Initial commit
[wrt350n-kernel.git] / drivers / net / sis900.c
blobec95e493ac1c2ec45ee716cac4510c7b15ae1193
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2 Copyright 1999 Silicon Integrated System Corporation
3 Revision: 1.08.10 Apr. 2 2006
5 Modified from the driver which is originally written by Donald Becker.
7 This software may be used and distributed according to the terms
8 of the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on this skeleton fall under the GPL and must retain
10 the authorship (implicit copyright) notice.
12 References:
13 SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14 preliminary Rev. 1.0 Jan. 14, 1998
15 SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16 preliminary Rev. 1.0 Nov. 10, 1998
17 SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18 preliminary Rev. 1.0 Jan. 18, 1998
20 Rev 1.08.10 Apr. 2 2006 Daniele Venzano add vlan (jumbo packets) support
21 Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22 Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23 Rev 1.08.07 Nov. 2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24 Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25 Rev 1.08.05 Jun. 6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26 Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27 Rev 1.08.03 Feb. 1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28 Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29 Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30 Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31 Rev 1.07.11 Apr. 2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32 Rev 1.07.10 Mar. 1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33 Rev 1.07.09 Feb. 9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34 Rev 1.07.08 Jan. 8 2001 Lei-Chun Chang added RTL8201 PHY support
35 Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36 Rev 1.07.06 Nov. 7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37 Rev 1.07.05 Nov. 6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38 Rev 1.07.04 Sep. 6 2000 Lei-Chun Chang added ICS1893 PHY support
39 Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E eqaulizer workaround rule
40 Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41 Rev 1.07 Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42 Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43 Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44 Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45 Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46 Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47 Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48 Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49 Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/string.h>
56 #include <linux/timer.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/slab.h>
60 #include <linux/interrupt.h>
61 #include <linux/pci.h>
62 #include <linux/netdevice.h>
63 #include <linux/init.h>
64 #include <linux/mii.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/delay.h>
68 #include <linux/ethtool.h>
69 #include <linux/crc32.h>
70 #include <linux/bitops.h>
71 #include <linux/dma-mapping.h>
73 #include <asm/processor.h> /* Processor type for cache alignment. */
74 #include <asm/io.h>
75 #include <asm/irq.h>
76 #include <asm/uaccess.h> /* User space memory access functions */
78 #include "sis900.h"
80 #define SIS900_MODULE_NAME "sis900"
81 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
83 static char version[] __devinitdata =
84 KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
86 static int max_interrupt_work = 40;
87 static int multicast_filter_limit = 128;
89 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
91 #define SIS900_DEF_MSG \
92 (NETIF_MSG_DRV | \
93 NETIF_MSG_LINK | \
94 NETIF_MSG_RX_ERR | \
95 NETIF_MSG_TX_ERR)
97 /* Time in jiffies before concluding the transmitter is hung. */
98 #define TX_TIMEOUT (4*HZ)
100 enum {
101 SIS_900 = 0,
102 SIS_7016
104 static const char * card_names[] = {
105 "SiS 900 PCI Fast Ethernet",
106 "SiS 7016 PCI Fast Ethernet"
108 static struct pci_device_id sis900_pci_tbl [] = {
109 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
110 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
111 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
112 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
113 {0,}
115 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
117 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
119 static const struct mii_chip_info {
120 const char * name;
121 u16 phy_id0;
122 u16 phy_id1;
123 u8 phy_types;
124 #define HOME 0x0001
125 #define LAN 0x0002
126 #define MIX 0x0003
127 #define UNKNOWN 0x0
128 } mii_chip_table[] = {
129 { "SiS 900 Internal MII PHY", 0x001d, 0x8000, LAN },
130 { "SiS 7014 Physical Layer Solution", 0x0016, 0xf830, LAN },
131 { "SiS 900 on Foxconn 661 7MI", 0x0143, 0xBC70, LAN },
132 { "Altimata AC101LF PHY", 0x0022, 0x5520, LAN },
133 { "ADM 7001 LAN PHY", 0x002e, 0xcc60, LAN },
134 { "AMD 79C901 10BASE-T PHY", 0x0000, 0x6B70, LAN },
135 { "AMD 79C901 HomePNA PHY", 0x0000, 0x6B90, HOME},
136 { "ICS LAN PHY", 0x0015, 0xF440, LAN },
137 { "ICS LAN PHY", 0x0143, 0xBC70, LAN },
138 { "NS 83851 PHY", 0x2000, 0x5C20, MIX },
139 { "NS 83847 PHY", 0x2000, 0x5C30, MIX },
140 { "Realtek RTL8201 PHY", 0x0000, 0x8200, LAN },
141 { "VIA 6103 PHY", 0x0101, 0x8f20, LAN },
142 {NULL,},
145 struct mii_phy {
146 struct mii_phy * next;
147 int phy_addr;
148 u16 phy_id0;
149 u16 phy_id1;
150 u16 status;
151 u8 phy_types;
154 typedef struct _BufferDesc {
155 u32 link;
156 u32 cmdsts;
157 u32 bufptr;
158 } BufferDesc;
160 struct sis900_private {
161 struct pci_dev * pci_dev;
163 spinlock_t lock;
165 struct mii_phy * mii;
166 struct mii_phy * first_mii; /* record the first mii structure */
167 unsigned int cur_phy;
168 struct mii_if_info mii_info;
170 struct timer_list timer; /* Link status detection timer. */
171 u8 autong_complete; /* 1: auto-negotiate complete */
173 u32 msg_enable;
175 unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
176 unsigned int cur_tx, dirty_tx;
178 /* The saved address of a sent/receive-in-place packet buffer */
179 struct sk_buff *tx_skbuff[NUM_TX_DESC];
180 struct sk_buff *rx_skbuff[NUM_RX_DESC];
181 BufferDesc *tx_ring;
182 BufferDesc *rx_ring;
184 dma_addr_t tx_ring_dma;
185 dma_addr_t rx_ring_dma;
187 unsigned int tx_full; /* The Tx queue is full. */
188 u8 host_bridge_rev;
189 u8 chipset_rev;
192 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
193 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
194 MODULE_LICENSE("GPL");
196 module_param(multicast_filter_limit, int, 0444);
197 module_param(max_interrupt_work, int, 0444);
198 module_param(sis900_debug, int, 0444);
199 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
200 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
201 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
203 #ifdef CONFIG_NET_POLL_CONTROLLER
204 static void sis900_poll(struct net_device *dev);
205 #endif
206 static int sis900_open(struct net_device *net_dev);
207 static int sis900_mii_probe (struct net_device * net_dev);
208 static void sis900_init_rxfilter (struct net_device * net_dev);
209 static u16 read_eeprom(long ioaddr, int location);
210 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
211 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
212 static void sis900_timer(unsigned long data);
213 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
214 static void sis900_tx_timeout(struct net_device *net_dev);
215 static void sis900_init_tx_ring(struct net_device *net_dev);
216 static void sis900_init_rx_ring(struct net_device *net_dev);
217 static int sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev);
218 static int sis900_rx(struct net_device *net_dev);
219 static void sis900_finish_xmit (struct net_device *net_dev);
220 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
221 static int sis900_close(struct net_device *net_dev);
222 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
223 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
224 static void set_rx_mode(struct net_device *net_dev);
225 static void sis900_reset(struct net_device *net_dev);
226 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
227 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
228 static u16 sis900_default_phy(struct net_device * net_dev);
229 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
230 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
231 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
232 static void sis900_set_mode (long ioaddr, int speed, int duplex);
233 static const struct ethtool_ops sis900_ethtool_ops;
236 * sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
237 * @pci_dev: the sis900 pci device
238 * @net_dev: the net device to get address for
240 * Older SiS900 and friends, use EEPROM to store MAC address.
241 * MAC address is read from read_eeprom() into @net_dev->dev_addr.
244 static int __devinit sis900_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev)
246 long ioaddr = pci_resource_start(pci_dev, 0);
247 u16 signature;
248 int i;
250 /* check to see if we have sane EEPROM */
251 signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
252 if (signature == 0xffff || signature == 0x0000) {
253 printk (KERN_WARNING "%s: Error EERPOM read %x\n",
254 pci_name(pci_dev), signature);
255 return 0;
258 /* get MAC address from EEPROM */
259 for (i = 0; i < 3; i++)
260 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
262 return 1;
266 * sis630e_get_mac_addr - Get MAC address for SiS630E model
267 * @pci_dev: the sis900 pci device
268 * @net_dev: the net device to get address for
270 * SiS630E model, use APC CMOS RAM to store MAC address.
271 * APC CMOS RAM is accessed through ISA bridge.
272 * MAC address is read into @net_dev->dev_addr.
275 static int __devinit sis630e_get_mac_addr(struct pci_dev * pci_dev,
276 struct net_device *net_dev)
278 struct pci_dev *isa_bridge = NULL;
279 u8 reg;
280 int i;
282 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
283 if (!isa_bridge)
284 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
285 if (!isa_bridge) {
286 printk(KERN_WARNING "%s: Can not find ISA bridge\n",
287 pci_name(pci_dev));
288 return 0;
290 pci_read_config_byte(isa_bridge, 0x48, &reg);
291 pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
293 for (i = 0; i < 6; i++) {
294 outb(0x09 + i, 0x70);
295 ((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
297 pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
298 pci_dev_put(isa_bridge);
300 return 1;
305 * sis635_get_mac_addr - Get MAC address for SIS635 model
306 * @pci_dev: the sis900 pci device
307 * @net_dev: the net device to get address for
309 * SiS635 model, set MAC Reload Bit to load Mac address from APC
310 * to rfdr. rfdr is accessed through rfcr. MAC address is read into
311 * @net_dev->dev_addr.
