2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
43 #include <linux/version.h>
44 #include <linux/module.h>
45 #include <linux/delay.h>
47 #include <linux/netdevice.h>
48 #include <linux/cache.h>
49 #include <linux/pci.h>
50 #include <linux/ethtool.h>
51 #include <linux/uaccess.h>
53 #include <net/ieee80211_radiotap.h>
55 #include <asm/unaligned.h>
61 /* unaligned little endian access */
62 #define LE_READ_2(_p) (le16_to_cpu(get_unaligned((__le16 *)(_p))))
63 #define LE_READ_4(_p) (le32_to_cpu(get_unaligned((__le32 *)(_p))))
70 static int ath5k_calinterval
= 10; /* Calibrate PHY every 10 secs (TODO: Fixme) */
78 MODULE_AUTHOR("Jiri Slaby");
79 MODULE_AUTHOR("Nick Kossifidis");
80 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
81 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
82 MODULE_LICENSE("Dual BSD/GPL");
83 MODULE_VERSION("0.1.1 (EXPERIMENTAL)");
87 static struct pci_device_id ath5k_pci_id_table
[] __devinitdata
= {
88 { PCI_VDEVICE(ATHEROS
, 0x0207), .driver_data
= AR5K_AR5210
}, /* 5210 early */
89 { PCI_VDEVICE(ATHEROS
, 0x0007), .driver_data
= AR5K_AR5210
}, /* 5210 */
90 { PCI_VDEVICE(ATHEROS
, 0x0011), .driver_data
= AR5K_AR5211
}, /* 5311 - this is on AHB bus !*/
91 { PCI_VDEVICE(ATHEROS
, 0x0012), .driver_data
= AR5K_AR5211
}, /* 5211 */
92 { PCI_VDEVICE(ATHEROS
, 0x0013), .driver_data
= AR5K_AR5212
}, /* 5212 */
93 { PCI_VDEVICE(3COM_2
, 0x0013), .driver_data
= AR5K_AR5212
}, /* 3com 5212 */
94 { PCI_VDEVICE(3COM
, 0x0013), .driver_data
= AR5K_AR5212
}, /* 3com 3CRDAG675 5212 */
95 { PCI_VDEVICE(ATHEROS
, 0x1014), .driver_data
= AR5K_AR5212
}, /* IBM minipci 5212 */
96 { PCI_VDEVICE(ATHEROS
, 0x0014), .driver_data
= AR5K_AR5212
}, /* 5212 combatible */
97 { PCI_VDEVICE(ATHEROS
, 0x0015), .driver_data
= AR5K_AR5212
}, /* 5212 combatible */
98 { PCI_VDEVICE(ATHEROS
, 0x0016), .driver_data
= AR5K_AR5212
}, /* 5212 combatible */
99 { PCI_VDEVICE(ATHEROS
, 0x0017), .driver_data
= AR5K_AR5212
}, /* 5212 combatible */
100 { PCI_VDEVICE(ATHEROS
, 0x0018), .driver_data
= AR5K_AR5212
}, /* 5212 combatible */
101 { PCI_VDEVICE(ATHEROS
, 0x0019), .driver_data
= AR5K_AR5212
}, /* 5212 combatible */
102 { PCI_VDEVICE(ATHEROS
, 0x001a), .driver_data
= AR5K_AR5212
}, /* 2413 Griffin-lite */
103 { PCI_VDEVICE(ATHEROS
, 0x001b), .driver_data
= AR5K_AR5212
}, /* 5413 Eagle */
104 { PCI_VDEVICE(ATHEROS
, 0x001c), .driver_data
= AR5K_AR5212
}, /* 5424 Condor (PCI-E)*/
105 { PCI_VDEVICE(ATHEROS
, 0x0023), .driver_data
= AR5K_AR5212
}, /* 5416 */
106 { PCI_VDEVICE(ATHEROS
, 0x0024), .driver_data
= AR5K_AR5212
}, /* 5418 */
109 MODULE_DEVICE_TABLE(pci
, ath5k_pci_id_table
);
112 static struct ath5k_srev_name srev_names
[] = {
113 { "5210", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5210
},
114 { "5311", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5311
},
115 { "5311A", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5311A
},
116 { "5311B", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5311B
},
117 { "5211", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5211
},
118 { "5212", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5212
},
119 { "5213", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5213
},
120 { "5213A", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5213A
},
121 { "2424", AR5K_VERSION_VER
, AR5K_SREV_VER_AR2424
},
122 { "5424", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5424
},
123 { "5413", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5413
},
124 { "5414", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5414
},
125 { "5416", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5416
},
126 { "5418", AR5K_VERSION_VER
, AR5K_SREV_VER_AR5418
},
127 { "xxxxx", AR5K_VERSION_VER
, AR5K_SREV_UNKNOWN
},
128 { "5110", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5110
},
129 { "5111", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5111
},
130 { "2111", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2111
},
131 { "5112", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112
},
132 { "5112A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112A
},
133 { "2112", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112
},
134 { "2112A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112A
},
135 { "SChip", AR5K_VERSION_RAD
, AR5K_SREV_RAD_SC1
},
136 { "SChip", AR5K_VERSION_RAD
, AR5K_SREV_RAD_SC2
},
137 { "5133", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5133
},
138 { "xxxxx", AR5K_VERSION_RAD
, AR5K_SREV_UNKNOWN
},
142 * Prototypes - PCI stack related functions
144 static int __devinit
ath5k_pci_probe(struct pci_dev
*pdev
,
145 const struct pci_device_id
*id
);
146 static void __devexit
ath5k_pci_remove(struct pci_dev
*pdev
);
148 static int ath5k_pci_suspend(struct pci_dev
*pdev
,
150 static int ath5k_pci_resume(struct pci_dev
*pdev
);
152 #define ath5k_pci_suspend NULL
153 #define ath5k_pci_resume NULL
154 #endif /* CONFIG_PM */
156 static struct pci_driver ath5k_pci_driver
= {
158 .id_table
= ath5k_pci_id_table
,
159 .probe
= ath5k_pci_probe
,
160 .remove
= __devexit_p(ath5k_pci_remove
),
161 .suspend
= ath5k_pci_suspend
,
162 .resume
= ath5k_pci_resume
,
168 * Prototypes - MAC 802.11 stack related functions
170 static int ath5k_tx(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
171 struct ieee80211_tx_control
*ctl
);
172 static int ath5k_reset(struct ieee80211_hw
*hw
);
173 static int ath5k_start(struct ieee80211_hw
*hw
);
174 static void ath5k_stop(struct ieee80211_hw
*hw
);
175 static int ath5k_add_interface(struct ieee80211_hw
*hw
,
176 struct ieee80211_if_init_conf
*conf
);
177 static void ath5k_remove_interface(struct ieee80211_hw
*hw
,
178 struct ieee80211_if_init_conf
*conf
);
179 static int ath5k_config(struct ieee80211_hw
*hw
,
180 struct ieee80211_conf
*conf
);
181 static int ath5k_config_interface(struct ieee80211_hw
*hw
,
182 struct ieee80211_vif
*vif
,
183 struct ieee80211_if_conf
*conf
);
184 static void ath5k_configure_filter(struct ieee80211_hw
*hw
,
185 unsigned int changed_flags
,
186 unsigned int *new_flags
,
187 int mc_count
, struct dev_mc_list
*mclist
);
188 static int ath5k_set_key(struct ieee80211_hw
*hw
,
189 enum set_key_cmd cmd
,
190 const u8
*local_addr
, const u8
*addr
,
191 struct ieee80211_key_conf
*key
);
192 static int ath5k_get_stats(struct ieee80211_hw
*hw
,
193 struct ieee80211_low_level_stats
*stats
);
194 static int ath5k_get_tx_stats(struct ieee80211_hw
*hw
,
195 struct ieee80211_tx_queue_stats
*stats
);
196 static u64
ath5k_get_tsf(struct ieee80211_hw
*hw
);
197 static void ath5k_reset_tsf(struct ieee80211_hw
*hw
);
198 static int ath5k_beacon_update(struct ieee80211_hw
*hw
,
200 struct ieee80211_tx_control
*ctl
);
202 static struct ieee80211_ops ath5k_hw_ops
= {
204 .start
= ath5k_start
,
206 .add_interface
= ath5k_add_interface
,
207 .remove_interface
= ath5k_remove_interface
,
208 .config
= ath5k_config
,
209 .config_interface
= ath5k_config_interface
,
210 .configure_filter
= ath5k_configure_filter
,
211 .set_key
= ath5k_set_key
,
212 .get_stats
= ath5k_get_stats
,
214 .get_tx_stats
= ath5k_get_tx_stats
,
215 .get_tsf
= ath5k_get_tsf
,
216 .reset_tsf
= ath5k_reset_tsf
,
217 .beacon_update
= ath5k_beacon_update
,
221 * Prototypes - Internal functions
224 static int ath5k_attach(struct pci_dev
*pdev
,
225 struct ieee80211_hw
*hw
);
226 static void ath5k_detach(struct pci_dev
*pdev
,
227 struct ieee80211_hw
*hw
);
228 /* Channel/mode setup */
229 static inline short ath5k_ieee2mhz(short chan
);
230 static unsigned int ath5k_copy_rates(struct ieee80211_rate
*rates
,
231 const struct ath5k_rate_table
*rt
,
233 static unsigned int ath5k_copy_channels(struct ath5k_hw
*ah
,
234 struct ieee80211_channel
*channels
,
237 static int ath5k_getchannels(struct ieee80211_hw
*hw
);
238 static int ath5k_chan_set(struct ath5k_softc
*sc
,
239 struct ieee80211_channel
*chan
);
240 static void ath5k_setcurmode(struct ath5k_softc
*sc
,
242 static void ath5k_mode_setup(struct ath5k_softc
*sc
);
243 /* Descriptor setup */
244 static int ath5k_desc_alloc(struct ath5k_softc
*sc
,
245 struct pci_dev
*pdev
);
246 static void ath5k_desc_free(struct ath5k_softc
*sc
,
247 struct pci_dev
*pdev
);
249 static int ath5k_rxbuf_setup(struct ath5k_softc
*sc
,
250 struct ath5k_buf
*bf
);
251 static int ath5k_txbuf_setup(struct ath5k_softc
*sc
,
252 struct ath5k_buf
*bf
,
253 struct ieee80211_tx_control
*ctl
);
255 static inline void ath5k_txbuf_free(struct ath5k_softc
*sc
,
256 struct ath5k_buf
*bf
)
261 pci_unmap_single(sc
->pdev
, bf
->skbaddr
, bf
->skb
->len
,
263 dev_kfree_skb(bf
->skb
);
268 static struct ath5k_txq
*ath5k_txq_setup(struct ath5k_softc
*sc
,
269 int qtype
, int subtype
);
270 static int ath5k_beaconq_setup(struct ath5k_hw
*ah
);
271 static int ath5k_beaconq_config(struct ath5k_softc
*sc
);
272 static void ath5k_txq_drainq(struct ath5k_softc
*sc
,
273 struct ath5k_txq
*txq
);
274 static void ath5k_txq_cleanup(struct ath5k_softc
*sc
);
275 static void ath5k_txq_release(struct ath5k_softc
*sc
);
277 static int ath5k_rx_start(struct ath5k_softc
*sc
);
278 static void ath5k_rx_stop(struct ath5k_softc
*sc
);
279 static unsigned int ath5k_rx_decrypted(struct ath5k_softc
*sc
,
280 struct ath5k_desc
*ds
,
281 struct sk_buff
*skb
);
282 static void ath5k_tasklet_rx(unsigned long data
);
284 static void ath5k_tx_processq(struct ath5k_softc
*sc
,
285 struct ath5k_txq
*txq
);
286 static void ath5k_tasklet_tx(unsigned long data
);
287 /* Beacon handling */
288 static int ath5k_beacon_setup(struct ath5k_softc
*sc
,
289 struct ath5k_buf
*bf
,
290 struct ieee80211_tx_control
*ctl
);
291 static void ath5k_beacon_send(struct ath5k_softc
*sc
);
292 static void ath5k_beacon_config(struct ath5k_softc
*sc
);
293 static void ath5k_beacon_update_timers(struct ath5k_softc
*sc
, u64 bc_tsf
);
295 static inline u64
ath5k_extend_tsf(struct ath5k_hw
*ah
, u32 rstamp
)
297 u64 tsf
= ath5k_hw_get_tsf64(ah
);
299 if ((tsf
& 0x7fff) < rstamp
)
302 return (tsf
& ~0x7fff) | rstamp
;
305 /* Interrupt handling */
306 static int ath5k_init(struct ath5k_softc
*sc
);
307 static int ath5k_stop_locked(struct ath5k_softc
*sc
);
308 static int ath5k_stop_hw(struct ath5k_softc
*sc
);
309 static irqreturn_t
ath5k_intr(int irq
, void *dev_id
);
310 static void ath5k_tasklet_reset(unsigned long data
);
312 static void ath5k_calibrate(unsigned long data
);
314 static void ath5k_led_off(unsigned long data
);
315 static void ath5k_led_blink(struct ath5k_softc
*sc
,
318 static void ath5k_led_event(struct ath5k_softc
*sc
,
323 * Module init/exit functions
332 ret
= pci_register_driver(&ath5k_pci_driver
);
334 printk(KERN_ERR
"ath5k_pci: can't register pci driver\n");
344 pci_unregister_driver(&ath5k_pci_driver
);
346 ath5k_debug_finish();
349 module_init(init_ath5k_pci
);
350 module_exit(exit_ath5k_pci
);
353 /********************\
354 * PCI Initialization *
355 \********************/
358 ath5k_chip_name(enum ath5k_srev_type type
, u_int16_t val
)
360 const char *name
= "xxxxx";
363 for (i
= 0; i
< ARRAY_SIZE(srev_names
); i
++) {
364 if (srev_names
[i
].sr_type
!= type
)
366 if ((val
& 0xff) < srev_names
[i
+ 1].sr_val
) {
367 name
= srev_names
[i
].sr_name
;
376 ath5k_pci_probe(struct pci_dev
*pdev
,
377 const struct pci_device_id
*id
)
380 struct ath5k_softc
*sc
;
381 struct ieee80211_hw
*hw
;
385 ret
= pci_enable_device(pdev
);
387 dev_err(&pdev
->dev
, "can't enable device\n");
391 /* XXX 32-bit addressing only */
392 ret
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
394 dev_err(&pdev
->dev
, "32-bit DMA not available\n");
399 * Cache line size is used to size and align various
400 * structures used to communicate with the hardware.
