2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2500usb device specific routines.
24 Supported chipsets: RT2570.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
40 * All access to the CSR registers will go through the methods
41 * rt2500usb_register_read and rt2500usb_register_write.
42 * BBP and RF register require indirect register access,
43 * and use the CSR registers BBPCSR and RFCSR to achieve this.
44 * These indirect registers work with busy bits,
45 * and we will try maximal REGISTER_BUSY_COUNT times to access
46 * the register while taking a REGISTER_BUSY_DELAY us delay
47 * between each attampt. When the busy bit is still set at that time,
48 * the access attempt is considered to have failed,
49 * and we will print an error.
50 * If the usb_cache_mutex is already held then the _lock variants must
53 static inline void rt2500usb_register_read(struct rt2x00_dev
*rt2x00dev
,
54 const unsigned int offset
,
58 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_READ
,
59 USB_VENDOR_REQUEST_IN
, offset
,
60 ®
, sizeof(u16
), REGISTER_TIMEOUT
);
61 *value
= le16_to_cpu(reg
);
64 static inline void rt2500usb_register_read_lock(struct rt2x00_dev
*rt2x00dev
,
65 const unsigned int offset
,
69 rt2x00usb_vendor_req_buff_lock(rt2x00dev
, USB_MULTI_READ
,
70 USB_VENDOR_REQUEST_IN
, offset
,
71 ®
, sizeof(u16
), REGISTER_TIMEOUT
);
72 *value
= le16_to_cpu(reg
);
75 static inline void rt2500usb_register_multiread(struct rt2x00_dev
*rt2x00dev
,
76 const unsigned int offset
,
77 void *value
, const u16 length
)
79 int timeout
= REGISTER_TIMEOUT
* (length
/ sizeof(u16
));
80 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_READ
,
81 USB_VENDOR_REQUEST_IN
, offset
,
82 value
, length
, timeout
);
85 static inline void rt2500usb_register_write(struct rt2x00_dev
*rt2x00dev
,
86 const unsigned int offset
,
89 __le16 reg
= cpu_to_le16(value
);
90 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_WRITE
,
91 USB_VENDOR_REQUEST_OUT
, offset
,
92 ®
, sizeof(u16
), REGISTER_TIMEOUT
);
95 static inline void rt2500usb_register_write_lock(struct rt2x00_dev
*rt2x00dev
,
96 const unsigned int offset
,
99 __le16 reg
= cpu_to_le16(value
);
100 rt2x00usb_vendor_req_buff_lock(rt2x00dev
, USB_MULTI_WRITE
,
101 USB_VENDOR_REQUEST_OUT
, offset
,
102 ®
, sizeof(u16
), REGISTER_TIMEOUT
);
105 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev
*rt2x00dev
,
106 const unsigned int offset
,
107 void *value
, const u16 length
)
109 int timeout
= REGISTER_TIMEOUT
* (length
/ sizeof(u16
));
110 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_WRITE
,
111 USB_VENDOR_REQUEST_OUT
, offset
,
112 value
, length
, timeout
);
115 static u16
rt2500usb_bbp_check(struct rt2x00_dev
*rt2x00dev
)
120 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
121 rt2500usb_register_read_lock(rt2x00dev
, PHY_CSR8
, ®
);
122 if (!rt2x00_get_field16(reg
, PHY_CSR8_BUSY
))
124 udelay(REGISTER_BUSY_DELAY
);
130 static void rt2500usb_bbp_write(struct rt2x00_dev
*rt2x00dev
,
131 const unsigned int word
, const u8 value
)
135 mutex_lock(&rt2x00dev
->usb_cache_mutex
);
138 * Wait until the BBP becomes ready.
140 reg
= rt2500usb_bbp_check(rt2x00dev
);
141 if (rt2x00_get_field16(reg
, PHY_CSR8_BUSY
)) {
142 ERROR(rt2x00dev
, "PHY_CSR8 register busy. Write failed.\n");
143 mutex_unlock(&rt2x00dev
->usb_cache_mutex
);
148 * Write the data into the BBP.