314 static int __devinit sis635_get_mac_addr(struct pci_dev * pci_dev,
315 struct net_device *net_dev)
317 long ioaddr = net_dev->base_addr;
318 u32 rfcrSave;
319 u32 i;
321 rfcrSave = inl(rfcr + ioaddr);
323 outl(rfcrSave | RELOAD, ioaddr + cr);
324 outl(0, ioaddr + cr);
326 /* disable packet filtering before setting filter */
327 outl(rfcrSave & ~RFEN, rfcr + ioaddr);
329 /* load MAC addr to filter data register */
330 for (i = 0 ; i < 3 ; i++) {
331 outl((i << RFADDR_shift), ioaddr + rfcr);
332 *( ((u16 *)net_dev->dev_addr) + i) = inw(ioaddr + rfdr);
335 /* enable packet filtering */
336 outl(rfcrSave | RFEN, rfcr + ioaddr);
338 return 1;
342 * sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
343 * @pci_dev: the sis900 pci device
344 * @net_dev: the net device to get address for
346 * SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
347 * is shared by
348 * LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
349 * and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
350 * by LAN, otherwise is not. After MAC address is read from EEPROM, send
351 * EEDONE signal to refuse EEPROM access by LAN.
352 * The EEPROM map of SiS962 or SiS963 is different to SiS900.
353 * The signature field in SiS962 or SiS963 spec is meaningless.
354 * MAC address is read into @net_dev->dev_addr.
357 static int __devinit sis96x_get_mac_addr(struct pci_dev * pci_dev,
358 struct net_device *net_dev)
360 long ioaddr = net_dev->base_addr;
361 long ee_addr = ioaddr + mear;
362 u32 waittime = 0;
363 int i;
365 outl(EEREQ, ee_addr);
366 while(waittime < 2000) {
367 if(inl(ee_addr) & EEGNT) {
369 /* get MAC address from EEPROM */
370 for (i = 0; i < 3; i++)
371 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
373 outl(EEDONE, ee_addr);
374 return 1;
375 } else {
376 udelay(1);
377 waittime ++;
380 outl(EEDONE, ee_addr);
381 return 0;
385 * sis900_probe - Probe for sis900 device
386 * @pci_dev: the sis900 pci device
387 * @pci_id: the pci device ID
389 * Check and probe sis900 net device for @pci_dev.
390 * Get mac address according to the chip revision,
391 * and assign SiS900-specific entries in the device structure.
392 * ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
395 static int __devinit sis900_probe(struct pci_dev *pci_dev,
396 const struct pci_device_id *pci_id)
398 struct sis900_private *sis_priv;
399 struct net_device *net_dev;
400 struct pci_dev *dev;
401 dma_addr_t ring_dma;
402 void *ring_space;
403 long ioaddr;
404 int i, ret;
405 const char *card_name = card_names[pci_id->driver_data];
406 const char *dev_name = pci_name(pci_dev);
407 DECLARE_MAC_BUF(mac);
409 /* when built into the kernel, we only print version if device is found */
410 #ifndef MODULE
411 static int printed_version;
412 if (!printed_version++)
413 printk(version);
414 #endif
416 /* setup various bits in PCI command register */
417 ret = pci_enable_device(pci_dev);
418 if(ret) return ret;
420 i = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
421 if(i){
422 printk(KERN_ERR "sis900.c: architecture does not support "
423 "32bit PCI busmaster DMA\n");
424 return i;
427 pci_set_master(pci_dev);
429 net_dev = alloc_etherdev(sizeof(struct sis900_private));
430 if (!net_dev)
431 return -ENOMEM;
432 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
434 /* We do a request_region() to register /proc/ioports info. */
435 ioaddr = pci_resource_start(pci_dev, 0);
436 ret = pci_request_regions(pci_dev, "sis900");
437 if (ret)
438 goto err_out;
440 sis_priv = net_dev->priv;
441 net_dev->base_addr = ioaddr;
442 net_dev->irq = pci_dev->irq;
443 sis_priv->pci_dev = pci_dev;
444 spin_lock_init(&sis_priv->lock);
446 pci_set_drvdata(pci_dev, net_dev);
448 ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
449 if (!ring_space) {
450 ret = -ENOMEM;
451 goto err_out_cleardev;
453 sis_priv->tx_ring = (BufferDesc *)ring_space;
454 sis_priv->tx_ring_dma = ring_dma;
456 ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
457 if (!ring_space) {
458 ret = -ENOMEM;
459 goto err_unmap_tx;
461 sis_priv->rx_ring = (BufferDesc *)ring_space;
462 sis_priv->rx_ring_dma = ring_dma;
464 /* The SiS900-specific entries in the device structure. */
465 net_dev->open = &sis900_open;
466 net_dev->hard_start_xmit = &sis900_start_xmit;
467 net_dev->stop = &sis900_close;
468 net_dev->set_config = &sis900_set_config;
469 net_dev->set_multicast_list = &set_rx_mode;
470 net_dev->do_ioctl = &mii_ioctl;
471 net_dev->tx_timeout = sis900_tx_timeout;
472 net_dev->watchdog_timeo = TX_TIMEOUT;
473 net_dev->ethtool_ops = &sis900_ethtool_ops;
475 #ifdef CONFIG_NET_POLL_CONTROLLER
476 net_dev->poll_controller = &sis900_poll;
477 #endif
479 if (sis900_debug > 0)
480 sis_priv->msg_enable = sis900_debug;
481 else
482 sis_priv->msg_enable = SIS900_DEF_MSG;
484 sis_priv->mii_info.dev = net_dev;
485 sis_priv->mii_info.mdio_read = mdio_read;
486 sis_priv->mii_info.mdio_write = mdio_write;
487 sis_priv->mii_info.phy_id_mask = 0x1f;
488 sis_priv->mii_info.reg_num_mask = 0x1f;
490 /* Get Mac address according to the chip revision */
491 pci_read_config_byte(pci_dev, PCI_CLASS_REVISION, &(sis_priv->chipset_rev));
492 if(netif_msg_probe(sis_priv))
493 printk(KERN_DEBUG "%s: detected revision %2.2x, "
494 "trying to get MAC address...\n",
495 dev_name, sis_priv->chipset_rev);
497 ret = 0;
498 if (sis_priv->chipset_rev == SIS630E_900_REV)
499 ret = sis630e_get_mac_addr(pci_dev, net_dev);
500 else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
501 ret = sis635_get_mac_addr(pci_dev, net_dev);
502 else if (sis_priv->chipset_rev == SIS96x_900_REV)
503 ret = sis96x_get_mac_addr(pci_dev, net_dev);
504 else
505 ret = sis900_get_mac_addr(pci_dev, net_dev);
507 if (ret == 0) {
508 printk(KERN_WARNING "%s: Cannot read MAC address.\n", dev_name);
509 ret = -ENODEV;
510 goto err_unmap_rx;
513 /* 630ET : set the mii access mode as software-mode */
514 if (sis_priv->chipset_rev == SIS630ET_900_REV)
515 outl(ACCESSMODE | inl(ioaddr + cr), ioaddr + cr);
517 /* probe for mii transceiver */
518 if (sis900_mii_probe(net_dev) == 0) {
519 printk(KERN_WARNING "%s: Error probing MII device.\n",
520 dev_name);
521 ret = -ENODEV;
522 goto err_unmap_rx;
525 /* save our host bridge revision */
526 dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
527 if (dev) {
528 pci_read_config_byte(dev, PCI_CLASS_REVISION, &sis_priv->host_bridge_rev);
529 pci_dev_put(dev);
532 ret = register_netdev(net_dev);
533 if (ret)
534 goto err_unmap_rx;
536 /* print some information about our NIC */
537 printk(KERN_INFO "%s: %s at %#lx, IRQ %d, %s\n",
538 net_dev->name, card_name, ioaddr, net_dev->irq,
539 print_mac(mac, net_dev->dev_addr));
541 /* Detect Wake on Lan support */
542 ret = (inl(net_dev->base_addr + CFGPMC) & PMESP) >> 27;
543 if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
544 printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
546 return 0;
548 err_unmap_rx:
549 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
550 sis_priv->rx_ring_dma);
551 err_unmap_tx:
552 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
553 sis_priv->tx_ring_dma);
554 err_out_cleardev:
555 pci_set_drvdata(pci_dev, NULL);
556 pci_release_regions(pci_dev);
557 err_out:
558 free_netdev(net_dev);
559 return ret;
563 * sis900_mii_probe - Probe MII PHY for sis900
564 * @net_dev: the net device to probe for
566 * Search for total of 32 possible mii phy addresses.
567 * Identify and set current phy if found one,
568 * return error if it failed to found.