402 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, &csz
);
405 * Linux 2.4.18 (at least) writes the cache line size
406 * register as a 16-bit wide register which is wrong.
407 * We must have this setup properly for rx buffer
408 * DMA to work so force a reasonable value here if it
411 csz
= L1_CACHE_BYTES
/ sizeof(u32
);
412 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, csz
);
415 * The default setting of latency timer yields poor results,
416 * set it to the value used by other systems. It may be worth
417 * tweaking this setting more.
419 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0xa8);
421 /* Enable bus mastering */
422 pci_set_master(pdev
);
425 * Disable the RETRY_TIMEOUT register (0x41) to keep
426 * PCI Tx retries from interfering with C3 CPU state.
428 pci_write_config_byte(pdev
, 0x41, 0);
430 ret
= pci_request_region(pdev
, 0, "ath5k");
432 dev_err(&pdev
->dev
, "cannot reserve PCI memory region\n");
436 mem
= pci_iomap(pdev
, 0, 0);
438 dev_err(&pdev
->dev
, "cannot remap PCI memory region\n") ;
444 * Allocate hw (mac80211 main struct)
445 * and hw->priv (driver private data)
447 hw
= ieee80211_alloc_hw(sizeof(*sc
), &ath5k_hw_ops
);
449 dev_err(&pdev
->dev
, "cannot allocate ieee80211_hw\n");
454 dev_info(&pdev
->dev
, "registered as '%s'\n", wiphy_name(hw
->wiphy
));
456 /* Initialize driver private data */
457 SET_IEEE80211_DEV(hw
, &pdev
->dev
);
458 hw
->flags
= IEEE80211_HW_RX_INCLUDES_FCS
;
459 hw
->extra_tx_headroom
= 2;
460 hw
->channel_change_time
= 5000;
461 /* these names are misleading */
462 hw
->max_rssi
= -110; /* signal in dBm */
463 hw
->max_noise
= -110; /* noise in dBm */
464 hw
->max_signal
= 100; /* we will provide a percentage based on rssi */
469 ath5k_debug_init_device(sc
);
472 * Mark the device as detached to avoid processing
473 * interrupts until setup is complete.
475 __set_bit(ATH_STAT_INVALID
, sc
->status
);
477 sc
->iobase
= mem
; /* So we can unmap it on detach */
478 sc
->cachelsz
= csz
* sizeof(u32
); /* convert to bytes */
479 sc
->opmode
= IEEE80211_IF_TYPE_STA
;
480 mutex_init(&sc
->lock
);
481 spin_lock_init(&sc
->rxbuflock
);
482 spin_lock_init(&sc
->txbuflock
);
484 /* Set private data */
485 pci_set_drvdata(pdev
, hw
);
487 /* Enable msi for devices that support it */
488 pci_enable_msi(pdev
);
490 /* Setup interrupt handler */
491 ret
= request_irq(pdev
->irq
, ath5k_intr
, IRQF_SHARED
, "ath", sc
);
493 ATH5K_ERR(sc
, "request_irq failed\n");
497 /* Initialize device */
498 sc
->ah
= ath5k_hw_attach(sc
, id
->driver_data
);
499 if (IS_ERR(sc
->ah
)) {
500 ret
= PTR_ERR(sc
->ah
);
504 /* Finish private driver data initialization */
505 ret
= ath5k_attach(pdev
, hw
);
509 ATH5K_INFO(sc
, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
510 ath5k_chip_name(AR5K_VERSION_VER
,sc
->ah
->ah_mac_srev
),
512 sc
->ah
->ah_phy_revision
);
514 if(!sc
->ah
->ah_single_chip
){
515 /* Single chip radio (!RF5111) */
516 if(sc
->ah
->ah_radio_5ghz_revision
&& !sc
->ah
->ah_radio_2ghz_revision
) {
517 /* No 5GHz support -> report 2GHz radio */
518 if(!test_bit(MODE_IEEE80211A
, sc
->ah
->ah_capabilities
.cap_mode
)){
519 ATH5K_INFO(sc
, "RF%s 2GHz radio found (0x%x)\n",
520 ath5k_chip_name(AR5K_VERSION_RAD
,sc
->ah
->ah_radio_5ghz_revision
),
521 sc
->ah
->ah_radio_5ghz_revision
);
522 /* No 2GHz support (5110 and some 5Ghz only cards) -> report 5Ghz radio */
523 } else if(!test_bit(MODE_IEEE80211B
, sc
->ah
->ah_capabilities
.cap_mode
)){
524 ATH5K_INFO(sc
, "RF%s 5GHz radio found (0x%x)\n",
525 ath5k_chip_name(AR5K_VERSION_RAD
,sc
->ah
->ah_radio_5ghz_revision
),
526 sc
->ah
->ah_radio_5ghz_revision
);
527 /* Multiband radio */
529 ATH5K_INFO(sc
, "RF%s multiband radio found"
531 ath5k_chip_name(AR5K_VERSION_RAD
,sc
->ah
->ah_radio_5ghz_revision
),
532 sc
->ah
->ah_radio_5ghz_revision
);
535 /* Multi chip radio (RF5111 - RF2111) -> report both 2GHz/5GHz radios */
536 else if(sc
->ah
->ah_radio_5ghz_revision
&& sc
->ah
->ah_radio_2ghz_revision
){
537 ATH5K_INFO(sc
, "RF%s 5GHz radio found (0x%x)\n",
538 ath5k_chip_name(AR5K_VERSION_RAD
,sc
->ah
->ah_radio_5ghz_revision
),
539 sc
->ah
->ah_radio_5ghz_revision
);
540 ATH5K_INFO(sc
, "RF%s 2GHz radio found (0x%x)\n",
541 ath5k_chip_name(AR5K_VERSION_RAD
,sc
->ah
->ah_radio_2ghz_revision
),
542 sc
->ah
->ah_radio_2ghz_revision
);
547 /* ready to process interrupts */
548 __clear_bit(ATH_STAT_INVALID
, sc
->status
);
552 ath5k_hw_detach(sc
->ah
);
554 free_irq(pdev
->irq
, sc
);
556 pci_disable_msi(pdev
);
557 ieee80211_free_hw(hw
);
559 pci_iounmap(pdev
, mem
);
561 pci_release_region(pdev
, 0);
563 pci_disable_device(pdev
);
568 static void __devexit
569 ath5k_pci_remove(struct pci_dev
*pdev
)
571 struct ieee80211_hw
*hw
= pci_get_drvdata(pdev
);
572 struct ath5k_softc
*sc
= hw
->priv
;
574 ath5k_debug_finish_device(sc
);
575 ath5k_detach(pdev
, hw
);
576 ath5k_hw_detach(sc
->ah
);
577 free_irq(pdev
->irq
, sc
);
578 pci_disable_msi(pdev
);
579 pci_iounmap(pdev
, sc
->iobase
);
580 pci_release_region(pdev
, 0);
581 pci_disable_device(pdev
);
582 ieee80211_free_hw(hw
);
587 ath5k_pci_suspend(struct pci_dev
*pdev
, pm_message_t state
)
589 struct ieee80211_hw
*hw
= pci_get_drvdata(pdev
);
590 struct ath5k_softc
*sc
= hw
->priv
;
592 if (test_bit(ATH_STAT_LEDSOFT
, sc
->status
))
593 ath5k_hw_set_gpio(sc
->ah
, sc
->led_pin
, 1);
596 pci_save_state(pdev
);
597 pci_disable_device(pdev
);
598 pci_set_power_state(pdev
, PCI_D3hot
);
604 ath5k_pci_resume(struct pci_dev
*pdev
)
606 struct ieee80211_hw
*hw
= pci_get_drvdata(pdev
);
607 struct ath5k_softc
*sc
= hw
->priv
;
608 struct ath5k_hw
*ah
= sc
->ah
;
611 err
= pci_set_power_state(pdev
, PCI_D0
);
615 err
= pci_enable_device(pdev
);
619 pci_restore_state(pdev
);
621 * Suspend/Resume resets the PCI configuration space, so we have to
622 * re-disable the RETRY_TIMEOUT register (0x41) to keep
623 * PCI Tx retries from interfering with C3 CPU state
625 pci_write_config_byte(pdev
, 0x41, 0);
628 if (test_bit(ATH_STAT_LEDSOFT
, sc
->status
)) {
629 ath5k_hw_set_gpio_output(ah
, sc
->led_pin
);
630 ath5k_hw_set_gpio(ah
, sc
->led_pin
, 0);
634 * Reset the key cache since some parts do not
635 * reset the contents on initial power up or resume.
637 * FIXME: This may need to be revisited when mac80211 becomes
638 * aware of suspend/resume.
640 for (i
= 0; i
< AR5K_KEYTABLE_SIZE
; i
++)
641 ath5k_hw_reset_key(ah
, i
);
645 #endif /* CONFIG_PM */
649 /***********************\
650 * Driver Initialization *
651 \***********************/
654 ath5k_attach(struct pci_dev
*pdev
, struct ieee80211_hw
*hw
)
656 struct ath5k_softc
*sc
= hw
->priv
;
657 struct ath5k_hw
*ah
= sc
->ah
;
662 ATH5K_DBG(sc
, ATH5K_DEBUG_ANY
, "devid 0x%x\n", pdev
->device
);
665 * Check if the MAC has multi-rate retry support.
666 * We do this by trying to setup a fake extended
667 * descriptor. MAC's that don't have support will
668 * return false w/o doing anything. MAC's that do
669 * support it will return true w/o doing anything.
671 if (ah
->ah_setup_xtx_desc(ah
, NULL
, 0, 0, 0, 0, 0, 0))
672 __set_bit(ATH_STAT_MRRETRY
, sc
->status
);
675 * Reset the key cache since some parts do not
676 * reset the contents on initial power up.
678 for (i
= 0; i
< AR5K_KEYTABLE_SIZE
; i
++)
679 ath5k_hw_reset_key(ah
, i
);
682 * Collect the channel list. The 802.11 layer
683 * is resposible for filtering this list based
684 * on settings like the phy mode and regulatory
685 * domain restrictions.
687 ret
= ath5k_getchannels(hw
);
689 ATH5K_ERR(sc
, "can't get channels\n");
693 /* NB: setup here so ath5k_rate_update is happy */
694 if (test_bit(MODE_IEEE80211A
, ah
->ah_modes
))
695 ath5k_setcurmode(sc
, MODE_IEEE80211A
);
697 ath5k_setcurmode(sc
, MODE_IEEE80211B
);
700 * Allocate tx+rx descriptors and populate the lists.
702 ret
= ath5k_desc_alloc(sc
, pdev
);
704 ATH5K_ERR(sc
, "can't allocate descriptors\n");
709 * Allocate hardware transmit queues: one queue for
710 * beacon frames and one data queue for each QoS
711 * priority. Note that hw functions handle reseting
712 * these queues at the needed time.
