1000 goto bad_bs;
1003 if (crypto_ablkcipher_setkey(tfm, cc->key, key_size) < 0) {
1004 ti->error = "Error setting key";
1005 goto bad_device;
1008 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
1009 ti->error = "Invalid iv_offset sector";
1010 goto bad_device;
1012 cc->iv_offset = tmpll;
1014 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
1015 ti->error = "Invalid device sector";
1016 goto bad_device;
1018 cc->start = tmpll;
1020 if (dm_get_device(ti, argv[3], cc->start, ti->len,
1021 dm_table_get_mode(ti->table), &cc->dev)) {
1022 ti->error = "Device lookup failed";
1023 goto bad_device;
1026 if (ivmode && cc->iv_gen_ops) {
1027 if (ivopts)
1028 *(ivopts - 1) = ':';
1029 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
1030 if (!cc->iv_mode) {
1031 ti->error = "Error kmallocing iv_mode string";
1032 goto bad_ivmode_string;
1034 strcpy(cc->iv_mode, ivmode);
1035 } else
1036 cc->iv_mode = NULL;
1038 cc->io_queue = create_singlethread_workqueue("kcryptd_io");
1039 if (!cc->io_queue) {
1040 ti->error = "Couldn't create kcryptd io queue";
1041 goto bad_io_queue;
1044 cc->crypt_queue = create_singlethread_workqueue("kcryptd");
1045 if (!cc->crypt_queue) {
1046 ti->error = "Couldn't create kcryptd queue";
1047 goto bad_crypt_queue;
1050 ti->private = cc;
1051 return 0;
1053 bad_crypt_queue:
1054 destroy_workqueue(cc->io_queue);
1055 bad_io_queue:
1056 kfree(cc->iv_mode);
1057 bad_ivmode_string:
1058 dm_put_device(ti, cc->dev);
1059 bad_device:
1060 bioset_free(cc->bs);
1061 bad_bs:
1062 mempool_destroy(cc->page_pool);
1063 bad_page_pool:
1064 mempool_destroy(cc->req_pool);
1065 bad_req_pool:
1066 mempool_destroy(cc->io_pool);
1067 bad_slab_pool:
1068 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1069 cc->iv_gen_ops->dtr(cc);
1070 bad_ivmode:
1071 crypto_free_ablkcipher(tfm);
1072 bad_cipher:
1073 /* Must zero key material before freeing */
1074 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
1075 kfree(cc);
1076 return -EINVAL;
1079 static void crypt_dtr(struct dm_target *ti)
1081 struct crypt_config *cc = (struct crypt_config *) ti->private;
1083 destroy_workqueue(cc->io_queue);
1084 destroy_workqueue(cc->crypt_queue);
1086 if (cc->req)
1087 mempool_free(cc->req, cc->req_pool);
1089 bioset_free(cc->bs);
1090 mempool_destroy(cc->page_pool);
1091 mempool_destroy(cc->req_pool);
1092 mempool_destroy(cc->io_pool);
1094 kfree(cc->iv_mode);
1095 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1096 cc->iv_gen_ops->dtr(cc);
1097 crypto_free_ablkcipher(cc->tfm);
1098 dm_put_device(ti, cc->dev);
1100 /* Must zero key material before freeing */
1101 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
1102 kfree(cc);
1105 static int crypt_map(struct dm_target *ti, struct bio *bio,
1106 union map_info *map_context)
1108 struct crypt_config *cc = ti->private;
1109 struct dm_crypt_io *io;
1111 io = mempool_alloc(cc->io_pool, GFP_NOIO);
1112 io->target = ti;
1113 io->base_bio = bio;
1114 io->sector = bio->bi_sector - ti->begin;
1115 io->error = 0;
1116 atomic_set(&io->pending, 0);
1118 if (bio_data_dir(io->base_bio) == READ)
1119 kcryptd_queue_io(io);
1120 else
1121 kcryptd_queue_crypt(io);
1123 return DM_MAPIO_SUBMITTED;
1126 static int crypt_status(struct dm_target *ti, status_type_t type,
1127 char *result, unsigned int maxlen)
1129 struct crypt_config *cc = (struct crypt_config *) ti->private;
1130 unsigned int sz = 0;
1132 switch (type) {
1133 case STATUSTYPE_INFO:
1134 result[0] = '\0';
1135 break;
1137 case STATUSTYPE_TABLE:
1138 if (cc->iv_mode)
1139 DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
1140 cc->iv_mode);
1141 else
1142 DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
1144 if (cc->key_size > 0) {
1145 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1146 return -ENOMEM;
1148 crypt_encode_key(result + sz, cc->key, cc->key_size);
1149 sz += cc->key_size << 1;
1150 } else {
1151 if (sz >= maxlen)
1152 return -ENOMEM;
1153 result[sz++] = '-';
1156 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1157 cc->dev->name, (unsigned long long)cc->start);
1158 break;
1160 return 0;
1163 static void crypt_postsuspend(struct dm_target *ti)
1165 struct crypt_config *cc = ti->private;
1167 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1170 static int crypt_preresume(struct dm_target *ti)
1172 struct crypt_config *cc = ti->private;
1174 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1175 DMERR("aborting resume - crypt key is not set.");
1176 return -EAGAIN;
1179 return 0;
1182 static void crypt_resume(struct dm_target *ti)
1184 struct crypt_config *cc = ti->private;
1186 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1189 /* Message interface
1190 * key set <key>
1191 * key wipe
1193 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1195 struct crypt_config *cc = ti->private;
1197 if (argc < 2)
1198 goto error;
1200 if (!strnicmp(argv[0], MESG_STR("key"))) {
1201 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1202 DMWARN("not suspended during key manipulation.");
1203 return -EINVAL;
1205 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1206 return crypt_set_key(cc, argv[2]);
1207 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1208 return crypt_wipe_key(cc);
1211 error:
1212 DMWARN("unrecognised message received.");
1213 return -EINVAL;
1216 static struct target_type crypt_target = {
1217 .name = "crypt",
1218 .version= {1, 5, 0},
1219 .module = THIS_MODULE,
1220 .ctr = crypt_ctr,
1221 .dtr = crypt_dtr,
1222 .map = crypt_map,
1223 .status = crypt_status,
1224 .postsuspend = crypt_postsuspend,
1225 .preresume = crypt_preresume,
1226 .resume = crypt_resume,
1227 .message = crypt_message,
1230 static int __init dm_crypt_init(void)
1232 int r;
1234 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1235 if (!_crypt_io_pool)
1236 return -ENOMEM;
1238 r = dm_register_target(&crypt_target);
1239 if (r < 0) {
1240 DMERR("register failed %d", r);
1241 kmem_cache_destroy(_crypt_io_pool);
1244 return r;
1247 static void __exit dm_crypt_exit(void)
1249 int r = dm_unregister_target(&crypt_target);
1251 if (r < 0)
1252 DMERR("unregister failed %d", r);
1254 kmem_cache_destroy(_crypt_io_pool);
1257 module_init(dm_crypt_init);
1258 module_exit(dm_crypt_exit);
1260 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1261 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1262 MODULE_LICENSE("GPL");