571 static int __devinit sis900_mii_probe(struct net_device * net_dev)
573 struct sis900_private * sis_priv = net_dev->priv;
574 const char *dev_name = pci_name(sis_priv->pci_dev);
575 u16 poll_bit = MII_STAT_LINK, status = 0;
576 unsigned long timeout = jiffies + 5 * HZ;
577 int phy_addr;
579 sis_priv->mii = NULL;
581 /* search for total of 32 possible mii phy addresses */
582 for (phy_addr = 0; phy_addr < 32; phy_addr++) {
583 struct mii_phy * mii_phy = NULL;
584 u16 mii_status;
585 int i;
587 mii_phy = NULL;
588 for(i = 0; i < 2; i++)
589 mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
591 if (mii_status == 0xffff || mii_status == 0x0000) {
592 if (netif_msg_probe(sis_priv))
593 printk(KERN_DEBUG "%s: MII at address %d"
594 " not accessible\n",
595 dev_name, phy_addr);
596 continue;
599 if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
600 printk(KERN_WARNING "Cannot allocate mem for struct mii_phy\n");
601 mii_phy = sis_priv->first_mii;
602 while (mii_phy) {
603 struct mii_phy *phy;
604 phy = mii_phy;
605 mii_phy = mii_phy->next;
606 kfree(phy);
608 return 0;
611 mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
612 mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
613 mii_phy->phy_addr = phy_addr;
614 mii_phy->status = mii_status;
615 mii_phy->next = sis_priv->mii;
616 sis_priv->mii = mii_phy;
617 sis_priv->first_mii = mii_phy;
619 for (i = 0; mii_chip_table[i].phy_id1; i++)
620 if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
621 ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
622 mii_phy->phy_types = mii_chip_table[i].phy_types;
623 if (mii_chip_table[i].phy_types == MIX)
624 mii_phy->phy_types =
625 (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
626 printk(KERN_INFO "%s: %s transceiver found "
627 "at address %d.\n",
628 dev_name,
629 mii_chip_table[i].name,
630 phy_addr);
631 break;
634 if( !mii_chip_table[i].phy_id1 ) {
635 printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
636 dev_name, phy_addr);
637 mii_phy->phy_types = UNKNOWN;
641 if (sis_priv->mii == NULL) {
642 printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
643 return 0;
646 /* select default PHY for mac */
647 sis_priv->mii = NULL;
648 sis900_default_phy( net_dev );
650 /* Reset phy if default phy is internal sis900 */
651 if ((sis_priv->mii->phy_id0 == 0x001D) &&
652 ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
653 status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
655 /* workaround for ICS1893 PHY */
656 if ((sis_priv->mii->phy_id0 == 0x0015) &&
657 ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
658 mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
660 if(status & MII_STAT_LINK){
661 while (poll_bit) {
662 yield();
664 poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
665 if (time_after_eq(jiffies, timeout)) {
666 printk(KERN_WARNING "%s: reset phy and link down now\n",
667 dev_name);
668 return -ETIME;
673 if (sis_priv->chipset_rev == SIS630E_900_REV) {
674 /* SiS 630E has some bugs on default value of PHY registers */
675 mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
676 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
677 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
678 mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
679 //mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
682 if (sis_priv->mii->status & MII_STAT_LINK)
683 netif_carrier_on(net_dev);
684 else
685 netif_carrier_off(net_dev);
687 return 1;
691 * sis900_default_phy - Select default PHY for sis900 mac.
692 * @net_dev: the net device to probe for
694 * Select first detected PHY with link as default.
695 * If no one is link on, select PHY whose types is HOME as default.
696 * If HOME doesn't exist, select LAN.
699 static u16 sis900_default_phy(struct net_device * net_dev)
701 struct sis900_private * sis_priv = net_dev->priv;
702 struct mii_phy *phy = NULL, *phy_home = NULL,
703 *default_phy = NULL, *phy_lan = NULL;
704 u16 status;
706 for (phy=sis_priv->first_mii; phy; phy=phy->next) {
707 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
708 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
710 /* Link ON & Not select default PHY & not ghost PHY */
711 if ((status & MII_STAT_LINK) && !default_phy &&
712 (phy->phy_types != UNKNOWN))
713 default_phy = phy;
714 else {
715 status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
716 mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
717 status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
718 if (phy->phy_types == HOME)
719 phy_home = phy;
720 else if(phy->phy_types == LAN)
721 phy_lan = phy;
725 if (!default_phy && phy_home)
726 default_phy = phy_home;
727 else if (!default_phy && phy_lan)
728 default_phy = phy_lan;
729 else if (!default_phy)
730 default_phy = sis_priv->first_mii;
732 if (sis_priv->mii != default_phy) {
733 sis_priv->mii = default_phy;
734 sis_priv->cur_phy = default_phy->phy_addr;
735 printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
736 pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
739 sis_priv->mii_info.phy_id = sis_priv->cur_phy;
741 status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
742 status &= (~MII_CNTL_ISOLATE);
744 mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
745 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
746 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
748 return status;
753 * sis900_set_capability - set the media capability of network adapter.
754 * @net_dev : the net device to probe for
755 * @phy : default PHY
757 * Set the media capability of network adapter according to
758 * mii status register. It's necessary before auto-negotiate.
761 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
763 u16 cap;
764 u16 status;
766 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
767 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
769 cap = MII_NWAY_CSMA_CD |
770 ((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
771 ((phy->status & MII_STAT_CAN_TX) ? MII_NWAY_TX:0) |
772 ((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
773 ((phy->status & MII_STAT_CAN_T) ? MII_NWAY_T:0);
775 mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
779 /* Delay between EEPROM clock transitions. */
780 #define eeprom_delay() inl(ee_addr)
783 * read_eeprom - Read Serial EEPROM
784 * @ioaddr: base i/o address
785 * @location: the EEPROM location to read
787 * Read Serial EEPROM through EEPROM Access Register.
788 * Note that location is in word (16 bits) unit
791 static u16 __devinit read_eeprom(long ioaddr, int location)
793 int i;
794 u16 retval = 0;
795 long ee_addr = ioaddr + mear;
796 u32 read_cmd = location | EEread;
798 outl(0, ee_addr);
799 eeprom_delay();
800 outl(EECS, ee_addr);
801 eeprom_delay();
803 /* Shift the read command (9) bits out. */
804 for (i = 8; i >= 0; i--) {
805 u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
806 outl(dataval, ee_addr);
807 eeprom_delay();
808 outl(dataval | EECLK, ee_addr);
809 eeprom_delay();
811 outl(EECS, ee_addr);
812 eeprom_delay();
814 /* read the 16-bits data in */
815 for (i = 16; i > 0; i--) {
816 outl(EECS, ee_addr);
817 eeprom_delay();
818 outl(EECS | EECLK, ee_addr);
819 eeprom_delay();
820 retval = (retval << 1) | ((inl(ee_addr) & EEDO) ? 1 : 0);
821 eeprom_delay();
824 /* Terminate the EEPROM access. */
825 outl(0, ee_addr);
826 eeprom_delay();
828 return (retval);
831 /* Read and write the MII management registers using software-generated
832 serial MDIO protocol. Note that the command bits and data bits are
833 send out separately */
834 #define mdio_delay() inl(mdio_addr)
836 static void mdio_idle(long mdio_addr)
838 outl(MDIO | MDDIR, mdio_addr);
839 mdio_delay();
840 outl(MDIO | MDDIR | MDC, mdio_addr);
843 /* Syncronize the MII management interface by shifting 32 one bits out. */
844 static void mdio_reset(long mdio_addr)
846 int i;
848 for (i = 31; i >= 0; i--) {
849 outl(MDDIR | MDIO, mdio_addr);
850 mdio_delay();
851 outl(MDDIR | MDIO | MDC, mdio_addr);
852 mdio_delay();
854 return;
858 * mdio_read - read MII PHY register
859 * @net_dev: the net device to read
860 * @phy_id: the phy address to read
861 * @location: the phy regiester id to read
863 * Read MII registers through MDIO and MDC
864 * using MDIO management frame structure and protocol(defined by ISO/IEC).
865 * Please see SiS7014 or ICS spec
868 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
870 long mdio_addr = net_dev->base_addr + mear;
871 int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
872 u16 retval = 0;
873 int i;
875 mdio_reset(mdio_addr);
876 mdio_idle(mdio_addr);
878 for (i = 15; i >= 0; i--) {
879 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
880 outl(dataval, mdio_addr);
881 mdio_delay();
882 outl(dataval | MDC, mdio_addr);
883 mdio_delay();
886 /* Read the 16 data bits. */
887 for (i = 16; i > 0; i--) {
888 outl(0, mdio_addr);
889 mdio_delay();
890 retval = (retval << 1) | ((inl(mdio_addr) & MDIO) ? 1 : 0);
891 outl(MDC, mdio_addr);
892 mdio_delay();
894 outl(0x00, mdio_addr);
896 return retval;
900 * mdio_write - write MII PHY register
901 * @net_dev: the net device to write
902 * @phy_id: the phy address to write
903 * @location: the phy regiester id to write
904 * @value: the register value to write with
906 * Write MII registers with @value through MDIO and MDC
907 * using MDIO management frame structure and protocol(defined by ISO/IEC)
908 * please see SiS7014 or ICS spec
911 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
912 int value)
914 long mdio_addr = net_dev->base_addr + mear;
915 int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
916 int i;
918 mdio_reset(mdio_addr);
919 mdio_idle(mdio_addr);
921 /* Shift the command bits out. */
922 for (i = 15; i >= 0; i--) {
923 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
924 outb(dataval, mdio_addr);
925 mdio_delay();
926 outb(dataval | MDC, mdio_addr);
927 mdio_delay();
929 mdio_delay();
931 /* Shift the value bits out. */
932 for (i = 15; i >= 0; i--) {
933 int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
934 outl(dataval, mdio_addr);
935 mdio_delay();
936 outl(dataval | MDC, mdio_addr);
937 mdio_delay();
939 mdio_delay();
941 /* Clear out extra bits. */
942 for (i = 2; i > 0; i--) {
943 outb(0, mdio_addr);
944 mdio_delay();
945 outb(MDC, mdio_addr);
946 mdio_delay();
948 outl(0x00, mdio_addr);
950 return;
955 * sis900_reset_phy - reset sis900 mii phy.
956 * @net_dev: the net device to write
957 * @phy_addr: default phy address
959 * Some specific phy can't work properly without reset.
960 * This function will be called during initialization and
961 * link status change from ON to DOWN.