714 ret
= ath5k_beaconq_setup(ah
);
716 ATH5K_ERR(sc
, "can't setup a beacon xmit queue\n");
721 sc
->txq
= ath5k_txq_setup(sc
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_BK
);
722 if (IS_ERR(sc
->txq
)) {
723 ATH5K_ERR(sc
, "can't setup xmit queue\n");
724 ret
= PTR_ERR(sc
->txq
);
728 tasklet_init(&sc
->rxtq
, ath5k_tasklet_rx
, (unsigned long)sc
);
729 tasklet_init(&sc
->txtq
, ath5k_tasklet_tx
, (unsigned long)sc
);
730 tasklet_init(&sc
->restq
, ath5k_tasklet_reset
, (unsigned long)sc
);
731 setup_timer(&sc
->calib_tim
, ath5k_calibrate
, (unsigned long)sc
);
732 setup_timer(&sc
->led_tim
, ath5k_led_off
, (unsigned long)sc
);
734 sc
->led_on
= 0; /* low true */
736 * Auto-enable soft led processing for IBM cards and for
737 * 5211 minipci cards.
739 if (pdev
->device
== PCI_DEVICE_ID_ATHEROS_AR5212_IBM
||
740 pdev
->device
== PCI_DEVICE_ID_ATHEROS_AR5211
) {
741 __set_bit(ATH_STAT_LEDSOFT
, sc
->status
);
744 /* Enable softled on PIN1 on HP Compaq nc6xx, nc4000 & nx5000 laptops */
745 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_COMPAQ
) {
746 __set_bit(ATH_STAT_LEDSOFT
, sc
->status
);
749 if (test_bit(ATH_STAT_LEDSOFT
, sc
->status
)) {
750 ath5k_hw_set_gpio_output(ah
, sc
->led_pin
);
751 ath5k_hw_set_gpio(ah
, sc
->led_pin
, !sc
->led_on
);
754 ath5k_hw_get_lladdr(ah
, mac
);
755 SET_IEEE80211_PERM_ADDR(hw
, mac
);
756 /* All MAC address bits matter for ACKs */
757 memset(sc
->bssidmask
, 0xff, ETH_ALEN
);
758 ath5k_hw_set_bssid_mask(sc
->ah
, sc
->bssidmask
);
760 ret
= ieee80211_register_hw(hw
);
762 ATH5K_ERR(sc
, "can't register ieee80211 hw\n");
768 ath5k_txq_release(sc
);
770 ath5k_hw_release_tx_queue(ah
, sc
->bhalq
);
772 ath5k_desc_free(sc
, pdev
);
778 ath5k_detach(struct pci_dev
*pdev
, struct ieee80211_hw
*hw
)
780 struct ath5k_softc
*sc
= hw
->priv
;
783 * NB: the order of these is important:
784 * o call the 802.11 layer before detaching ath5k_hw to
785 * insure callbacks into the driver to delete global
786 * key cache entries can be handled
787 * o reclaim the tx queue data structures after calling
788 * the 802.11 layer as we'll get called back to reclaim
789 * node state and potentially want to use them
790 * o to cleanup the tx queues the hal is called, so detach
792 * XXX: ??? detach ath5k_hw ???
793 * Other than that, it's straightforward...
795 ieee80211_unregister_hw(hw
);
796 ath5k_desc_free(sc
, pdev
);
797 ath5k_txq_release(sc
);
798 ath5k_hw_release_tx_queue(sc
->ah
, sc
->bhalq
);
801 * NB: can't reclaim these until after ieee80211_ifdetach
802 * returns because we'll get called back to reclaim node
803 * state and potentially want to use them.
810 /********************\
811 * Channel/mode setup *
812 \********************/
815 * Convert IEEE channel number to MHz frequency.
818 ath5k_ieee2mhz(short chan
)
820 if (chan
<= 14 || chan
>= 27)
821 return ieee80211chan2mhz(chan
);
823 return 2212 + chan
* 20;
827 ath5k_copy_rates(struct ieee80211_rate
*rates
,
828 const struct ath5k_rate_table
*rt
,
831 unsigned int i
, count
;
836 for (i
= 0, count
= 0; i
< rt
->rate_count
&& max
> 0; i
++) {
837 if (!rt
->rates
[i
].valid
)
839 rates
->rate
= rt
->rates
[i
].rate_kbps
/ 100;
840 rates
->val
= rt
->rates
[i
].rate_code
;
841 rates
->flags
= rt
->rates
[i
].modulation
;
851 ath5k_copy_channels(struct ath5k_hw
*ah
,
852 struct ieee80211_channel
*channels
,
856 static const struct { unsigned int mode
, mask
, chan
; } map
[] = {
857 [MODE_IEEE80211A
] = { CHANNEL_OFDM
, CHANNEL_OFDM
| CHANNEL_TURBO
, CHANNEL_A
},
858 [MODE_ATHEROS_TURBO
] = { CHANNEL_OFDM
|CHANNEL_TURBO
, CHANNEL_OFDM
| CHANNEL_TURBO
, CHANNEL_T
},
859 [MODE_IEEE80211B
] = { CHANNEL_CCK
, CHANNEL_CCK
, CHANNEL_B
},
860 [MODE_IEEE80211G
] = { CHANNEL_OFDM
, CHANNEL_OFDM
, CHANNEL_G
},
861 [MODE_ATHEROS_TURBOG
] = { CHANNEL_OFDM
| CHANNEL_TURBO
, CHANNEL_OFDM
| CHANNEL_TURBO
, CHANNEL_TG
},
863 static const struct ath5k_regchannel chans_2ghz
[] =
864 IEEE80211_CHANNELS_2GHZ
;
865 static const struct ath5k_regchannel chans_5ghz
[] =
866 IEEE80211_CHANNELS_5GHZ
;
867 const struct ath5k_regchannel
*chans
;
868 enum ath5k_regdom dmn
;
869 unsigned int i
, count
, size
, chfreq
, all
, f
, ch
;
871 if (!test_bit(mode
, ah
->ah_modes
))
874 all
= ah
->ah_regdomain
== DMN_DEFAULT
|| CHAN_DEBUG
== 1;
877 case MODE_IEEE80211A
:
878 case MODE_ATHEROS_TURBO
:
879 /* 1..220, but 2GHz frequencies are filtered by check_channel */
880 size
= all
? 220 : ARRAY_SIZE(chans_5ghz
);
882 dmn
= ath5k_regdom2flag(ah
->ah_regdomain
,
883 IEEE80211_CHANNELS_5GHZ_MIN
);
884 chfreq
= CHANNEL_5GHZ
;
886 case MODE_IEEE80211B
:
887 case MODE_IEEE80211G
:
888 case MODE_ATHEROS_TURBOG
:
889 size
= all
? 26 : ARRAY_SIZE(chans_2ghz
);
891 dmn
= ath5k_regdom2flag(ah
->ah_regdomain
,
892 IEEE80211_CHANNELS_2GHZ_MIN
);
893 chfreq
= CHANNEL_2GHZ
;
896 ATH5K_WARN(ah
->ah_sc
, "bad mode, not copying channels\n");
900 for (i
= 0, count
= 0; i
< size
&& max
> 0; i
++) {
901 ch
= all
? i
+ 1 : chans
[i
].chan
;
902 f
= ath5k_ieee2mhz(ch
);
903 /* Check if channel is supported by the chipset */
904 if (!ath5k_channel_ok(ah
, f
, chfreq
))
907 /* Match regulation domain */
908 if (!all
&& !(IEEE80211_DMN(chans
[i
].domain
) &
912 if (!all
&& (chans
[i
].mode
& map
[mode
].mask
) != map
[mode
].mode
)
915 /* Write channel and increment counter */
918 channels
->val
= map
[mode
].chan
;
927 /* Only tries to register modes our EEPROM says it can support */
928 #define REGISTER_MODE(m) do { \
929 ret = ath5k_register_mode(hw, m); \
935 ath5k_register_mode(struct ieee80211_hw
*hw
, u8 m
)
937 struct ath5k_softc
*sc
= hw
->priv
;
938 struct ieee80211_hw_mode
*modes
= sc
->modes
;
942 if (!test_bit(m
, sc
->ah
->ah_capabilities
.cap_mode
))
945 for (i
= 0; i
< NUM_DRIVER_MODES
; i
++) {
946 if (modes
[i
].mode
!= m
|| !modes
[i
].num_channels
)
948 ret
= ieee80211_register_hwmode(hw
, &modes
[i
]);
950 ATH5K_ERR(sc
, "can't register hwmode %u\n", m
);
959 ath5k_getchannels(struct ieee80211_hw
*hw
)
961 struct ath5k_softc
*sc
= hw
->priv
;
962 struct ath5k_hw
*ah
= sc
->ah
;
963 struct ieee80211_hw_mode
*modes
= sc
->modes
;
964 unsigned int i
, max_r
, max_c
;
967 BUILD_BUG_ON(ARRAY_SIZE(sc
->modes
) < 3);
969 /* The order here does not matter */
970 modes
[0].mode
= MODE_IEEE80211G
;
971 modes
[1].mode
= MODE_IEEE80211B
;
972 modes
[2].mode
= MODE_IEEE80211A
;
974 max_r
= ARRAY_SIZE(sc
->rates
);
975 max_c
= ARRAY_SIZE(sc
->channels
);
977 for (i
= 0; i
< NUM_DRIVER_MODES
; i
++) {
978 struct ieee80211_hw_mode
*mode
= &modes
[i
];
979 const struct ath5k_rate_table
*hw_rates
;
982 modes
[0].rates
= sc
->rates
;
983 modes
->channels
= sc
->channels
;
985 struct ieee80211_hw_mode
*prev_mode
= &modes
[i
-1];
986 int prev_num_r
= prev_mode
->num_rates
;
987 int prev_num_c
= prev_mode
->num_channels
;
988 mode
->rates
= &prev_mode
->rates
[prev_num_r
];
989 mode
->channels
= &prev_mode
->channels
[prev_num_c
];
992 hw_rates
= ath5k_hw_get_rate_table(ah
, mode
->mode
);
993 mode
->num_rates
= ath5k_copy_rates(mode
->rates
, hw_rates
,
995 mode
->num_channels
= ath5k_copy_channels(ah
, mode
->channels
,
997 max_r
-= mode
->num_rates
;
998 max_c
-= mode
->num_channels
;
1001 /* We try to register all modes this driver supports. We don't bother
1002 * with MODE_IEEE80211B for AR5212 as MODE_IEEE80211G already accounts
1003 * for that as per mac80211. Then, REGISTER_MODE() will will actually
1004 * check the eeprom reading for more reliable capability information.
1005 * Order matters here as per mac80211's latest preference. This will
1006 * all hopefullly soon go away. */
1008 REGISTER_MODE(MODE_IEEE80211G
);
1009 if (ah
->ah_version
!= AR5K_AR5212
)
1010 REGISTER_MODE(MODE_IEEE80211B
);
1011 REGISTER_MODE(MODE_IEEE80211A
);
1013 ath5k_debug_dump_modes(sc
, modes
);
1019 * Set/change channels. If the channel is really being changed,
1020 * it's done by reseting the chip. To accomplish this we must
1021 * first cleanup any pending DMA, then restart stuff after a la
1025 ath5k_chan_set(struct ath5k_softc
*sc
, struct ieee80211_channel
*chan
)
1027 struct ath5k_hw
*ah
= sc
->ah
;
1030 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "%u (%u MHz) -> %u (%u MHz)\n",
1031 sc
->curchan
->chan
, sc
->curchan
->freq
,
1032 chan
->chan
, chan
->freq
);
1034 if (chan
->freq
!= sc
->curchan
->freq
|| chan
->val
!= sc
->curchan
->val
) {
1036 * To switch channels clear any pending DMA operations;
1037 * wait long enough for the RX fifo to drain, reset the
1038 * hardware at the new frequency, and then re-enable
1039 * the relevant bits of the h/w.
1041 ath5k_hw_set_intr(ah
, 0); /* disable interrupts */
1042 ath5k_txq_cleanup(sc
); /* clear pending tx frames */
1043 ath5k_rx_stop(sc
); /* turn off frame recv */
1044 ret
= ath5k_hw_reset(ah
, sc
->opmode
, chan
, true);
1046 ATH5K_ERR(sc
, "%s: unable to reset channel %u "
1047 "(%u Mhz)\n", __func__
, chan
->chan
, chan
->freq
);
1051 ath5k_hw_set_txpower_limit(sc
->ah
, 0);
1054 * Re-enable rx framework.
1056 ret
= ath5k_rx_start(sc
);
1058 ATH5K_ERR(sc
, "%s: unable to restart recv logic\n",
1064 * Change channels and update the h/w rate map
1065 * if we're switching; e.g. 11a to 11b/g.
1069 /* ath5k_chan_change(sc, chan); */
1071 ath5k_beacon_config(sc
);
1073 * Re-enable interrupts.