964 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
966 int i;
967 u16 status;
969 for (i = 0; i < 2; i++)
970 status = mdio_read(net_dev, phy_addr, MII_STATUS);
972 mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
974 return status;
977 #ifdef CONFIG_NET_POLL_CONTROLLER
979 * Polling 'interrupt' - used by things like netconsole to send skbs
980 * without having to re-enable interrupts. It's not called while
981 * the interrupt routine is executing.
983 static void sis900_poll(struct net_device *dev)
985 disable_irq(dev->irq);
986 sis900_interrupt(dev->irq, dev);
987 enable_irq(dev->irq);
989 #endif
992 * sis900_open - open sis900 device
993 * @net_dev: the net device to open
995 * Do some initialization and start net interface.
996 * enable interrupts and set sis900 timer.
999 static int
1000 sis900_open(struct net_device *net_dev)
1002 struct sis900_private *sis_priv = net_dev->priv;
1003 long ioaddr = net_dev->base_addr;
1004 int ret;
1006 /* Soft reset the chip. */
1007 sis900_reset(net_dev);
1009 /* Equalizer workaround Rule */
1010 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1012 ret = request_irq(net_dev->irq, &sis900_interrupt, IRQF_SHARED,
1013 net_dev->name, net_dev);
1014 if (ret)
1015 return ret;
1017 sis900_init_rxfilter(net_dev);
1019 sis900_init_tx_ring(net_dev);
1020 sis900_init_rx_ring(net_dev);
1022 set_rx_mode(net_dev);
1024 netif_start_queue(net_dev);
1026 /* Workaround for EDB */
1027 sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1029 /* Enable all known interrupts by setting the interrupt mask. */
1030 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1031 outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
1032 outl(IE, ioaddr + ier);
1034 sis900_check_mode(net_dev, sis_priv->mii);
1036 /* Set the timer to switch to check for link beat and perhaps switch
1037 to an alternate media type. */
1038 init_timer(&sis_priv->timer);
1039 sis_priv->timer.expires = jiffies + HZ;
1040 sis_priv->timer.data = (unsigned long)net_dev;
1041 sis_priv->timer.function = &sis900_timer;
1042 add_timer(&sis_priv->timer);
1044 return 0;
1048 * sis900_init_rxfilter - Initialize the Rx filter
1049 * @net_dev: the net device to initialize for
1051 * Set receive filter address to our MAC address
1052 * and enable packet filtering.
1055 static void
1056 sis900_init_rxfilter (struct net_device * net_dev)
1058 struct sis900_private *sis_priv = net_dev->priv;
1059 long ioaddr = net_dev->base_addr;
1060 u32 rfcrSave;
1061 u32 i;
1063 rfcrSave = inl(rfcr + ioaddr);
1065 /* disable packet filtering before setting filter */
1066 outl(rfcrSave & ~RFEN, rfcr + ioaddr);
1068 /* load MAC addr to filter data register */
1069 for (i = 0 ; i < 3 ; i++) {
1070 u32 w;
1072 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1073 outl((i << RFADDR_shift), ioaddr + rfcr);
1074 outl(w, ioaddr + rfdr);
1076 if (netif_msg_hw(sis_priv)) {
1077 printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1078 net_dev->name, i, inl(ioaddr + rfdr));
1082 /* enable packet filtering */
1083 outl(rfcrSave | RFEN, rfcr + ioaddr);
1087 * sis900_init_tx_ring - Initialize the Tx descriptor ring
1088 * @net_dev: the net device to initialize for
1090 * Initialize the Tx descriptor ring,
1093 static void
1094 sis900_init_tx_ring(struct net_device *net_dev)
1096 struct sis900_private *sis_priv = net_dev->priv;
1097 long ioaddr = net_dev->base_addr;
1098 int i;
1100 sis_priv->tx_full = 0;
1101 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1103 for (i = 0; i < NUM_TX_DESC; i++) {
1104 sis_priv->tx_skbuff[i] = NULL;
1106 sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1107 ((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1108 sis_priv->tx_ring[i].cmdsts = 0;
1109 sis_priv->tx_ring[i].bufptr = 0;
1112 /* load Transmit Descriptor Register */
1113 outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1114 if (netif_msg_hw(sis_priv))
1115 printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1116 net_dev->name, inl(ioaddr + txdp));
1120 * sis900_init_rx_ring - Initialize the Rx descriptor ring
1121 * @net_dev: the net device to initialize for
1123 * Initialize the Rx descriptor ring,
1124 * and pre-allocate recevie buffers (socket buffer)
1127 static void
1128 sis900_init_rx_ring(struct net_device *net_dev)
1130 struct sis900_private *sis_priv = net_dev->priv;
1131 long ioaddr = net_dev->base_addr;
1132 int i;
1134 sis_priv->cur_rx = 0;
1135 sis_priv->dirty_rx = 0;
1137 /* init RX descriptor */
1138 for (i = 0; i < NUM_RX_DESC; i++) {
1139 sis_priv->rx_skbuff[i] = NULL;
1141 sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1142 ((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1143 sis_priv->rx_ring[i].cmdsts = 0;
1144 sis_priv->rx_ring[i].bufptr = 0;
1147 /* allocate sock buffers */
1148 for (i = 0; i < NUM_RX_DESC; i++) {
1149 struct sk_buff *skb;
1151 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1152 /* not enough memory for skbuff, this makes a "hole"
1153 on the buffer ring, it is not clear how the
1154 hardware will react to this kind of degenerated
1155 buffer */
1156 break;
1158 sis_priv->rx_skbuff[i] = skb;
1159 sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1160 sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1161 skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1163 sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1165 /* load Receive Descriptor Register */
1166 outl(sis_priv->rx_ring_dma, ioaddr + rxdp);
1167 if (netif_msg_hw(sis_priv))
1168 printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1169 net_dev->name, inl(ioaddr + rxdp));
1173 * sis630_set_eq - set phy equalizer value for 630 LAN
1174 * @net_dev: the net device to set equalizer value
1175 * @revision: 630 LAN revision number
1177 * 630E equalizer workaround rule(Cyrus Huang 08/15)
1178 * PHY register 14h(Test)
1179 * Bit 14: 0 -- Automatically dectect (default)
1180 * 1 -- Manually set Equalizer filter
1181 * Bit 13: 0 -- (Default)
1182 * 1 -- Speed up convergence of equalizer setting
1183 * Bit 9 : 0 -- (Default)
1184 * 1 -- Disable Baseline Wander
1185 * Bit 3~7 -- Equalizer filter setting
1186 * Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1187 * Then calculate equalizer value
1188 * Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1189 * Link Off:Set Bit 13 to 1, Bit 14 to 0
1190 * Calculate Equalizer value:
1191 * When Link is ON and Bit 14 is 0, SIS900PHY will auto-dectect proper equalizer value.
1192 * When the equalizer is stable, this value is not a fixed value. It will be within
1193 * a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1194 * 0 <= max <= 4 --> set equalizer to max
1195 * 5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1196 * max >= 15 --> set equalizer to max+5 or set equalizer to max+6 if max == min
1199 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1201 struct sis900_private *sis_priv = net_dev->priv;
1202 u16 reg14h, eq_value=0, max_value=0, min_value=0;
1203 int i, maxcount=10;
1205 if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1206 revision == SIS630A_900_REV || revision == SIS630ET_900_REV) )
1207 return;
1209 if (netif_carrier_ok(net_dev)) {
1210 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1211 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1212 (0x2200 | reg14h) & 0xBFFF);
1213 for (i=0; i < maxcount; i++) {
1214 eq_value = (0x00F8 & mdio_read(net_dev,
1215 sis_priv->cur_phy, MII_RESV)) >> 3;
1216 if (i == 0)
1217 max_value=min_value=eq_value;
1218 max_value = (eq_value > max_value) ?
1219 eq_value : max_value;
1220 min_value = (eq_value < min_value) ?
1221 eq_value : min_value;
1223 /* 630E rule to determine the equalizer value */
1224 if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1225 revision == SIS630ET_900_REV) {
1226 if (max_value < 5)
1227 eq_value = max_value;
1228 else if (max_value >= 5 && max_value < 15)
1229 eq_value = (max_value == min_value) ?
1230 max_value+2 : max_value+1;
1231 else if (max_value >= 15)
1232 eq_value=(max_value == min_value) ?
1233 max_value+6 : max_value+5;
1235 /* 630B0&B1 rule to determine the equalizer value */
1236 if (revision == SIS630A_900_REV &&
1237 (sis_priv->host_bridge_rev == SIS630B0 ||
1238 sis_priv->host_bridge_rev == SIS630B1)) {
1239 if (max_value == 0)
1240 eq_value = 3;
1241 else
1242 eq_value = (max_value + min_value + 1)/2;
1244 /* write equalizer value and setting */
1245 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1246 reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1247 reg14h = (reg14h | 0x6000) & 0xFDFF;
1248 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1249 } else {
1250 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1251 if (revision == SIS630A_900_REV &&
1252 (sis_priv->host_bridge_rev == SIS630B0 ||
1253 sis_priv->host_bridge_rev == SIS630B1))
1254 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1255 (reg14h | 0x2200) & 0xBFFF);
1256 else
1257 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1258 (reg14h | 0x2000) & 0xBFFF);
1260 return;
1264 * sis900_timer - sis900 timer routine
1265 * @data: pointer to sis900 net device
1267 * On each timer ticks we check two things,
1268 * link status (ON/OFF) and link mode (10/100/Full/Half)
1271 static void sis900_timer(unsigned long data)
1273 struct net_device *net_dev = (struct net_device *)data;
1274 struct sis900_private *sis_priv = net_dev->priv;
1275 struct mii_phy *mii_phy = sis_priv->mii;
1276 static const int next_tick = 5*HZ;
1277 u16 status;
1279 if (!sis_priv->autong_complete){
1280 int speed, duplex = 0;
1282 sis900_read_mode(net_dev, &speed, &duplex);
1283 if (duplex){
1284 sis900_set_mode(net_dev->base_addr, speed, duplex);
1285 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1286 netif_start_queue(net_dev);
1289 sis_priv->timer.expires = jiffies + HZ;
1290 add_timer(&sis_priv->timer);
1291 return;
1294 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1295 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1297 /* Link OFF -> ON */
1298 if (!netif_carrier_ok(net_dev)) {
1299 LookForLink:
1300 /* Search for new PHY */
1301 status = sis900_default_phy(net_dev);
1302 mii_phy = sis_priv->mii;
1304 if (status & MII_STAT_LINK){
1305 sis900_check_mode(net_dev, mii_phy);
1306 netif_carrier_on(net_dev);
1308 } else {
1309 /* Link ON -> OFF */
1310 if (!(status & MII_STAT_LINK)){
1311 netif_carrier_off(net_dev);
1312 if(netif_msg_link(sis_priv))
1313 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1315 /* Change mode issue */
1316 if ((mii_phy->phy_id0 == 0x001D) &&
1317 ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1318 sis900_reset_phy(net_dev, sis_priv->cur_phy);
1320 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1322 goto LookForLink;
1326 sis_priv->timer.expires = jiffies + next_tick;
1327 add_timer(&sis_priv->timer);
1331 * sis900_check_mode - check the media mode for sis900
1332 * @net_dev: the net device to be checked
1333 * @mii_phy: the mii phy
1335 * Older driver gets the media mode from mii status output
1336 * register. Now we set our media capability and auto-negotiate
1337 * to get the upper bound of speed and duplex between two ends.
1338 * If the types of mii phy is HOME, it doesn't need to auto-negotiate
1339 * and autong_complete should be set to 1.
1342 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1344 struct sis900_private *sis_priv = net_dev->priv;
1345 long ioaddr = net_dev->base_addr;
1346 int speed, duplex;
1348 if (mii_phy->phy_types == LAN) {
1349 outl(~EXD & inl(ioaddr + cfg), ioaddr + cfg);
1350 sis900_set_capability(net_dev , mii_phy);
1351 sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1352 } else {
1353 outl(EXD | inl(ioaddr + cfg), ioaddr + cfg);
1354 speed = HW_SPEED_HOME;
1355 duplex = FDX_CAPABLE_HALF_SELECTED;
1356 sis900_set_mode(ioaddr, speed, duplex);
1357 sis_priv->autong_complete = 1;
1362 * sis900_set_mode - Set the media mode of mac register.
1363 * @ioaddr: the address of the device
1364 * @speed : the transmit speed to be determined
1365 * @duplex: the duplex mode to be determined
1367 * Set the media mode of mac register txcfg/rxcfg according to
1368 * speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1369 * bus is used instead of PCI bus. When this bit is set 1, the
1370 * Max DMA Burst Size for TX/RX DMA should be no larger than 16
1371 * double words.
1374 static void sis900_set_mode (long ioaddr, int speed, int duplex)
1376 u32 tx_flags = 0, rx_flags = 0;
1378 if (inl(ioaddr + cfg) & EDB_MASTER_EN) {
1379 tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1380 (TX_FILL_THRESH << TxFILLT_shift);
1381 rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1382 } else {
1383 tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1384 (TX_FILL_THRESH << TxFILLT_shift);
1385 rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1388 if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1389 rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1390 tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1391 } else {
1392 rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1393 tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1396 if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1397 tx_flags |= (TxCSI | TxHBI);
1398 rx_flags |= RxATX;
1401 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1402 /* Can accept Jumbo packet */
1403 rx_flags |= RxAJAB;
1404 #endif
1406 outl (tx_flags, ioaddr + txcfg);
1407 outl (rx_flags, ioaddr + rxcfg);
1411 * sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1412 * @net_dev: the net device to read mode for
1413 * @phy_addr: mii phy address
1415 * If the adapter is link-on, set the auto-negotiate enable/reset bit.
1416 * autong_complete should be set to 0 when starting auto-negotiation.
1417 * autong_complete should be set to 1 if we didn't start auto-negotiation.
1418 * sis900_timer will wait for link on again if autong_complete = 0.
1421 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1423 struct sis900_private *sis_priv = net_dev->priv;
1424 int i = 0;
1425 u32 status;
1427 for (i = 0; i < 2; i++)
1428 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1430 if (!(status & MII_STAT_LINK)){
1431 if(netif_msg_link(sis_priv))
1432 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1433 sis_priv->autong_complete = 1;
1434 netif_carrier_off(net_dev);
1435 return;
1438 /* (Re)start AutoNegotiate */
1439 mdio_write(net_dev, phy_addr, MII_CONTROL,
1440 MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1441 sis_priv->autong_complete = 0;
1446 * sis900_read_mode - read media mode for sis900 internal phy
1447 * @net_dev: the net device to read mode for
1448 * @speed : the transmit speed to be determined
1449 * @duplex : the duplex mode to be determined
1451 * The capability of remote end will be put in mii register autorec
1452 * after auto-negotiation. Use AND operation to get the upper bound
1453 * of speed and duplex between two ends.
1456 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1458 struct sis900_private *sis_priv = net_dev->priv;
1459 struct mii_phy *phy = sis_priv->mii;
1460 int phy_addr = sis_priv->cur_phy;
1461 u32 status;
1462 u16 autoadv, autorec;
1463 int i;
1465 for (i = 0; i < 2; i++)
1466 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1468 if (!(status & MII_STAT_LINK))
1469 return;
1471 /* AutoNegotiate completed */
1472 autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1473 autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1474 status = autoadv & autorec;
1476 *speed = HW_SPEED_10_MBPS;
1477 *duplex = FDX_CAPABLE_HALF_SELECTED;
1479 if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1480 *speed = HW_SPEED_100_MBPS;
1481 if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1482 *duplex = FDX_CAPABLE_FULL_SELECTED;
1484 sis_priv->autong_complete = 1;
1486 /* Workaround for Realtek RTL8201 PHY issue */
1487 if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1488 if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1489 *duplex = FDX_CAPABLE_FULL_SELECTED;
1490 if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1491 *speed = HW_SPEED_100_MBPS;
1494 if(netif_msg_link(sis_priv))
1495 printk(KERN_INFO "%s: Media Link On %s %s-duplex \n",
1496 net_dev->name,
1497 *speed == HW_SPEED_100_MBPS ?
1498 "100mbps" : "10mbps",
1499 *duplex == FDX_CAPABLE_FULL_SELECTED ?
1500 "full" : "half");
1504 * sis900_tx_timeout - sis900 transmit timeout routine
1505 * @net_dev: the net device to transmit
1507 * print transmit timeout status
1508 * disable interrupts and do some tasks
1511 static void sis900_tx_timeout(struct net_device *net_dev)
1513 struct sis900_private *sis_priv = net_dev->priv;
1514 long ioaddr = net_dev->base_addr;
1515 unsigned long flags;
1516 int i;
1518 if(netif_msg_tx_err(sis_priv))
1519 printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x \n",
1520 net_dev->name, inl(ioaddr + cr), inl(ioaddr + isr));
1522 /* Disable interrupts by clearing the interrupt mask. */
1523 outl(0x0000, ioaddr + imr);
1525 /* use spinlock to prevent interrupt handler accessing buffer ring */
1526 spin_lock_irqsave(&sis_priv->lock, flags);
1528 /* discard unsent packets */
1529 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1530 for (i = 0; i < NUM_TX_DESC; i++) {
1531 struct sk_buff *skb = sis_priv->tx_skbuff[i];
1533 if (skb) {
1534 pci_unmap_single(sis_priv->pci_dev,
1535 sis_priv->tx_ring[i].bufptr, skb->len,
1536 PCI_DMA_TODEVICE);
1537 dev_kfree_skb_irq(skb);
1538 sis_priv->tx_skbuff[i] = NULL;
1539 sis_priv->tx_ring[i].cmdsts = 0;
1540 sis_priv->tx_ring[i].bufptr = 0;
1541 net_dev->stats.tx_dropped++;
1544 sis_priv->tx_full = 0;
1545 netif_wake_queue(net_dev);
1547 spin_unlock_irqrestore(&sis_priv->lock, flags);
1549 net_dev->trans_start = jiffies;
1551 /* load Transmit Descriptor Register */
1552 outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1554 /* Enable all known interrupts by setting the interrupt mask. */
1555 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1556 return;
1560 * sis900_start_xmit - sis900 start transmit routine
1561 * @skb: socket buffer pointer to put the data being transmitted
1562 * @net_dev: the net device to transmit with
1564 * Set the transmit buffer descriptor,
1565 * and write TxENA to enable transmit state machine.