1075 ath5k_hw_set_intr(ah
, sc
->imask
);
1082 ath5k_setcurmode(struct ath5k_softc
*sc
, unsigned int mode
)
1084 if (unlikely(test_bit(ATH_STAT_LEDSOFT
, sc
->status
))) {
1085 /* from Atheros NDIS driver, w/ permission */
1086 static const struct {
1087 u16 rate
; /* tx/rx 802.11 rate */
1088 u16 timeOn
; /* LED on time (ms) */
1089 u16 timeOff
; /* LED off time (ms) */
1106 const struct ath5k_rate_table
*rt
=
1107 ath5k_hw_get_rate_table(sc
->ah
, mode
);
1112 memset(sc
->hwmap
, 0, sizeof(sc
->hwmap
));
1113 for (i
= 0; i
< 32; i
++) {
1114 u8 ix
= rt
->rate_code_to_index
[i
];
1116 sc
->hwmap
[i
].ledon
= msecs_to_jiffies(500);
1117 sc
->hwmap
[i
].ledoff
= msecs_to_jiffies(130);
1120 sc
->hwmap
[i
].txflags
= IEEE80211_RADIOTAP_F_DATAPAD
;
1121 if (SHPREAMBLE_FLAG(ix
) || rt
->rates
[ix
].modulation
==
1122 IEEE80211_RATE_OFDM
)
1123 sc
->hwmap
[i
].txflags
|=
1124 IEEE80211_RADIOTAP_F_SHORTPRE
;
1125 /* receive frames include FCS */
1126 sc
->hwmap
[i
].rxflags
= sc
->hwmap
[i
].txflags
|
1127 IEEE80211_RADIOTAP_F_FCS
;
1128 /* setup blink rate table to avoid per-packet lookup */
1129 for (j
= 0; j
< ARRAY_SIZE(blinkrates
) - 1; j
++)
1130 if (blinkrates
[j
].rate
== /* XXX why 7f? */
1131 (rt
->rates
[ix
].dot11_rate
&0x7f))
1134 sc
->hwmap
[i
].ledon
= msecs_to_jiffies(blinkrates
[j
].
1136 sc
->hwmap
[i
].ledoff
= msecs_to_jiffies(blinkrates
[j
].
1145 ath5k_mode_setup(struct ath5k_softc
*sc
)
1147 struct ath5k_hw
*ah
= sc
->ah
;
1150 /* configure rx filter */
1151 rfilt
= sc
->filter_flags
;
1152 ath5k_hw_set_rx_filter(ah
, rfilt
);
1154 if (ath5k_hw_hasbssidmask(ah
))
1155 ath5k_hw_set_bssid_mask(ah
, sc
->bssidmask
);
1157 /* configure operational mode */
1158 ath5k_hw_set_opmode(ah
);
1160 ath5k_hw_set_mcast_filter(ah
, 0, 0);
1161 ATH5K_DBG(sc
, ATH5K_DEBUG_MODE
, "RX filter 0x%x\n", rfilt
);
1172 ath5k_rxbuf_setup(struct ath5k_softc
*sc
, struct ath5k_buf
*bf
)
1174 struct ath5k_hw
*ah
= sc
->ah
;
1175 struct sk_buff
*skb
= bf
->skb
;
1176 struct ath5k_desc
*ds
;
1178 if (likely(skb
== NULL
)) {
1182 * Allocate buffer with headroom_needed space for the
1183 * fake physical layer header at the start.
1185 skb
= dev_alloc_skb(sc
->rxbufsize
+ sc
->cachelsz
- 1);
1186 if (unlikely(skb
== NULL
)) {
1187 ATH5K_ERR(sc
, "can't alloc skbuff of size %u\n",
1188 sc
->rxbufsize
+ sc
->cachelsz
- 1);
1192 * Cache-line-align. This is important (for the
1193 * 5210 at least) as not doing so causes bogus data
1196 off
= ((unsigned long)skb
->data
) % sc
->cachelsz
;
1198 skb_reserve(skb
, sc
->cachelsz
- off
);
1201 bf
->skbaddr
= pci_map_single(sc
->pdev
,
1202 skb
->data
, sc
->rxbufsize
, PCI_DMA_FROMDEVICE
);
1203 if (unlikely(pci_dma_mapping_error(bf
->skbaddr
))) {
1204 ATH5K_ERR(sc
, "%s: DMA mapping failed\n", __func__
);
1212 * Setup descriptors. For receive we always terminate
1213 * the descriptor list with a self-linked entry so we'll
1214 * not get overrun under high load (as can happen with a
1215 * 5212 when ANI processing enables PHY error frames).
1217 * To insure the last descriptor is self-linked we create
1218 * each descriptor as self-linked and add it to the end. As
1219 * each additional descriptor is added the previous self-linked
1220 * entry is ``fixed'' naturally. This should be safe even
1221 * if DMA is happening. When processing RX interrupts we
1222 * never remove/process the last, self-linked, entry on the
1223 * descriptor list. This insures the hardware always has
1224 * someplace to write a new frame.
1227 ds
->ds_link
= bf
->daddr
; /* link to self */
1228 ds
->ds_data
= bf
->skbaddr
;
1229 ath5k_hw_setup_rx_desc(ah
, ds
,
1230 skb_tailroom(skb
), /* buffer size */
1233 if (sc
->rxlink
!= NULL
)
1234 *sc
->rxlink
= bf
->daddr
;
1235 sc
->rxlink
= &ds
->ds_link
;
1240 ath5k_txbuf_setup(struct ath5k_softc
*sc
, struct ath5k_buf
*bf
,
1241 struct ieee80211_tx_control
*ctl
)
1243 struct ath5k_hw
*ah
= sc
->ah
;
1244 struct ath5k_txq
*txq
= sc
->txq
;
1245 struct ath5k_desc
*ds
= bf
->desc
;
1246 struct sk_buff
*skb
= bf
->skb
;
1247 unsigned int pktlen
, flags
, keyidx
= AR5K_TXKEYIX_INVALID
;
1250 flags
= AR5K_TXDESC_INTREQ
| AR5K_TXDESC_CLRDMASK
;
1252 /* XXX endianness */
1253 bf
->skbaddr
= pci_map_single(sc
->pdev
, skb
->data
, skb
->len
,
1256 if (ctl
->flags
& IEEE80211_TXCTL_NO_ACK
)
1257 flags
|= AR5K_TXDESC_NOACK
;
1259 pktlen
= skb
->len
+ FCS_LEN
;
1261 if (!(ctl
->flags
& IEEE80211_TXCTL_DO_NOT_ENCRYPT
)) {
1262 keyidx
= ctl
->key_idx
;
1263 pktlen
+= ctl
->icv_len
;
1266 ret
= ah
->ah_setup_tx_desc(ah
, ds
, pktlen
,
1267 ieee80211_get_hdrlen_from_skb(skb
), AR5K_PKT_TYPE_NORMAL
,
1268 (ctl
->power_level
* 2), ctl
->tx_rate
, ctl
->retry_limit
, keyidx
, 0, flags
, 0, 0);
1273 ds
->ds_data
= bf
->skbaddr
;
1275 spin_lock_bh(&txq
->lock
);
1276 list_add_tail(&bf
->list
, &txq
->q
);
1277 sc
->tx_stats
.data
[txq
->qnum
].len
++;
1278 if (txq
->link
== NULL
) /* is this first packet? */
1279 ath5k_hw_put_tx_buf(ah
, txq
->qnum
, bf
->daddr
);
1280 else /* no, so only link it */
1281 *txq
->link
= bf
->daddr
;
1283 txq
->link
= &ds
->ds_link
;
1284 ath5k_hw_tx_start(ah
, txq
->qnum
);
1285 spin_unlock_bh(&txq
->lock
);
1289 pci_unmap_single(sc
->pdev
, bf
->skbaddr
, skb
->len
, PCI_DMA_TODEVICE
);
1293 /*******************\
1294 * Descriptors setup *
1295 \*******************/
1298 ath5k_desc_alloc(struct ath5k_softc
*sc
, struct pci_dev
*pdev
)
1300 struct ath5k_desc
*ds
;
1301 struct ath5k_buf
*bf
;
1306 /* allocate descriptors */
1307 sc
->desc_len
= sizeof(struct ath5k_desc
) *
1308 (ATH_TXBUF
+ ATH_RXBUF
+ ATH_BCBUF
+ 1);
1309 sc
->desc
= pci_alloc_consistent(pdev
, sc
->desc_len
, &sc
->desc_daddr
);
1310 if (sc
->desc
== NULL
) {
1311 ATH5K_ERR(sc
, "can't allocate descriptors\n");
1316 da
= sc
->desc_daddr
;
1317 ATH5K_DBG(sc
, ATH5K_DEBUG_ANY
, "DMA map: %p (%zu) -> %llx\n",
1318 ds
, sc
->desc_len
, (unsigned long long)sc
->desc_daddr
);
1320 bf
= kcalloc(1 + ATH_TXBUF
+ ATH_RXBUF
+ ATH_BCBUF
,
1321 sizeof(struct ath5k_buf
), GFP_KERNEL
);
1323 ATH5K_ERR(sc
, "can't allocate bufptr\n");
1329 INIT_LIST_HEAD(&sc
->rxbuf
);
1330 for (i
= 0; i
< ATH_RXBUF
; i
++, bf
++, ds
++, da
+= sizeof(*ds
)) {
1333 list_add_tail(&bf
->list
, &sc
->rxbuf
);
1336 INIT_LIST_HEAD(&sc
->txbuf
);
1337 sc
->txbuf_len
= ATH_TXBUF
;
1338 for (i
= 0; i
< ATH_TXBUF
; i
++, bf
++, ds
++,
1339 da
+= sizeof(*ds
)) {
1342 list_add_tail(&bf
->list
, &sc
->txbuf
);
1352 pci_free_consistent(pdev
, sc
->desc_len
, sc
->desc
, sc
->desc_daddr
);
1359 ath5k_desc_free(struct ath5k_softc
*sc
, struct pci_dev
*pdev
)
1361 struct ath5k_buf
*bf
;
1363 ath5k_txbuf_free(sc
, sc
->bbuf
);
1364 list_for_each_entry(bf
, &sc
->txbuf
, list
)
1365 ath5k_txbuf_free(sc
, bf
);
1366 list_for_each_entry(bf
, &sc
->rxbuf
, list
)
1367 ath5k_txbuf_free(sc
, bf
);
1369 /* Free memory associated with all descriptors */
1370 pci_free_consistent(pdev
, sc
->desc_len
, sc
->desc
, sc
->desc_daddr
);
1384 static struct ath5k_txq
*
1385 ath5k_txq_setup(struct ath5k_softc
*sc
,
1386 int qtype
, int subtype
)
1388 struct ath5k_hw
*ah
= sc
->ah
;
1389 struct ath5k_txq
*txq
;
1390 struct ath5k_txq_info qi
= {
1391 .tqi_subtype
= subtype
,
1392 .tqi_aifs
= AR5K_TXQ_USEDEFAULT
,
1393 .tqi_cw_min
= AR5K_TXQ_USEDEFAULT
,
1394 .tqi_cw_max
= AR5K_TXQ_USEDEFAULT
1399 * Enable interrupts only for EOL and DESC conditions.
1400 * We mark tx descriptors to receive a DESC interrupt
1401 * when a tx queue gets deep; otherwise waiting for the
1402 * EOL to reap descriptors. Note that this is done to
1403 * reduce interrupt load and this only defers reaping
1404 * descriptors, never transmitting frames. Aside from
1405 * reducing interrupts this also permits more concurrency.
1406 * The only potential downside is if the tx queue backs
1407 * up in which case the top half of the kernel may backup
1408 * due to a lack of tx descriptors.
1410 qi
.tqi_flags
= AR5K_TXQ_FLAG_TXEOLINT_ENABLE
|
1411 AR5K_TXQ_FLAG_TXDESCINT_ENABLE
;
1412 qnum
= ath5k_hw_setup_tx_queue(ah
, qtype
, &qi
);
1415 * NB: don't print a message, this happens
1416 * normally on parts with too few tx queues
1418 return ERR_PTR(qnum
);
1420 if (qnum
>= ARRAY_SIZE(sc
->txqs
)) {
1421 ATH5K_ERR(sc
, "hw qnum %u out of range, max %tu!\n",
1422 qnum
, ARRAY_SIZE(sc
->txqs
));
1423 ath5k_hw_release_tx_queue(ah
, qnum
);
1424 return ERR_PTR(-EINVAL
);
1426 txq
= &sc
->txqs
[qnum
];
1430 INIT_LIST_HEAD(&txq
->q
);
1431 spin_lock_init(&txq
->lock
);
1434 return &sc
->txqs
[qnum
];
1438 ath5k_beaconq_setup(struct ath5k_hw
*ah
)
1440 struct ath5k_txq_info qi
= {
1441 .tqi_aifs
= AR5K_TXQ_USEDEFAULT
,
1442 .tqi_cw_min
= AR5K_TXQ_USEDEFAULT
,
1443 .tqi_cw_max
= AR5K_TXQ_USEDEFAULT
,
1444 /* NB: for dynamic turbo, don't enable any other interrupts */
1445 .tqi_flags
= AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1448 return ath5k_hw_setup_tx_queue(ah
, AR5K_TX_QUEUE_BEACON
, &qi
);
1452 ath5k_beaconq_config(struct ath5k_softc
*sc
)
1454 struct ath5k_hw
*ah
= sc
->ah
;
1455 struct ath5k_txq_info qi
;
1458 ret
= ath5k_hw_get_tx_queueprops(ah
, sc
->bhalq
, &qi
);
1461 if (sc
->opmode
== IEEE80211_IF_TYPE_AP
) {
1463 * Always burst out beacon and CAB traffic
1464 * (aifs = cwmin = cwmax = 0)
1469 } else if (sc
->opmode
== IEEE80211_IF_TYPE_IBSS
) {
1471 * Adhoc mode; backoff between 0 and (2 * cw_min).
1475 qi
.tqi_cw_max
= 2 * ah
->ah_cw_min
;
1478 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
,
1479 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1480 qi
.tqi_aifs
, qi
.tqi_cw_min
, qi
.tqi_cw_max
);
1482 ret
= ath5k_hw_setup_tx_queueprops(ah
, sc
->bhalq
, &qi
);
1484 ATH5K_ERR(sc
, "%s: unable to update parameters for beacon "
1485 "hardware queue!\n", __func__
);
1489 return ath5k_hw_reset_tx_queue(ah
, sc
->bhalq
); /* push to h/w */;
1493 ath5k_txq_drainq(struct ath5k_softc
*sc
, struct ath5k_txq
*txq
)
1495 struct ath5k_buf
*bf
, *bf0
;
1498 * NB: this assumes output has been stopped and
1499 * we do not need to block ath5k_tx_tasklet
1501 spin_lock_bh(&txq
->lock
);
1502 list_for_each_entry_safe(bf
, bf0
, &txq
->q
, list
) {
1503 ath5k_debug_printtxbuf(sc
, bf
, !sc
->ah
->ah_proc_tx_desc(sc
->ah
,
1506 ath5k_txbuf_free(sc
, bf
);
1508 spin_lock_bh(&sc
->txbuflock
);
1509 sc
->tx_stats
.data
[txq
->qnum
].len
--;
1510 list_move_tail(&bf
->list
, &sc
->txbuf
);
1512 spin_unlock_bh(&sc
->txbuflock
);
1515 spin_unlock_bh(&txq
->lock
);
1519 * Drain the transmit queues and reclaim resources.
1522 ath5k_txq_cleanup(struct ath5k_softc
*sc
)
1524 struct ath5k_hw
*ah
= sc
->ah
;
1527 /* XXX return value */
1528 if (likely(!test_bit(ATH_STAT_INVALID
, sc
->status
))) {
1529 /* don't touch the hardware if marked invalid */
1530 ath5k_hw_stop_tx_dma(ah
, sc
->bhalq
);
1531 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "beacon queue %x\n",
1532 ath5k_hw_get_tx_buf(ah
, sc
->bhalq
));
1533 for (i
= 0; i
< ARRAY_SIZE(sc
->txqs
); i
++)
1534 if (sc
->txqs
[i
].setup
) {
1535 ath5k_hw_stop_tx_dma(ah
, sc
->txqs
[i
].qnum
);
1536 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "txq [%u] %x, "
1539 ath5k_hw_get_tx_buf(ah
,
1544 ieee80211_start_queues(sc
->hw
); /* XXX move to callers */
1546 for (i
= 0; i
< ARRAY_SIZE(sc
->txqs
); i
++)
1547 if (sc
->txqs
[i
].setup
)
1548 ath5k_txq_drainq(sc
, &sc
->txqs
[i
]);
1552 ath5k_txq_release(struct ath5k_softc
*sc
)
1554 struct ath5k_txq
*txq
= sc
->txqs
;
1557 for (i
= 0; i
< ARRAY_SIZE(sc
->txqs
); i
++, txq
++)
1559 ath5k_hw_release_tx_queue(sc
->ah
, txq
->qnum
);
1572 * Enable the receive h/w following a reset.
1575 ath5k_rx_start(struct ath5k_softc
*sc
)
1577 struct ath5k_hw
*ah
= sc
->ah
;
1578 struct ath5k_buf
*bf
;
1581 sc
->rxbufsize
= roundup(IEEE80211_MAX_LEN
, sc
->cachelsz
);
1583 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "cachelsz %u rxbufsize %u\n",
1584 sc
->cachelsz
, sc
->rxbufsize
);
1588 spin_lock_bh(&sc
->rxbuflock
);
1589 list_for_each_entry(bf
, &sc
->rxbuf
, list
) {
1590 ret
= ath5k_rxbuf_setup(sc
, bf
);
1592 spin_unlock_bh(&sc
->rxbuflock
);
1596 bf
= list_first_entry(&sc
->rxbuf
, struct ath5k_buf
, list
);
1597 spin_unlock_bh(&sc
->rxbuflock
);
1599 ath5k_hw_put_rx_buf(ah
, bf
->daddr
);
1600 ath5k_hw_start_rx(ah
); /* enable recv descriptors */
1601 ath5k_mode_setup(sc
); /* set filters, etc. */
1602 ath5k_hw_start_rx_pcu(ah
); /* re-enable PCU/DMA engine */
1610 * Disable the receive h/w in preparation for a reset.
1613 ath5k_rx_stop(struct ath5k_softc
*sc
)
1615 struct ath5k_hw
*ah
= sc
->ah
;
1617 ath5k_hw_stop_pcu_recv(ah
); /* disable PCU */
1618 ath5k_hw_set_rx_filter(ah
, 0); /* clear recv filter */
1619 ath5k_hw_stop_rx_dma(ah
); /* disable DMA engine */
1620 mdelay(3); /* 3ms is long enough for 1 frame */
1622 ath5k_debug_printrxbuffs(sc
, ah
);
1624 sc
->rxlink
= NULL
; /* just in case */
1628 ath5k_rx_decrypted(struct ath5k_softc
*sc
, struct ath5k_desc
*ds
,
1629 struct sk_buff
*skb
)
1631 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
1632 unsigned int keyix
, hlen
= ieee80211_get_hdrlen_from_skb(skb
);
1634 if (!(ds
->ds_rxstat
.rs_status
& AR5K_RXERR_DECRYPT
) &&
1635 ds
->ds_rxstat
.rs_keyix
!= AR5K_RXKEYIX_INVALID
)
1636 return RX_FLAG_DECRYPTED
;
1638 /* Apparently when a default key is used to decrypt the packet
1639 the hw does not set the index used to decrypt. In such cases
1640 get the index from the packet. */
1641 if ((le16_to_cpu(hdr
->frame_control
) & IEEE80211_FCTL_PROTECTED
) &&
1642 !(ds
->ds_rxstat
.rs_status
& AR5K_RXERR_DECRYPT
) &&
1643 skb
->len
>= hlen
+ 4) {
1644 keyix
= skb
->data
[hlen
+ 3] >> 6;
1646 if (test_bit(keyix
, sc
->keymap
))
1647 return RX_FLAG_DECRYPTED
;
1655 ath5k_check_ibss_hw_merge(struct ath5k_softc
*sc
, struct sk_buff
*skb
)
1658 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*)skb
->data
;
1660 if ((mgmt
->frame_control
& IEEE80211_FCTL_FTYPE
) ==
1661 IEEE80211_FTYPE_MGMT
&&
1662 (mgmt
->frame_control
& IEEE80211_FCTL_STYPE
) ==
1663 IEEE80211_STYPE_BEACON
&&
1664 mgmt
->u
.beacon
.capab_info
& WLAN_CAPABILITY_IBSS
&&
1665 memcmp(mgmt
->bssid
, sc
->ah
->ah_bssid
, ETH_ALEN
) == 0) {
1667 * Received an IBSS beacon with the same BSSID. Hardware might
1668 * have updated the TSF, check if we need to update timers.
1670 hw_tu
= TSF_TO_TU(ath5k_hw_get_tsf64(sc
->ah
));
1671 if (hw_tu
>= sc
->nexttbtt
) {
1672 ath5k_beacon_update_timers(sc
,
1673 mgmt
->u
.beacon
.timestamp
);
1674 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
1675 "detected HW merge from received beacon\n");
1682 ath5k_tasklet_rx(unsigned long data
)
1684 struct ieee80211_rx_status rxs
= {};
1685 struct sk_buff
*skb
;
1686 struct ath5k_softc
*sc
= (void *)data
;
1687 struct ath5k_buf
*bf
;
1688 struct ath5k_desc
*ds
;
1695 spin_lock(&sc
->rxbuflock
);
1697 if (unlikely(list_empty(&sc
->rxbuf
))) {
1698 ATH5K_WARN(sc
, "empty rx buf pool\n");
1701 bf
= list_first_entry(&sc
->rxbuf
, struct ath5k_buf
, list
);
1702 BUG_ON(bf
->skb
== NULL
);
1706 /* TODO only one segment */
1707 pci_dma_sync_single_for_cpu(sc
->pdev
, sc
->desc_daddr
,
1708 sc
->desc_len
, PCI_DMA_FROMDEVICE
);
1710 if (unlikely(ds
->ds_link
== bf
->daddr
)) /* this is the end */
1713 ret
= sc
->ah
->ah_proc_rx_desc(sc
->ah
, ds
);
1714 if (unlikely(ret
== -EINPROGRESS
))
1716 else if (unlikely(ret
)) {
1717 ATH5K_ERR(sc
, "error in processing rx descriptor\n");
1721 if (unlikely(ds
->ds_rxstat
.rs_more
)) {
1722 ATH5K_WARN(sc
, "unsupported jumbo\n");
1726 stat
= ds
->ds_rxstat
.rs_status
;
1727 if (unlikely(stat
)) {
1728 if (stat
& AR5K_RXERR_PHY
)
1730 if (stat
& AR5K_RXERR_DECRYPT
) {
1732 * Decrypt error. If the error occurred
1733 * because there was no hardware key, then
1734 * let the frame through so the upper layers
1735 * can process it. This is necessary for 5210
1736 * parts which have no way to setup a ``clear''
1739 * XXX do key cache faulting
1741 if (ds
->ds_rxstat
.rs_keyix
==
1742 AR5K_RXKEYIX_INVALID
&&
1743 !(stat
& AR5K_RXERR_CRC
))
1746 if (stat
& AR5K_RXERR_MIC
) {
1747 rxs
.flag
|= RX_FLAG_MMIC_ERROR
;
1751 /* let crypto-error packets fall through in MNTR */
1752 if ((stat
& ~(AR5K_RXERR_DECRYPT
|AR5K_RXERR_MIC
)) ||
1753 sc
->opmode
!= IEEE80211_IF_TYPE_MNTR
)
1757 len
= ds
->ds_rxstat
.rs_datalen
;
1758 pci_dma_sync_single_for_cpu(sc
->pdev
, bf
->skbaddr
, len
,
1759 PCI_DMA_FROMDEVICE
);
1760 pci_unmap_single(sc
->pdev
, bf
->skbaddr
, sc
->rxbufsize
,
1761 PCI_DMA_FROMDEVICE
);
1767 * the hardware adds a padding to 4 byte boundaries between
1768 * the header and the payload data if the header length is
1769 * not multiples of 4 - remove it
1771 hdrlen
= ieee80211_get_hdrlen_from_skb(skb
);
1774 memmove(skb
->data
+ pad
, skb
->data
, hdrlen
);
1779 * always extend the mac timestamp, since this information is
1780 * also needed for proper IBSS merging.
1782 * XXX: it might be too late to do it here, since rs_tstamp is
1783 * 15bit only. that means TSF extension has to be done within
1784 * 32768usec (about 32ms). it might be necessary to move this to
1785 * the interrupt handler, like it is done in madwifi.