1566 * tell upper layer if the buffer is full
1569 static int
1570 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1572 struct sis900_private *sis_priv = net_dev->priv;
1573 long ioaddr = net_dev->base_addr;
1574 unsigned int entry;
1575 unsigned long flags;
1576 unsigned int index_cur_tx, index_dirty_tx;
1577 unsigned int count_dirty_tx;
1579 /* Don't transmit data before the complete of auto-negotiation */
1580 if(!sis_priv->autong_complete){
1581 netif_stop_queue(net_dev);
1582 return 1;
1585 spin_lock_irqsave(&sis_priv->lock, flags);
1587 /* Calculate the next Tx descriptor entry. */
1588 entry = sis_priv->cur_tx % NUM_TX_DESC;
1589 sis_priv->tx_skbuff[entry] = skb;
1591 /* set the transmit buffer descriptor and enable Transmit State Machine */
1592 sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1593 skb->data, skb->len, PCI_DMA_TODEVICE);
1594 sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1595 outl(TxENA | inl(ioaddr + cr), ioaddr + cr);
1597 sis_priv->cur_tx ++;
1598 index_cur_tx = sis_priv->cur_tx;
1599 index_dirty_tx = sis_priv->dirty_tx;
1601 for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1602 count_dirty_tx ++;
1604 if (index_cur_tx == index_dirty_tx) {
1605 /* dirty_tx is met in the cycle of cur_tx, buffer full */
1606 sis_priv->tx_full = 1;
1607 netif_stop_queue(net_dev);
1608 } else if (count_dirty_tx < NUM_TX_DESC) {
1609 /* Typical path, tell upper layer that more transmission is possible */
1610 netif_start_queue(net_dev);
1611 } else {
1612 /* buffer full, tell upper layer no more transmission */
1613 sis_priv->tx_full = 1;
1614 netif_stop_queue(net_dev);
1617 spin_unlock_irqrestore(&sis_priv->lock, flags);
1619 net_dev->trans_start = jiffies;
1621 if (netif_msg_tx_queued(sis_priv))
1622 printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1623 "to slot %d.\n",
1624 net_dev->name, skb->data, (int)skb->len, entry);
1626 return 0;
1630 * sis900_interrupt - sis900 interrupt handler
1631 * @irq: the irq number
1632 * @dev_instance: the client data object
1633 * @regs: snapshot of processor context
1635 * The interrupt handler does all of the Rx thread work,
1636 * and cleans up after the Tx thread
1639 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1641 struct net_device *net_dev = dev_instance;
1642 struct sis900_private *sis_priv = net_dev->priv;
1643 int boguscnt = max_interrupt_work;
1644 long ioaddr = net_dev->base_addr;
1645 u32 status;
1646 unsigned int handled = 0;
1648 spin_lock (&sis_priv->lock);
1650 do {
1651 status = inl(ioaddr + isr);
1653 if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1654 /* nothing intresting happened */
1655 break;
1656 handled = 1;
1658 /* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1659 if (status & (RxORN | RxERR | RxOK))
1660 /* Rx interrupt */
1661 sis900_rx(net_dev);
1663 if (status & (TxURN | TxERR | TxIDLE))
1664 /* Tx interrupt */
1665 sis900_finish_xmit(net_dev);
1667 /* something strange happened !!! */
1668 if (status & HIBERR) {
1669 if(netif_msg_intr(sis_priv))
1670 printk(KERN_INFO "%s: Abnormal interrupt, "
1671 "status %#8.8x.\n", net_dev->name, status);
1672 break;
1674 if (--boguscnt < 0) {
1675 if(netif_msg_intr(sis_priv))
1676 printk(KERN_INFO "%s: Too much work at interrupt, "
1677 "interrupt status = %#8.8x.\n",
1678 net_dev->name, status);
1679 break;
1681 } while (1);
1683 if(netif_msg_intr(sis_priv))
1684 printk(KERN_DEBUG "%s: exiting interrupt, "
1685 "interrupt status = 0x%#8.8x.\n",
1686 net_dev->name, inl(ioaddr + isr));
1688 spin_unlock (&sis_priv->lock);
1689 return IRQ_RETVAL(handled);
1693 * sis900_rx - sis900 receive routine
1694 * @net_dev: the net device which receives data
1696 * Process receive interrupt events,
1697 * put buffer to higher layer and refill buffer pool
1698 * Note: This function is called by interrupt handler,
1699 * don't do "too much" work here
1702 static int sis900_rx(struct net_device *net_dev)
1704 struct sis900_private *sis_priv = net_dev->priv;
1705 long ioaddr = net_dev->base_addr;
1706 unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1707 u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1708 int rx_work_limit;
1710 if (netif_msg_rx_status(sis_priv))
1711 printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1712 "status:0x%8.8x\n",
1713 sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1714 rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1716 while (rx_status & OWN) {
1717 unsigned int rx_size;
1718 unsigned int data_size;
1720 if (--rx_work_limit < 0)
1721 break;
1723 data_size = rx_status & DSIZE;
1724 rx_size = data_size - CRC_SIZE;
1726 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1727 /* ``TOOLONG'' flag means jumbo packet recived. */
1728 if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1729 rx_status &= (~ ((unsigned int)TOOLONG));
1730 #endif
1732 if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1733 /* corrupted packet received */
1734 if (netif_msg_rx_err(sis_priv))
1735 printk(KERN_DEBUG "%s: Corrupted packet "
1736 "received, buffer status = 0x%8.8x/%d.\n",
1737 net_dev->name, rx_status, data_size);
1738 net_dev->stats.rx_errors++;
1739 if (rx_status & OVERRUN)
1740 net_dev->stats.rx_over_errors++;
1741 if (rx_status & (TOOLONG|RUNT))
1742 net_dev->stats.rx_length_errors++;
1743 if (rx_status & (RXISERR | FAERR))
1744 net_dev->stats.rx_frame_errors++;
1745 if (rx_status & CRCERR)
1746 net_dev->stats.rx_crc_errors++;
1747 /* reset buffer descriptor state */
1748 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1749 } else {
1750 struct sk_buff * skb;
1751 struct sk_buff * rx_skb;
1753 pci_unmap_single(sis_priv->pci_dev,
1754 sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1755 PCI_DMA_FROMDEVICE);
1757 /* refill the Rx buffer, what if there is not enought
1758 * memory for new socket buffer ?? */
1759 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1761 * Not enough memory to refill the buffer
1762 * so we need to recycle the old one so
1763 * as to avoid creating a memory hole
1764 * in the rx ring
1766 skb = sis_priv->rx_skbuff[entry];
1767 net_dev->stats.rx_dropped++;
1768 goto refill_rx_ring;
1771 /* This situation should never happen, but due to
1772 some unknow bugs, it is possible that
1773 we are working on NULL sk_buff :-( */
1774 if (sis_priv->rx_skbuff[entry] == NULL) {
1775 if (netif_msg_rx_err(sis_priv))
1776 printk(KERN_WARNING "%s: NULL pointer "
1777 "encountered in Rx ring\n"
1778 "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1779 net_dev->name, sis_priv->cur_rx,
1780 sis_priv->dirty_rx);
1781 break;
1784 /* give the socket buffer to upper layers */
1785 rx_skb = sis_priv->rx_skbuff[entry];
1786 skb_put(rx_skb, rx_size);
1787 rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1788 netif_rx(rx_skb);
1790 /* some network statistics */
1791 if ((rx_status & BCAST) == MCAST)
1792 net_dev->stats.multicast++;
1793 net_dev->last_rx = jiffies;
1794 net_dev->stats.rx_bytes += rx_size;
1795 net_dev->stats.rx_packets++;
1796 sis_priv->dirty_rx++;
1797 refill_rx_ring:
1798 sis_priv->rx_skbuff[entry] = skb;
1799 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1800 sis_priv->rx_ring[entry].bufptr =
1801 pci_map_single(sis_priv->pci_dev, skb->data,
1802 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1804 sis_priv->cur_rx++;
1805 entry = sis_priv->cur_rx % NUM_RX_DESC;
1806 rx_status = sis_priv->rx_ring[entry].cmdsts;
1807 } // while
1809 /* refill the Rx buffer, what if the rate of refilling is slower
1810 * than consuming ?? */
1811 for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1812 struct sk_buff *skb;
1814 entry = sis_priv->dirty_rx % NUM_RX_DESC;
1816 if (sis_priv->rx_skbuff[entry] == NULL) {
1817 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1818 /* not enough memory for skbuff, this makes a
1819 * "hole" on the buffer ring, it is not clear
1820 * how the hardware will react to this kind
1821 * of degenerated buffer */
1822 if (netif_msg_rx_err(sis_priv))
1823 printk(KERN_INFO "%s: Memory squeeze, "
1824 "deferring packet.\n",
1825 net_dev->name);
1826 net_dev->stats.rx_dropped++;
1827 break;
1829 sis_priv->rx_skbuff[entry] = skb;
1830 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1831 sis_priv->rx_ring[entry].bufptr =
1832 pci_map_single(sis_priv->pci_dev, skb->data,
1833 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1836 /* re-enable the potentially idle receive state matchine */
1837 outl(RxENA | inl(ioaddr + cr), ioaddr + cr );
1839 return 0;
1843 * sis900_finish_xmit - finish up transmission of packets
1844 * @net_dev: the net device to be transmitted on
1846 * Check for error condition and free socket buffer etc
1847 * schedule for more transmission as needed
1848 * Note: This function is called by interrupt handler,
1849 * don't do "too much" work here
1852 static void sis900_finish_xmit (struct net_device *net_dev)
1854 struct sis900_private *sis_priv = net_dev->priv;
1856 for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1857 struct sk_buff *skb;
1858 unsigned int entry;
1859 u32 tx_status;
1861 entry = sis_priv->dirty_tx % NUM_TX_DESC;
1862 tx_status = sis_priv->tx_ring[entry].cmdsts;
1864 if (tx_status & OWN) {
1865 /* The packet is not transmitted yet (owned by hardware) !