1787 rxs
.mactime
= ath5k_extend_tsf(sc
->ah
, ds
->ds_rxstat
.rs_tstamp
);
1788 rxs
.flag
|= RX_FLAG_TSFT
;
1790 rxs
.freq
= sc
->curchan
->freq
;
1791 rxs
.channel
= sc
->curchan
->chan
;
1792 rxs
.phymode
= sc
->curmode
;
1796 * the names here are misleading and the usage of these
1797 * values by iwconfig makes it even worse
1799 /* noise floor in dBm, from the last noise calibration */
1800 rxs
.noise
= sc
->ah
->ah_noise_floor
;
1801 /* signal level in dBm */
1802 rxs
.ssi
= rxs
.noise
+ ds
->ds_rxstat
.rs_rssi
;
1804 * "signal" is actually displayed as Link Quality by iwconfig
1805 * we provide a percentage based on rssi (assuming max rssi 64)
1807 rxs
.signal
= ds
->ds_rxstat
.rs_rssi
* 100 / 64;
1809 rxs
.antenna
= ds
->ds_rxstat
.rs_antenna
;
1810 rxs
.rate
= ds
->ds_rxstat
.rs_rate
;
1811 rxs
.flag
|= ath5k_rx_decrypted(sc
, ds
, skb
);
1813 ath5k_debug_dump_skb(sc
, skb
, "RX ", 0);
1815 /* check beacons in IBSS mode */
1816 if (sc
->opmode
== IEEE80211_IF_TYPE_IBSS
)
1817 ath5k_check_ibss_hw_merge(sc
, skb
);
1819 __ieee80211_rx(sc
->hw
, skb
, &rxs
);
1820 sc
->led_rxrate
= ds
->ds_rxstat
.rs_rate
;
1821 ath5k_led_event(sc
, ATH_LED_RX
);
1823 list_move_tail(&bf
->list
, &sc
->rxbuf
);
1824 } while (ath5k_rxbuf_setup(sc
, bf
) == 0);
1825 spin_unlock(&sc
->rxbuflock
);
1836 ath5k_tx_processq(struct ath5k_softc
*sc
, struct ath5k_txq
*txq
)
1838 struct ieee80211_tx_status txs
= {};
1839 struct ath5k_buf
*bf
, *bf0
;
1840 struct ath5k_desc
*ds
;
1841 struct sk_buff
*skb
;
1844 spin_lock(&txq
->lock
);
1845 list_for_each_entry_safe(bf
, bf0
, &txq
->q
, list
) {
1848 /* TODO only one segment */
1849 pci_dma_sync_single_for_cpu(sc
->pdev
, sc
->desc_daddr
,
1850 sc
->desc_len
, PCI_DMA_FROMDEVICE
);
1851 ret
= sc
->ah
->ah_proc_tx_desc(sc
->ah
, ds
);
1852 if (unlikely(ret
== -EINPROGRESS
))
1854 else if (unlikely(ret
)) {
1855 ATH5K_ERR(sc
, "error %d while processing queue %u\n",
1862 pci_unmap_single(sc
->pdev
, bf
->skbaddr
, skb
->len
,
1865 txs
.control
= bf
->ctl
;
1866 txs
.retry_count
= ds
->ds_txstat
.ts_shortretry
+
1867 ds
->ds_txstat
.ts_longretry
/ 6;
1868 if (unlikely(ds
->ds_txstat
.ts_status
)) {
1869 sc
->ll_stats
.dot11ACKFailureCount
++;
1870 if (ds
->ds_txstat
.ts_status
& AR5K_TXERR_XRETRY
)
1871 txs
.excessive_retries
= 1;
1872 else if (ds
->ds_txstat
.ts_status
& AR5K_TXERR_FILT
)
1873 txs
.flags
|= IEEE80211_TX_STATUS_TX_FILTERED
;
1875 txs
.flags
|= IEEE80211_TX_STATUS_ACK
;
1876 txs
.ack_signal
= ds
->ds_txstat
.ts_rssi
;
1879 ieee80211_tx_status(sc
->hw
, skb
, &txs
);
1880 sc
->tx_stats
.data
[txq
->qnum
].count
++;
1882 spin_lock(&sc
->txbuflock
);
1883 sc
->tx_stats
.data
[txq
->qnum
].len
--;
1884 list_move_tail(&bf
->list
, &sc
->txbuf
);
1886 spin_unlock(&sc
->txbuflock
);
1888 if (likely(list_empty(&txq
->q
)))
1890 spin_unlock(&txq
->lock
);
1891 if (sc
->txbuf_len
> ATH_TXBUF
/ 5)
1892 ieee80211_wake_queues(sc
->hw
);
1896 ath5k_tasklet_tx(unsigned long data
)
1898 struct ath5k_softc
*sc
= (void *)data
;
1900 ath5k_tx_processq(sc
, sc
->txq
);
1902 ath5k_led_event(sc
, ATH_LED_TX
);
1913 * Setup the beacon frame for transmit.
1916 ath5k_beacon_setup(struct ath5k_softc
*sc
, struct ath5k_buf
*bf
,
1917 struct ieee80211_tx_control
*ctl
)
1919 struct sk_buff
*skb
= bf
->skb
;
1920 struct ath5k_hw
*ah
= sc
->ah
;
1921 struct ath5k_desc
*ds
;
1922 int ret
, antenna
= 0;
1925 bf
->skbaddr
= pci_map_single(sc
->pdev
, skb
->data
, skb
->len
,
1927 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
, "skb %p [data %p len %u] "
1928 "skbaddr %llx\n", skb
, skb
->data
, skb
->len
,
1929 (unsigned long long)bf
->skbaddr
);
1930 if (pci_dma_mapping_error(bf
->skbaddr
)) {
1931 ATH5K_ERR(sc
, "beacon DMA mapping failed\n");
1937 flags
= AR5K_TXDESC_NOACK
;
1938 if (sc
->opmode
== IEEE80211_IF_TYPE_IBSS
&& ath5k_hw_hasveol(ah
)) {
1939 ds
->ds_link
= bf
->daddr
; /* self-linked */
1940 flags
|= AR5K_TXDESC_VEOL
;
1942 * Let hardware handle antenna switching if txantenna is not set
1947 * Switch antenna every 4 beacons if txantenna is not set
1948 * XXX assumes two antennas
1951 antenna
= sc
->bsent
& 4 ? 2 : 1;
1954 ds
->ds_data
= bf
->skbaddr
;
1955 ret
= ah
->ah_setup_tx_desc(ah
, ds
, skb
->len
+ FCS_LEN
,
1956 ieee80211_get_hdrlen_from_skb(skb
),
1957 AR5K_PKT_TYPE_BEACON
, (ctl
->power_level
* 2), ctl
->tx_rate
, 1,
1958 AR5K_TXKEYIX_INVALID
, antenna
, flags
, 0, 0);
1964 pci_unmap_single(sc
->pdev
, bf
->skbaddr
, skb
->len
, PCI_DMA_TODEVICE
);
1969 * Transmit a beacon frame at SWBA. Dynamic updates to the
1970 * frame contents are done as needed and the slot time is
1971 * also adjusted based on current state.
1973 * this is usually called from interrupt context (ath5k_intr())
1974 * but also from ath5k_beacon_config() in IBSS mode which in turn
1975 * can be called from a tasklet and user context
1978 ath5k_beacon_send(struct ath5k_softc
*sc
)
1980 struct ath5k_buf
*bf
= sc
->bbuf
;
1981 struct ath5k_hw
*ah
= sc
->ah
;
1983 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
, "in beacon_send\n");
1985 if (unlikely(bf
->skb
== NULL
|| sc
->opmode
== IEEE80211_IF_TYPE_STA
||
1986 sc
->opmode
== IEEE80211_IF_TYPE_MNTR
)) {
1987 ATH5K_WARN(sc
, "bf=%p bf_skb=%p\n", bf
, bf
? bf
->skb
: NULL
);
1991 * Check if the previous beacon has gone out. If
1992 * not don't don't try to post another, skip this
1993 * period and wait for the next. Missed beacons
1994 * indicate a problem and should not occur. If we
1995 * miss too many consecutive beacons reset the device.
1997 if (unlikely(ath5k_hw_num_tx_pending(ah
, sc
->bhalq
) != 0)) {
1999 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
,
2000 "missed %u consecutive beacons\n", sc
->bmisscount
);
2001 if (sc
->bmisscount
> 3) { /* NB: 3 is a guess */
2002 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
,
2003 "stuck beacon time (%u missed)\n",
2005 tasklet_schedule(&sc
->restq
);
2009 if (unlikely(sc
->bmisscount
!= 0)) {
2010 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
,
2011 "resume beacon xmit after %u misses\n",
2017 * Stop any current dma and put the new frame on the queue.
2018 * This should never fail since we check above that no frames
2019 * are still pending on the queue.
2021 if (unlikely(ath5k_hw_stop_tx_dma(ah
, sc
->bhalq
))) {
2022 ATH5K_WARN(sc
, "beacon queue %u didn't stop?\n", sc
->bhalq
);
2023 /* NB: hw still stops DMA, so proceed */
2025 pci_dma_sync_single_for_cpu(sc
->pdev
, bf
->skbaddr
, bf
->skb
->len
,
2028 ath5k_hw_put_tx_buf(ah
, sc
->bhalq
, bf
->daddr
);
2029 ath5k_hw_tx_start(ah
, sc
->bhalq
);
2030 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
, "TXDP[%u] = %llx (%p)\n",
2031 sc
->bhalq
, (unsigned long long)bf
->daddr
, bf
->desc
);
2038 * ath5k_beacon_update_timers - update beacon timers
2040 * @sc: struct ath5k_softc pointer we are operating on
2041 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2042 * beacon timer update based on the current HW TSF.
2044 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2045 * of a received beacon or the current local hardware TSF and write it to the
2046 * beacon timer registers.
2048 * This is called in a variety of situations, e.g. when a beacon is received,
2049 * when a HW merge has been detected, but also when an new IBSS is created or
2050 * when we otherwise know we have to update the timers, but we keep it in this
2051 * function to have it all together in one place.
2054 ath5k_beacon_update_timers(struct ath5k_softc
*sc
, u64 bc_tsf
)
2056 struct ath5k_hw
*ah
= sc
->ah
;
2057 u32 nexttbtt
, intval
, hw_tu
, bc_tu
;
2060 intval
= sc
->bintval
& AR5K_BEACON_PERIOD
;
2061 if (WARN_ON(!intval
))
2064 /* beacon TSF converted to TU */
2065 bc_tu
= TSF_TO_TU(bc_tsf
);
2067 /* current TSF converted to TU */
2068 hw_tsf
= ath5k_hw_get_tsf64(ah
);
2069 hw_tu
= TSF_TO_TU(hw_tsf
);
2072 /* we use FUDGE to make sure the next TBTT is ahead of the current TU */
2075 * no beacons received, called internally.
2076 * just need to refresh timers based on HW TSF.
2078 nexttbtt
= roundup(hw_tu
+ FUDGE
, intval
);
2079 } else if (bc_tsf
== 0) {
2081 * no beacon received, probably called by ath5k_reset_tsf().
2082 * reset TSF to start with 0.
2085 intval
|= AR5K_BEACON_RESET_TSF
;
2086 } else if (bc_tsf
> hw_tsf
) {
2088 * beacon received, SW merge happend but HW TSF not yet updated.
2089 * not possible to reconfigure timers yet, but next time we
2090 * receive a beacon with the same BSSID, the hardware will
2091 * automatically update the TSF and then we need to reconfigure
2094 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
2095 "need to wait for HW TSF sync\n");
2099 * most important case for beacon synchronization between STA.
2101 * beacon received and HW TSF has been already updated by HW.
2102 * update next TBTT based on the TSF of the beacon, but make
2103 * sure it is ahead of our local TSF timer.
2105 nexttbtt
= bc_tu
+ roundup(hw_tu
+ FUDGE
- bc_tu
, intval
);
2109 sc
->nexttbtt
= nexttbtt
;
2111 intval
|= AR5K_BEACON_ENA
;
2112 ath5k_hw_init_beacon(ah
, nexttbtt
, intval
);
2115 * debugging output last in order to preserve the time critical aspect
2119 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
2120 "reconfigured timers based on HW TSF\n");
2121 else if (bc_tsf
== 0)
2122 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
2123 "reset HW TSF and timers\n");
2125 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
2126 "updated timers based on beacon TSF\n");
2128 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
,
2129 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2130 bc_tsf
, hw_tsf
, bc_tu
, hw_tu
, nexttbtt
);
2131 ATH5K_DBG_UNLIMIT(sc
, ATH5K_DEBUG_BEACON
, "intval %u %s %s\n",
2132 intval
& AR5K_BEACON_PERIOD
,
2133 intval
& AR5K_BEACON_ENA
? "AR5K_BEACON_ENA" : "",
2134 intval
& AR5K_BEACON_RESET_TSF
? "AR5K_BEACON_RESET_TSF" : "");
2139 * ath5k_beacon_config - Configure the beacon queues and interrupts
2141 * @sc: struct ath5k_softc pointer we are operating on
2143 * When operating in station mode we want to receive a BMISS interrupt when we
2144 * stop seeing beacons from the AP we've associated with so we can look for
2145 * another AP to associate with.
2147 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2148 * interrupts to detect HW merges only.
2150 * AP mode is missing.
2153 ath5k_beacon_config(struct ath5k_softc
*sc
)
2155 struct ath5k_hw
*ah
= sc
->ah
;
2157 ath5k_hw_set_intr(ah
, 0);
2160 if (sc
->opmode
== IEEE80211_IF_TYPE_STA
) {
2161 sc
->imask
|= AR5K_INT_BMISS
;
2162 } else if (sc
->opmode
== IEEE80211_IF_TYPE_IBSS
) {
2164 * In IBSS mode we use a self-linked tx descriptor and let the
2165 * hardware send the beacons automatically. We have to load it
2167 * We use the SWBA interrupt only to keep track of the beacon
2168 * timers in order to detect HW merges (automatic TSF updates).
2170 ath5k_beaconq_config(sc
);
2172 sc
->imask
|= AR5K_INT_SWBA
;
2174 if (ath5k_hw_hasveol(ah
))
2175 ath5k_beacon_send(sc
);
2179 ath5k_hw_set_intr(ah
, sc
->imask
);
2183 /********************\
2184 * Interrupt handling *
2185 \********************/
2188 ath5k_init(struct ath5k_softc
*sc
)
2192 mutex_lock(&sc
->lock
);
2194 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "mode %d\n", sc
->opmode
);
2197 * Stop anything previously setup. This is safe
2198 * no matter this is the first time through or not.