1866 * Note: the interrupt is generated only when Tx Machine
1867 * is idle, so this is an almost impossible case */
1868 break;
1871 if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1872 /* packet unsuccessfully transmitted */
1873 if (netif_msg_tx_err(sis_priv))
1874 printk(KERN_DEBUG "%s: Transmit "
1875 "error, Tx status %8.8x.\n",
1876 net_dev->name, tx_status);
1877 net_dev->stats.tx_errors++;
1878 if (tx_status & UNDERRUN)
1879 net_dev->stats.tx_fifo_errors++;
1880 if (tx_status & ABORT)
1881 net_dev->stats.tx_aborted_errors++;
1882 if (tx_status & NOCARRIER)
1883 net_dev->stats.tx_carrier_errors++;
1884 if (tx_status & OWCOLL)
1885 net_dev->stats.tx_window_errors++;
1886 } else {
1887 /* packet successfully transmitted */
1888 net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1889 net_dev->stats.tx_bytes += tx_status & DSIZE;
1890 net_dev->stats.tx_packets++;
1892 /* Free the original skb. */
1893 skb = sis_priv->tx_skbuff[entry];
1894 pci_unmap_single(sis_priv->pci_dev,
1895 sis_priv->tx_ring[entry].bufptr, skb->len,
1896 PCI_DMA_TODEVICE);
1897 dev_kfree_skb_irq(skb);
1898 sis_priv->tx_skbuff[entry] = NULL;
1899 sis_priv->tx_ring[entry].bufptr = 0;
1900 sis_priv->tx_ring[entry].cmdsts = 0;
1903 if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1904 sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1905 /* The ring is no longer full, clear tx_full and schedule
1906 * more transmission by netif_wake_queue(net_dev) */
1907 sis_priv->tx_full = 0;
1908 netif_wake_queue (net_dev);
1913 * sis900_close - close sis900 device
1914 * @net_dev: the net device to be closed
1916 * Disable interrupts, stop the Tx and Rx Status Machine
1917 * free Tx and RX socket buffer
1920 static int sis900_close(struct net_device *net_dev)
1922 long ioaddr = net_dev->base_addr;
1923 struct sis900_private *sis_priv = net_dev->priv;
1924 struct sk_buff *skb;
1925 int i;
1927 netif_stop_queue(net_dev);
1929 /* Disable interrupts by clearing the interrupt mask. */
1930 outl(0x0000, ioaddr + imr);
1931 outl(0x0000, ioaddr + ier);
1933 /* Stop the chip's Tx and Rx Status Machine */
1934 outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
1936 del_timer(&sis_priv->timer);
1938 free_irq(net_dev->irq, net_dev);
1940 /* Free Tx and RX skbuff */
1941 for (i = 0; i < NUM_RX_DESC; i++) {
1942 skb = sis_priv->rx_skbuff[i];
1943 if (skb) {
1944 pci_unmap_single(sis_priv->pci_dev,
1945 sis_priv->rx_ring[i].bufptr,
1946 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1947 dev_kfree_skb(skb);
1948 sis_priv->rx_skbuff[i] = NULL;
1951 for (i = 0; i < NUM_TX_DESC; i++) {
1952 skb = sis_priv->tx_skbuff[i];
1953 if (skb) {
1954 pci_unmap_single(sis_priv->pci_dev,
1955 sis_priv->tx_ring[i].bufptr, skb->len,
1956 PCI_DMA_TODEVICE);
1957 dev_kfree_skb(skb);
1958 sis_priv->tx_skbuff[i] = NULL;
1962 /* Green! Put the chip in low-power mode. */
1964 return 0;
1968 * sis900_get_drvinfo - Return information about driver
1969 * @net_dev: the net device to probe
1970 * @info: container for info returned
1972 * Process ethtool command such as "ehtool -i" to show information
1975 static void sis900_get_drvinfo(struct net_device *net_dev,
1976 struct ethtool_drvinfo *info)
1978 struct sis900_private *sis_priv = net_dev->priv;
1980 strcpy (info->driver, SIS900_MODULE_NAME);
1981 strcpy (info->version, SIS900_DRV_VERSION);
1982 strcpy (info->bus_info, pci_name(sis_priv->pci_dev));
1985 static u32 sis900_get_msglevel(struct net_device *net_dev)
1987 struct sis900_private *sis_priv = net_dev->priv;
1988 return sis_priv->msg_enable;
1991 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
1993 struct sis900_private *sis_priv = net_dev->priv;
1994 sis_priv->msg_enable = value;
1997 static u32 sis900_get_link(struct net_device *net_dev)
1999 struct sis900_private *sis_priv = net_dev->priv;
2000 return mii_link_ok(&sis_priv->mii_info);
2003 static int sis900_get_settings(struct net_device *net_dev,
2004 struct ethtool_cmd *cmd)
2006 struct sis900_private *sis_priv = net_dev->priv;
2007 spin_lock_irq(&sis_priv->lock);
2008 mii_ethtool_gset(&sis_priv->mii_info, cmd);
2009 spin_unlock_irq(&sis_priv->lock);
2010 return 0;
2013 static int sis900_set_settings(struct net_device *net_dev,
2014 struct ethtool_cmd *cmd)
2016 struct sis900_private *sis_priv = net_dev->priv;
2017 int rt;
2018 spin_lock_irq(&sis_priv->lock);
2019 rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2020 spin_unlock_irq(&sis_priv->lock);
2021 return rt;
2024 static int sis900_nway_reset(struct net_device *net_dev)
2026 struct sis900_private *sis_priv = net_dev->priv;
2027 return mii_nway_restart(&sis_priv->mii_info);
2031 * sis900_set_wol - Set up Wake on Lan registers
2032 * @net_dev: the net device to probe
2033 * @wol: container for info passed to the driver
2035 * Process ethtool command "wol" to setup wake on lan features.
2036 * SiS900 supports sending WoL events if a correct packet is received,
2037 * but there is no simple way to filter them to only a subset (broadcast,
2038 * multicast, unicast or arp).
2041 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2043 struct sis900_private *sis_priv = net_dev->priv;
2044 long pmctrl_addr = net_dev->base_addr + pmctrl;
2045 u32 cfgpmcsr = 0, pmctrl_bits = 0;
2047 if (wol->wolopts == 0) {
2048 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2049 cfgpmcsr &= ~PME_EN;
2050 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2051 outl(pmctrl_bits, pmctrl_addr);
2052 if (netif_msg_wol(sis_priv))
2053 printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2054 return 0;
2057 if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2058 | WAKE_BCAST | WAKE_ARP))
2059 return -EINVAL;
2061 if (wol->wolopts & WAKE_MAGIC)
2062 pmctrl_bits |= MAGICPKT;
2063 if (wol->wolopts & WAKE_PHY)
2064 pmctrl_bits |= LINKON;
2066 outl(pmctrl_bits, pmctrl_addr);
2068 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2069 cfgpmcsr |= PME_EN;
2070 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2071 if (netif_msg_wol(sis_priv))
2072 printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2074 return 0;
2077 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2079 long pmctrl_addr = net_dev->base_addr + pmctrl;
2080 u32 pmctrl_bits;
2082 pmctrl_bits = inl(pmctrl_addr);
2083 if (pmctrl_bits & MAGICPKT)
2084 wol->wolopts |= WAKE_MAGIC;
2085 if (pmctrl_bits & LINKON)
2086 wol->wolopts |= WAKE_PHY;
2088 wol->supported = (WAKE_PHY | WAKE_MAGIC);
2091 static const struct ethtool_ops sis900_ethtool_ops = {
2092 .get_drvinfo = sis900_get_drvinfo,
2093 .get_msglevel = sis900_get_msglevel,
2094 .set_msglevel = sis900_set_msglevel,
2095 .get_link = sis900_get_link,
2096 .get_settings = sis900_get_settings,
2097 .set_settings = sis900_set_settings,
2098 .nway_reset = sis900_nway_reset,
2099 .get_wol = sis900_get_wol,
2100 .set_wol = sis900_set_wol
2104 * mii_ioctl - process MII i/o control command
2105 * @net_dev: the net device to command for
2106 * @rq: parameter for command
2107 * @cmd: the i/o command
2109 * Process MII command like read/write MII register
2112 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2114 struct sis900_private *sis_priv = net_dev->priv;
2115 struct mii_ioctl_data *data = if_mii(rq);
2117 switch(cmd) {
2118 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2119 data->phy_id = sis_priv->mii->phy_addr;
2120 /* Fall Through */
2122 case SIOCGMIIREG: /* Read MII PHY register. */
2123 data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2124 return 0;
2126 case SIOCSMIIREG: /* Write MII PHY register. */
2127 if (!capable(CAP_NET_ADMIN))
2128 return -EPERM;
2129 mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2130 return 0;
2131 default:
2132 return -EOPNOTSUPP;
2137 * sis900_set_config - Set media type by net_device.set_config
2138 * @dev: the net device for media type change
2139 * @map: ifmap passed by ifconfig
2141 * Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2142 * we support only port changes. All other runtime configuration
2143 * changes will be ignored
2146 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2148 struct sis900_private *sis_priv = dev->priv;
2149 struct mii_phy *mii_phy = sis_priv->mii;
2151 u16 status;
2153 if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2154 /* we switch on the ifmap->port field. I couldn't find anything
2155 * like a definition or standard for the values of that field.
2156 * I think the meaning of those values is device specific. But
2157 * since I would like to change the media type via the ifconfig
2158 * command I use the definition from linux/netdevice.h
2159 * (which seems to be different from the ifport(pcmcia) definition) */
2160 switch(map->port){
2161 case IF_PORT_UNKNOWN: /* use auto here */
2162 dev->if_port = map->port;
2163 /* we are going to change the media type, so the Link
2164 * will be temporary down and we need to reflect that
2165 * here. When the Link comes up again, it will be
2166 * sensed by the sis_timer procedure, which also does
2167 * all the rest for us */
2168 netif_carrier_off(dev);
2170 /* read current state */
2171 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2173 /* enable auto negotiation and reset the negotioation
2174 * (I don't really know what the auto negatiotiation
2175 * reset really means, but it sounds for me right to
2176 * do one here) */
2177 mdio_write(dev, mii_phy->phy_addr,
2178 MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2180 break;
2182 case IF_PORT_10BASET: /* 10BaseT */
2183 dev->if_port = map->port;
2185 /* we are going to change the media type, so the Link
2186 * will be temporary down and we need to reflect that
2187 * here. When the Link comes up again, it will be
2188 * sensed by the sis_timer procedure, which also does
2189 * all the rest for us */
2190 netif_carrier_off(dev);
2192 /* set Speed to 10Mbps */
2193 /* read current state */
2194 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2196 /* disable auto negotiation and force 10MBit mode*/
2197 mdio_write(dev, mii_phy->phy_addr,
2198 MII_CONTROL, status & ~(MII_CNTL_SPEED |
2199 MII_CNTL_AUTO));
2200 break;
2202 case IF_PORT_100BASET: /* 100BaseT */
2203 case IF_PORT_100BASETX: /* 100BaseTx */
2204 dev->if_port = map->port;
2206 /* we are going to change the media type, so the Link
2207 * will be temporary down and we need to reflect that
2208 * here. When the Link comes up again, it will be
2209 * sensed by the sis_timer procedure, which also does
2210 * all the rest for us */
2211 netif_carrier_off(dev);
2213 /* set Speed to 100Mbps */
2214 /* disable auto negotiation and enable 100MBit Mode */
2215 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2216 mdio_write(dev, mii_phy->phy_addr,
2217 MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2218 MII_CNTL_SPEED);
2220 break;
2222 case IF_PORT_10BASE2: /* 10Base2 */
2223 case IF_PORT_AUI: /* AUI */
2224 case IF_PORT_100BASEFX: /* 100BaseFx */
2225 /* These Modes are not supported (are they?)*/
2226 return -EOPNOTSUPP;
2227 break;
2229 default:
2230 return -EINVAL;
2233 return 0;
2237 * sis900_mcast_bitnr - compute hashtable index
2238 * @addr: multicast address
2239 * @revision: revision id of chip
2241 * SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2242 * hash table, which makes this function a little bit different from other drivers
2243 * SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2244 * multicast hash table.
2247 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2250 u32 crc = ether_crc(6, addr);
2252 /* leave 8 or 7 most siginifant bits */
2253 if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2254 return ((int)(crc >> 24));
2255 else
2256 return ((int)(crc >> 25));
2260 * set_rx_mode - Set SiS900 receive mode
2261 * @net_dev: the net device to be set
2263 * Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2264 * And set the appropriate multicast filter.
2265 * Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2268 static void set_rx_mode(struct net_device *net_dev)
2270 long ioaddr = net_dev->base_addr;
2271 struct sis900_private * sis_priv = net_dev->priv;
2272 u16 mc_filter[16] = {0}; /* 256/128 bits multicast hash table */
2273 int i, table_entries;
2274 u32 rx_mode;
2276 /* 635 Hash Table entries = 256(2^16) */
2277 if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2278 (sis_priv->chipset_rev == SIS900B_900_REV))
2279 table_entries = 16;
2280 else
2281 table_entries = 8;
2283 if (net_dev->flags & IFF_PROMISC) {
2284 /* Accept any kinds of packets */
2285 rx_mode = RFPromiscuous;
2286 for (i = 0; i < table_entries; i++)
2287 mc_filter[i] = 0xffff;
2288 } else if ((net_dev->mc_count > multicast_filter_limit) ||
2289 (net_dev->flags & IFF_ALLMULTI)) {
2290 /* too many multicast addresses or accept all multicast packet */
2291 rx_mode = RFAAB | RFAAM;
2292 for (i = 0; i < table_entries; i++)
2293 mc_filter[i] = 0xffff;
2294 } else {
2295 /* Accept Broadcast packet, destination address matchs our
2296 * MAC address, use Receive Filter to reject unwanted MCAST
2297 * packets */
2298 struct dev_mc_list *mclist;
2299 rx_mode = RFAAB;
2300 for (i = 0, mclist = net_dev->mc_list;
2301 mclist && i < net_dev->mc_count;
2302 i++, mclist = mclist->next) {
2303 unsigned int bit_nr =
2304 sis900_mcast_bitnr(mclist->dmi_addr, sis_priv->chipset_rev);
2305 mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2309 /* update Multicast Hash Table in Receive Filter */
2310 for (i = 0; i < table_entries; i++) {
2311 /* why plus 0x04 ??, That makes the correct value for hash table. */
2312 outl((u32)(0x00000004+i) << RFADDR_shift, ioaddr + rfcr);
2313 outl(mc_filter[i], ioaddr + rfdr);
2316 outl(RFEN | rx_mode, ioaddr + rfcr);
2318 /* sis900 is capable of looping back packets at MAC level for
2319 * debugging purpose */
2320 if (net_dev->flags & IFF_LOOPBACK) {
2321 u32 cr_saved;
2322 /* We must disable Tx/Rx before setting loopback mode */
2323 cr_saved = inl(ioaddr + cr);
2324 outl(cr_saved | TxDIS | RxDIS, ioaddr + cr);
2325 /* enable loopback */
2326 outl(inl(ioaddr + txcfg) | TxMLB, ioaddr + txcfg);
2327 outl(inl(ioaddr + rxcfg) | RxATX, ioaddr + rxcfg);
2328 /* restore cr */
2329 outl(cr_saved, ioaddr + cr);
2332 return;
2336 * sis900_reset - Reset sis900 MAC
2337 * @net_dev: the net device to reset
2339 * reset sis900 MAC and wait until finished
2340 * reset through command register
2341 * change backoff algorithm for 900B0 & 635 M/B
2344 static void sis900_reset(struct net_device *net_dev)
2346 struct sis900_private * sis_priv = net_dev->priv;
2347 long ioaddr = net_dev->base_addr;
2348 int i = 0;
2349 u32 status = TxRCMP | RxRCMP;
2351 outl(0, ioaddr + ier);
2352 outl(0, ioaddr + imr);
2353 outl(0, ioaddr + rfcr);
2355 outl(RxRESET | TxRESET | RESET | inl(ioaddr + cr), ioaddr + cr);
2357 /* Check that the chip has finished the reset. */
2358 while (status && (i++ < 1000)) {
2359 status ^= (inl(isr + ioaddr) & status);
2362 if( (sis_priv->chipset_rev >= SIS635A_900_REV) ||
2363 (sis_priv->chipset_rev == SIS900B_900_REV) )
2364 outl(PESEL | RND_CNT, ioaddr + cfg);
2365 else
2366 outl(PESEL, ioaddr + cfg);
2370 * sis900_remove - Remove sis900 device
2371 * @pci_dev: the pci device to be removed
2373 * remove and release SiS900 net device
2376 static void __devexit sis900_remove(struct pci_dev *pci_dev)
2378 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2379 struct sis900_private * sis_priv = net_dev->priv;
2380 struct mii_phy *phy = NULL;
2382 while (sis_priv->first_mii) {
2383 phy = sis_priv->first_mii;
2384 sis_priv->first_mii = phy->next;
2385 kfree(phy);
2388 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2389 sis_priv->rx_ring_dma);
2390 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2391 sis_priv->tx_ring_dma);
2392 unregister_netdev(net_dev);
2393 free_netdev(net_dev);
2394 pci_release_regions(pci_dev);
2395 pci_set_drvdata(pci_dev, NULL);
2398 #ifdef CONFIG_PM
2400 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2402 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2403 long ioaddr = net_dev->base_addr;
2405 if(!netif_running(net_dev))
2406 return 0;
2408 netif_stop_queue(net_dev);
2409 netif_device_detach(net_dev);
2411 /* Stop the chip's Tx and Rx Status Machine */
2412 outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
2414 pci_set_power_state(pci_dev, PCI_D3hot);
2415 pci_save_state(pci_dev);
2417 return 0;
2420 static int sis900_resume(struct pci_dev *pci_dev)
2422 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2423 struct sis900_private *sis_priv = net_dev->priv;
2424 long ioaddr = net_dev->base_addr;
2426 if(!netif_running(net_dev))
2427 return 0;
2428 pci_restore_state(pci_dev);
2429 pci_set_power_state(pci_dev, PCI_D0);
2431 sis900_init_rxfilter(net_dev);
2433 sis900_init_tx_ring(net_dev);
2434 sis900_init_rx_ring(net_dev);
2436 set_rx_mode(net_dev);
2438 netif_device_attach(net_dev);
2439 netif_start_queue(net_dev);
2441 /* Workaround for EDB */
2442 sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2444 /* Enable all known interrupts by setting the interrupt mask. */
2445 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
2446 outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
2447 outl(IE, ioaddr + ier);
2449 sis900_check_mode(net_dev, sis_priv->mii);
2451 return 0;
2453 #endif /* CONFIG_PM */
2455 static struct pci_driver sis900_pci_driver = {
2456 .name = SIS900_MODULE_NAME,
2457 .id_table = sis900_pci_tbl,
2458 .probe = sis900_probe,
2459 .remove = __devexit_p(sis900_remove),
2460 #ifdef CONFIG_PM
2461 .suspend = sis900_suspend,
2462 .resume = sis900_resume,
2463 #endif /* CONFIG_PM */
2466 static int __init sis900_init_module(void)
2468 /* when a module, this is printed whether or not devices are found in probe */
2469 #ifdef MODULE
2470 printk(version);
2471 #endif
2473 return pci_register_driver(&sis900_pci_driver);
2476 static void __exit sis900_cleanup_module(void)
2478 pci_unregister_driver(&sis900_pci_driver);
2481 module_init(sis900_init_module);
2482 module_exit(sis900_cleanup_module);