2200 ath5k_stop_locked(sc
);
2203 * The basic interface to setting the hardware in a good
2204 * state is ``reset''. On return the hardware is known to
2205 * be powered up and with interrupts disabled. This must
2206 * be followed by initialization of the appropriate bits
2207 * and then setup of the interrupt mask.
2209 sc
->curchan
= sc
->hw
->conf
.chan
;
2210 ret
= ath5k_hw_reset(sc
->ah
, sc
->opmode
, sc
->curchan
, false);
2212 ATH5K_ERR(sc
, "unable to reset hardware: %d\n", ret
);
2216 * This is needed only to setup initial state
2217 * but it's best done after a reset.
2219 ath5k_hw_set_txpower_limit(sc
->ah
, 0);
2222 * Setup the hardware after reset: the key cache
2223 * is filled as needed and the receive engine is
2224 * set going. Frame transmit is handled entirely
2225 * in the frame output path; there's nothing to do
2226 * here except setup the interrupt mask.
2228 ret
= ath5k_rx_start(sc
);
2233 * Enable interrupts.
2235 sc
->imask
= AR5K_INT_RX
| AR5K_INT_TX
| AR5K_INT_RXEOL
|
2236 AR5K_INT_RXORN
| AR5K_INT_FATAL
| AR5K_INT_GLOBAL
;
2238 ath5k_hw_set_intr(sc
->ah
, sc
->imask
);
2239 /* Set ack to be sent at low bit-rates */
2240 ath5k_hw_set_ack_bitrate_high(sc
->ah
, false);
2242 mod_timer(&sc
->calib_tim
, round_jiffies(jiffies
+
2243 msecs_to_jiffies(ath5k_calinterval
* 1000)));
2247 mutex_unlock(&sc
->lock
);
2252 ath5k_stop_locked(struct ath5k_softc
*sc
)
2254 struct ath5k_hw
*ah
= sc
->ah
;
2256 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "invalid %u\n",
2257 test_bit(ATH_STAT_INVALID
, sc
->status
));
2260 * Shutdown the hardware and driver:
2261 * stop output from above
2262 * disable interrupts
2264 * turn off the radio
2265 * clear transmit machinery
2266 * clear receive machinery
2267 * drain and release tx queues
2268 * reclaim beacon resources
2269 * power down hardware
2271 * Note that some of this work is not possible if the
2272 * hardware is gone (invalid).
2274 ieee80211_stop_queues(sc
->hw
);
2276 if (!test_bit(ATH_STAT_INVALID
, sc
->status
)) {
2277 if (test_bit(ATH_STAT_LEDSOFT
, sc
->status
)) {
2278 del_timer_sync(&sc
->led_tim
);
2279 ath5k_hw_set_gpio(ah
, sc
->led_pin
, !sc
->led_on
);
2280 __clear_bit(ATH_STAT_LEDBLINKING
, sc
->status
);
2282 ath5k_hw_set_intr(ah
, 0);
2284 ath5k_txq_cleanup(sc
);
2285 if (!test_bit(ATH_STAT_INVALID
, sc
->status
)) {
2287 ath5k_hw_phy_disable(ah
);
2295 * Stop the device, grabbing the top-level lock to protect
2296 * against concurrent entry through ath5k_init (which can happen
2297 * if another thread does a system call and the thread doing the
2298 * stop is preempted).
2301 ath5k_stop_hw(struct ath5k_softc
*sc
)
2305 mutex_lock(&sc
->lock
);
2306 ret
= ath5k_stop_locked(sc
);
2307 if (ret
== 0 && !test_bit(ATH_STAT_INVALID
, sc
->status
)) {
2309 * Set the chip in full sleep mode. Note that we are
2310 * careful to do this only when bringing the interface
2311 * completely to a stop. When the chip is in this state
2312 * it must be carefully woken up or references to
2313 * registers in the PCI clock domain may freeze the bus
2314 * (and system). This varies by chip and is mostly an
2315 * issue with newer parts that go to sleep more quickly.
2317 if (sc
->ah
->ah_mac_srev
>= 0x78) {
2320 * don't put newer MAC revisions > 7.8 to sleep because
2321 * of the above mentioned problems
2323 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "mac version > 7.8, "
2324 "not putting device to sleep\n");
2326 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
,
2327 "putting device to full sleep\n");
2328 ath5k_hw_set_power(sc
->ah
, AR5K_PM_FULL_SLEEP
, true, 0);
2331 ath5k_txbuf_free(sc
, sc
->bbuf
);
2332 mutex_unlock(&sc
->lock
);
2334 del_timer_sync(&sc
->calib_tim
);
2340 ath5k_intr(int irq
, void *dev_id
)
2342 struct ath5k_softc
*sc
= dev_id
;
2343 struct ath5k_hw
*ah
= sc
->ah
;
2344 enum ath5k_int status
;
2345 unsigned int counter
= 1000;
2347 if (unlikely(test_bit(ATH_STAT_INVALID
, sc
->status
) ||
2348 !ath5k_hw_is_intr_pending(ah
)))
2353 * Figure out the reason(s) for the interrupt. Note
2354 * that get_isr returns a pseudo-ISR that may include
2355 * bits we haven't explicitly enabled so we mask the
2356 * value to insure we only process bits we requested.
2358 ath5k_hw_get_isr(ah
, &status
); /* NB: clears IRQ too */
2359 ATH5K_DBG(sc
, ATH5K_DEBUG_INTR
, "status 0x%x/0x%x\n",
2361 status
&= sc
->imask
; /* discard unasked for bits */
2362 if (unlikely(status
& AR5K_INT_FATAL
)) {
2364 * Fatal errors are unrecoverable.
2365 * Typically these are caused by DMA errors.
2367 tasklet_schedule(&sc
->restq
);
2368 } else if (unlikely(status
& AR5K_INT_RXORN
)) {
2369 tasklet_schedule(&sc
->restq
);
2371 if (status
& AR5K_INT_SWBA
) {
2373 * Software beacon alert--time to send a beacon.
2374 * Handle beacon transmission directly; deferring
2375 * this is too slow to meet timing constraints
2378 * In IBSS mode we use this interrupt just to
2379 * keep track of the next TBTT (target beacon
2380 * transmission time) in order to detect hardware
2381 * merges (TSF updates).
2383 if (sc
->opmode
== IEEE80211_IF_TYPE_IBSS
) {
2384 /* XXX: only if VEOL suppported */
2385 u64 tsf
= ath5k_hw_get_tsf64(ah
);
2386 sc
->nexttbtt
+= sc
->bintval
;
2387 ATH5K_DBG(sc
, ATH5K_DEBUG_BEACON
,
2388 "SWBA nexttbtt: %x hw_tu: %x "
2391 TSF_TO_TU(tsf
), tsf
);
2393 ath5k_beacon_send(sc
);
2396 if (status
& AR5K_INT_RXEOL
) {
2398 * NB: the hardware should re-read the link when
2399 * RXE bit is written, but it doesn't work at
2400 * least on older hardware revs.
2404 if (status
& AR5K_INT_TXURN
) {
2405 /* bump tx trigger level */
2406 ath5k_hw_update_tx_triglevel(ah
, true);
2408 if (status
& AR5K_INT_RX
)
2409 tasklet_schedule(&sc
->rxtq
);
2410 if (status
& AR5K_INT_TX
)
2411 tasklet_schedule(&sc
->txtq
);
2412 if (status
& AR5K_INT_BMISS
) {
2414 if (status
& AR5K_INT_MIB
) {
2418 } while (ath5k_hw_is_intr_pending(ah
) && counter
-- > 0);
2420 if (unlikely(!counter
))
2421 ATH5K_WARN(sc
, "too many interrupts, giving up for now\n");
2427 ath5k_tasklet_reset(unsigned long data
)
2429 struct ath5k_softc
*sc
= (void *)data
;
2431 ath5k_reset(sc
->hw
);
2435 * Periodically recalibrate the PHY to account
2436 * for temperature/environment changes.
2439 ath5k_calibrate(unsigned long data
)
2441 struct ath5k_softc
*sc
= (void *)data
;
2442 struct ath5k_hw
*ah
= sc
->ah
;
2444 ATH5K_DBG(sc
, ATH5K_DEBUG_CALIBRATE
, "channel %u/%x\n",
2445 sc
->curchan
->chan
, sc
->curchan
->val
);
2447 if (ath5k_hw_get_rf_gain(ah
) == AR5K_RFGAIN_NEED_CHANGE
) {
2449 * Rfgain is out of bounds, reset the chip
2450 * to load new gain values.
2452 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "calibration, resetting\n");
2453 ath5k_reset(sc
->hw
);
2455 if (ath5k_hw_phy_calibrate(ah
, sc
->curchan
))
2456 ATH5K_ERR(sc
, "calibration of channel %u failed\n",
2459 mod_timer(&sc
->calib_tim
, round_jiffies(jiffies
+
2460 msecs_to_jiffies(ath5k_calinterval
* 1000)));
2470 ath5k_led_off(unsigned long data
)
2472 struct ath5k_softc
*sc
= (void *)data
;
2474 if (test_bit(ATH_STAT_LEDENDBLINK
, sc
->status
))
2475 __clear_bit(ATH_STAT_LEDBLINKING
, sc
->status
);
2477 __set_bit(ATH_STAT_LEDENDBLINK
, sc
->status
);
2478 ath5k_hw_set_gpio(sc
->ah
, sc
->led_pin
, !sc
->led_on
);
2479 mod_timer(&sc
->led_tim
, jiffies
+ sc
->led_off
);
2484 * Blink the LED according to the specified on/off times.
2487 ath5k_led_blink(struct ath5k_softc
*sc
, unsigned int on
,
2490 ATH5K_DBG(sc
, ATH5K_DEBUG_LED
, "on %u off %u\n", on
, off
);
2491 ath5k_hw_set_gpio(sc
->ah
, sc
->led_pin
, sc
->led_on
);
2492 __set_bit(ATH_STAT_LEDBLINKING
, sc
->status
);
2493 __clear_bit(ATH_STAT_LEDENDBLINK
, sc
->status
);
2495 mod_timer(&sc
->led_tim
, jiffies
+ on
);
2499 ath5k_led_event(struct ath5k_softc
*sc
, int event
)
2501 if (likely(!test_bit(ATH_STAT_LEDSOFT
, sc
->status
)))
2503 if (unlikely(test_bit(ATH_STAT_LEDBLINKING
, sc
->status
)))
2504 return; /* don't interrupt active blink */
2507 ath5k_led_blink(sc
, sc
->hwmap
[sc
->led_txrate
].ledon
,
2508 sc
->hwmap
[sc
->led_txrate
].ledoff
);
2511 ath5k_led_blink(sc
, sc
->hwmap
[sc
->led_rxrate
].ledon
,
2512 sc
->hwmap
[sc
->led_rxrate
].ledoff
);
2520 /********************\
2521 * Mac80211 functions *
2522 \********************/
2525 ath5k_tx(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
2526 struct ieee80211_tx_control
*ctl
)
2528 struct ath5k_softc
*sc
= hw
->priv
;
2529 struct ath5k_buf
*bf
;
2530 unsigned long flags
;
2534 ath5k_debug_dump_skb(sc
, skb
, "TX ", 1);
2536 if (sc
->opmode
== IEEE80211_IF_TYPE_MNTR
)
2537 ATH5K_DBG(sc
, ATH5K_DEBUG_XMIT
, "tx in monitor (scan?)\n");
2540 * the hardware expects the header padded to 4 byte boundaries
2541 * if this is not the case we add the padding after the header
2543 hdrlen
= ieee80211_get_hdrlen_from_skb(skb
);
2546 if (skb_headroom(skb
) < pad
) {
2547 ATH5K_ERR(sc
, "tx hdrlen not %%4: %d not enough"
2548 " headroom to pad %d\n", hdrlen
, pad
);
2552 memmove(skb
->data
, skb
->data
+pad
, hdrlen
);
2555 sc
->led_txrate
= ctl
->tx_rate
;
2557 spin_lock_irqsave(&sc
->txbuflock
, flags
);
2558 if (list_empty(&sc
->txbuf
)) {
2559 ATH5K_ERR(sc
, "no further txbuf available, dropping packet\n");
2560 spin_unlock_irqrestore(&sc
->txbuflock
, flags
);
2561 ieee80211_stop_queue(hw
, ctl
->queue
);
2564 bf
= list_first_entry(&sc
->txbuf
, struct ath5k_buf
, list
);
2565 list_del(&bf
->list
);
2567 if (list_empty(&sc
->txbuf
))
2568 ieee80211_stop_queues(hw
);
2569 spin_unlock_irqrestore(&sc
->txbuflock
, flags
);
2573 if (ath5k_txbuf_setup(sc
, bf
, ctl
)) {
2575 spin_lock_irqsave(&sc
->txbuflock
, flags
);
2576 list_add_tail(&bf
->list
, &sc
->txbuf
);
2578 spin_unlock_irqrestore(&sc
->txbuflock
, flags
);
2579 dev_kfree_skb_any(skb
);
2587 ath5k_reset(struct ieee80211_hw
*hw
)
2589 struct ath5k_softc
*sc
= hw
->priv
;
2590 struct ath5k_hw
*ah
= sc
->ah
;
2593 ATH5K_DBG(sc
, ATH5K_DEBUG_RESET
, "resetting\n");
2595 * Convert to a hw channel description with the flags
2596 * constrained to reflect the current operating mode.
2598 sc
->curchan
= hw
->conf
.chan
;
2600 ath5k_hw_set_intr(ah
, 0);
2601 ath5k_txq_cleanup(sc
);
2604 ret
= ath5k_hw_reset(ah
, sc
->opmode
, sc
->curchan
, true);
2605 if (unlikely(ret
)) {
2606 ATH5K_ERR(sc
, "can't reset hardware (%d)\n", ret
);
2609 ath5k_hw_set_txpower_limit(sc
->ah
, 0);
2611 ret
= ath5k_rx_start(sc
);
2612 if (unlikely(ret
)) {
2613 ATH5K_ERR(sc
, "can't start recv logic\n");
2617 * We may be doing a reset in response to an ioctl
2618 * that changes the channel so update any state that
2619 * might change as a result.
2623 /* ath5k_chan_change(sc, c); */
2624 ath5k_beacon_config(sc
);
2625 /* intrs are started by ath5k_beacon_config */
2627 ieee80211_wake_queues(hw
);
2634 static int ath5k_start(struct ieee80211_hw
*hw
)
2636 return ath5k_init(hw
->priv
);
2639 static void ath5k_stop(struct ieee80211_hw
*hw
)
2641 ath5k_stop_hw(hw
->priv
);
2644 static int ath5k_add_interface(struct ieee80211_hw
*hw
,
2645 struct ieee80211_if_init_conf
*conf
)
2647 struct ath5k_softc
*sc
= hw
->priv
;
2650 mutex_lock(&sc
->lock
);
2656 sc
->vif
= conf
->vif
;
2658 switch (conf
->type
) {
2659 case IEEE80211_IF_TYPE_STA
:
2660 case IEEE80211_IF_TYPE_IBSS
:
2661 case IEEE80211_IF_TYPE_MNTR
:
2662 sc
->opmode
= conf
->type
;
2670 mutex_unlock(&sc
->lock
);
2675 ath5k_remove_interface(struct ieee80211_hw
*hw
,
2676 struct ieee80211_if_init_conf
*conf
)
2678 struct ath5k_softc
*sc
= hw
->priv
;
2680 mutex_lock(&sc
->lock
);
2681 if (sc
->vif
!= conf
->vif
)
2686 mutex_unlock(&sc
->lock
);
2690 ath5k_config(struct ieee80211_hw
*hw
,
2691 struct ieee80211_conf
*conf
)
2693 struct ath5k_softc
*sc
= hw
->priv
;
2695 sc
->bintval
= conf
->beacon_int
;
2696 ath5k_setcurmode(sc
, conf
->phymode
);
2698 return ath5k_chan_set(sc
, conf
->chan
);
2702 ath5k_config_interface(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
,
2703 struct ieee80211_if_conf
*conf
)
2705 struct ath5k_softc
*sc
= hw
->priv
;
2706 struct ath5k_hw
*ah
= sc
->ah
;
2709 /* Set to a reasonable value. Note that this will
2710 * be set to mac80211's value at ath5k_config(). */
2712 mutex_lock(&sc
->lock
);
2713 if (sc
->vif
!= vif
) {
2718 /* Cache for later use during resets */
2719 memcpy(ah
->ah_bssid
, conf
->bssid
, ETH_ALEN
);
2720 /* XXX: assoc id is set to 0 for now, mac80211 doesn't have
2721 * a clean way of letting us retrieve this yet. */
2722 ath5k_hw_set_associd(ah
, ah
->ah_bssid
, 0);
2724 mutex_unlock(&sc
->lock
);
2726 return ath5k_reset(hw
);
2728 mutex_unlock(&sc
->lock
);
2732 #define SUPPORTED_FIF_FLAGS \
2733 FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | \
2734 FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | \
2735 FIF_BCN_PRBRESP_PROMISC
2737 * o always accept unicast, broadcast, and multicast traffic
2738 * o multicast traffic for all BSSIDs will be enabled if mac80211
2740 * o maintain current state of phy ofdm or phy cck error reception.
2741 * If the hardware detects any of these type of errors then
2742 * ath5k_hw_get_rx_filter() will pass to us the respective
2743 * hardware filters to be able to receive these type of frames.
2744 * o probe request frames are accepted only when operating in
2745 * hostap, adhoc, or monitor modes
2746 * o enable promiscuous mode according to the interface state
2748 * - when operating in adhoc mode so the 802.11 layer creates
2749 * node table entries for peers,
2750 * - when operating in station mode for collecting rssi data when
2751 * the station is otherwise quiet, or
2754 static void ath5k_configure_filter(struct ieee80211_hw
*hw
,
2755 unsigned int changed_flags
,
2756 unsigned int *new_flags
,
2757 int mc_count
, struct dev_mc_list
*mclist
)
2759 struct ath5k_softc
*sc
= hw
->priv
;
2760 struct ath5k_hw
*ah
= sc
->ah
;
2761 u32 mfilt
[2], val
, rfilt
;
2768 /* Only deal with supported flags */
2769 changed_flags
&= SUPPORTED_FIF_FLAGS
;
2770 *new_flags
&= SUPPORTED_FIF_FLAGS
;
2772 /* If HW detects any phy or radar errors, leave those filters on.
2773 * Also, always enable Unicast, Broadcasts and Multicast
2774 * XXX: move unicast, bssid broadcasts and multicast to mac80211 */
2775 rfilt
= (ath5k_hw_get_rx_filter(ah
) & (AR5K_RX_FILTER_PHYERR
)) |
2776 (AR5K_RX_FILTER_UCAST
| AR5K_RX_FILTER_BCAST
|
2777 AR5K_RX_FILTER_MCAST
);
2779 if (changed_flags
& (FIF_PROMISC_IN_BSS
| FIF_OTHER_BSS
)) {
2780 if (*new_flags
& FIF_PROMISC_IN_BSS
) {
2781 rfilt
|= AR5K_RX_FILTER_PROM
;
2782 __set_bit(ATH_STAT_PROMISC
, sc
->status
);
2785 __clear_bit(ATH_STAT_PROMISC
, sc
->status
);
2788 /* Note, AR5K_RX_FILTER_MCAST is already enabled */
2789 if (*new_flags
& FIF_ALLMULTI
) {
2793 for (i
= 0; i
< mc_count
; i
++) {
2796 /* calculate XOR of eight 6-bit values */
2797 val
= LE_READ_4(mclist
->dmi_addr
+ 0);
2798 pos
= (val
>> 18) ^ (val
>> 12) ^ (val
>> 6) ^ val
;
2799 val
= LE_READ_4(mclist
->dmi_addr
+ 3);
2800 pos
^= (val
>> 18) ^ (val
>> 12) ^ (val
>> 6) ^ val
;
2802 mfilt
[pos
/ 32] |= (1 << (pos
% 32));
2803 /* XXX: we might be able to just do this instead,
2804 * but not sure, needs testing, if we do use this we'd
2805 * neet to inform below to not reset the mcast */
2806 /* ath5k_hw_set_mcast_filterindex(ah,
2807 * mclist->dmi_addr[5]); */
2808 mclist
= mclist
->next
;
2812 /* This is the best we can do */
2813 if (*new_flags
& (FIF_FCSFAIL
| FIF_PLCPFAIL
))
2814 rfilt
|= AR5K_RX_FILTER_PHYERR
;
2816 /* FIF_BCN_PRBRESP_PROMISC really means to enable beacons
2817 * and probes for any BSSID, this needs testing */
2818 if (*new_flags
& FIF_BCN_PRBRESP_PROMISC
)
2819 rfilt
|= AR5K_RX_FILTER_BEACON
| AR5K_RX_FILTER_PROBEREQ
;
2821 /* FIF_CONTROL doc says that if FIF_PROMISC_IN_BSS is not
2822 * set we should only pass on control frames for this
2823 * station. This needs testing. I believe right now this
2824 * enables *all* control frames, which is OK.. but
2825 * but we should see if we can improve on granularity */
2826 if (*new_flags
& FIF_CONTROL
)
2827 rfilt
|= AR5K_RX_FILTER_CONTROL
;
2829 /* Additional settings per mode -- this is per ath5k */
2831 /* XXX move these to mac80211, and add a beacon IFF flag to mac80211 */
2833 if (sc
->opmode
== IEEE80211_IF_TYPE_MNTR
)
2834 rfilt
|= AR5K_RX_FILTER_CONTROL
| AR5K_RX_FILTER_BEACON
|
2835 AR5K_RX_FILTER_PROBEREQ
| AR5K_RX_FILTER_PROM
;
2836 if (sc
->opmode
!= IEEE80211_IF_TYPE_STA
)
2837 rfilt
|= AR5K_RX_FILTER_PROBEREQ
;
2838 if (sc
->opmode
!= IEEE80211_IF_TYPE_AP
&&
2839 test_bit(ATH_STAT_PROMISC
, sc
->status
))
2840 rfilt
|= AR5K_RX_FILTER_PROM
;
2841 if (sc
->opmode
== IEEE80211_IF_TYPE_STA
||
2842 sc
->opmode
== IEEE80211_IF_TYPE_IBSS
) {
2843 rfilt
|= AR5K_RX_FILTER_BEACON
;
2847 ath5k_hw_set_rx_filter(ah
,rfilt
);
2849 /* Set multicast bits */
2850 ath5k_hw_set_mcast_filter(ah
, mfilt
[0], mfilt
[1]);
2851 /* Set the cached hw filter flags, this will alter actually
2853 sc
->filter_flags
= rfilt
;
2857 ath5k_set_key(struct ieee80211_hw
*hw
, enum set_key_cmd cmd
,
2858 const u8
*local_addr
, const u8
*addr
,
2859 struct ieee80211_key_conf
*key
)
2861 struct ath5k_softc
*sc
= hw
->priv
;
2875 mutex_lock(&sc
->lock
);
2879 ret
= ath5k_hw_set_key(sc
->ah
, key
->keyidx
, key
, addr
);
2881 ATH5K_ERR(sc
, "can't set the key\n");
2884 __set_bit(key
->keyidx
, sc
->keymap
);
2885 key
->hw_key_idx
= key
->keyidx
;
2888 ath5k_hw_reset_key(sc
->ah
, key
->keyidx
);
2889 __clear_bit(key
->keyidx
, sc
->keymap
);
2897 mutex_unlock(&sc
->lock
);
2902 ath5k_get_stats(struct ieee80211_hw
*hw
,
2903 struct ieee80211_low_level_stats
*stats
)
2905 struct ath5k_softc
*sc
= hw
->priv
;
2907 memcpy(stats
, &sc
->ll_stats
, sizeof(sc
->ll_stats
));
2913 ath5k_get_tx_stats(struct ieee80211_hw
*hw
,
2914 struct ieee80211_tx_queue_stats
*stats
)
2916 struct ath5k_softc
*sc
= hw
->priv
;
2918 memcpy(stats
, &sc
->tx_stats
, sizeof(sc
->tx_stats
));
2924 ath5k_get_tsf(struct ieee80211_hw
*hw
)
2926 struct ath5k_softc
*sc
= hw
->priv
;
2928 return ath5k_hw_get_tsf64(sc
->ah
);
2932 ath5k_reset_tsf(struct ieee80211_hw
*hw
)
2934 struct ath5k_softc
*sc
= hw
->priv
;
2937 * in IBSS mode we need to update the beacon timers too.
2938 * this will also reset the TSF if we call it with 0
2940 if (sc
->opmode
== IEEE80211_IF_TYPE_IBSS
)
2941 ath5k_beacon_update_timers(sc
, 0);
2943 ath5k_hw_reset_tsf(sc
->ah
);
2947 ath5k_beacon_update(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
2948 struct ieee80211_tx_control
*ctl
)
2950 struct ath5k_softc
*sc
= hw
->priv
;
2953 ath5k_debug_dump_skb(sc
, skb
, "BC ", 1);
2955 mutex_lock(&sc
->lock
);
2957 if (sc
->opmode
!= IEEE80211_IF_TYPE_IBSS
) {
2962 ath5k_txbuf_free(sc
, sc
->bbuf
);
2963 sc
->bbuf
->skb
= skb
;
2964 ret
= ath5k_beacon_setup(sc
, sc
->bbuf
, ctl
);
2966 sc
->bbuf
->skb
= NULL
;
2968 ath5k_beacon_config(sc
);
2971 mutex_unlock(&sc
->lock
);