151 rt2x00_set_field16(®
, PHY_CSR7_DATA
, value
);
152 rt2x00_set_field16(®
, PHY_CSR7_REG_ID
, word
);
153 rt2x00_set_field16(®
, PHY_CSR7_READ_CONTROL
, 0);
155 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR7
, reg
);
157 mutex_unlock(&rt2x00dev
->usb_cache_mutex
);
160 static void rt2500usb_bbp_read(struct rt2x00_dev
*rt2x00dev
,
161 const unsigned int word
, u8
*value
)
165 mutex_lock(&rt2x00dev
->usb_cache_mutex
);
168 * Wait until the BBP becomes ready.
170 reg
= rt2500usb_bbp_check(rt2x00dev
);
171 if (rt2x00_get_field16(reg
, PHY_CSR8_BUSY
)) {
172 ERROR(rt2x00dev
, "PHY_CSR8 register busy. Read failed.\n");
177 * Write the request into the BBP.
180 rt2x00_set_field16(®
, PHY_CSR7_REG_ID
, word
);
181 rt2x00_set_field16(®
, PHY_CSR7_READ_CONTROL
, 1);
183 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR7
, reg
);
186 * Wait until the BBP becomes ready.
188 reg
= rt2500usb_bbp_check(rt2x00dev
);
189 if (rt2x00_get_field16(reg
, PHY_CSR8_BUSY
)) {
190 ERROR(rt2x00dev
, "PHY_CSR8 register busy. Read failed.\n");
192 mutex_unlock(&rt2x00dev
->usb_cache_mutex
);
196 rt2500usb_register_read_lock(rt2x00dev
, PHY_CSR7
, ®
);
197 *value
= rt2x00_get_field16(reg
, PHY_CSR7_DATA
);
199 mutex_unlock(&rt2x00dev
->usb_cache_mutex
);
202 static void rt2500usb_rf_write(struct rt2x00_dev
*rt2x00dev
,
203 const unsigned int word
, const u32 value
)
211 mutex_lock(&rt2x00dev
->usb_cache_mutex
);
213 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
214 rt2500usb_register_read_lock(rt2x00dev
, PHY_CSR10
, ®
);
215 if (!rt2x00_get_field16(reg
, PHY_CSR10_RF_BUSY
))
217 udelay(REGISTER_BUSY_DELAY
);
220 mutex_unlock(&rt2x00dev
->usb_cache_mutex
);
221 ERROR(rt2x00dev
, "PHY_CSR10 register busy. Write failed.\n");
226 rt2x00_set_field16(®
, PHY_CSR9_RF_VALUE
, value
);
227 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR9
, reg
);
230 rt2x00_set_field16(®
, PHY_CSR10_RF_VALUE
, value
>> 16);
231 rt2x00_set_field16(®
, PHY_CSR10_RF_NUMBER_OF_BITS
, 20);
232 rt2x00_set_field16(®
, PHY_CSR10_RF_IF_SELECT
, 0);
233 rt2x00_set_field16(®
, PHY_CSR10_RF_BUSY
, 1);
235 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR10
, reg
);
236 rt2x00_rf_write(rt2x00dev
, word
, value
);
238 mutex_unlock(&rt2x00dev
->usb_cache_mutex
);
241 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
242 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u16)) )
244 static void rt2500usb_read_csr(struct rt2x00_dev
*rt2x00dev
,
245 const unsigned int word
, u32
*data
)
247 rt2500usb_register_read(rt2x00dev
, CSR_OFFSET(word
), (u16
*) data
);
250 static void rt2500usb_write_csr(struct rt2x00_dev
*rt2x00dev
,
251 const unsigned int word
, u32 data
)
253 rt2500usb_register_write(rt2x00dev
, CSR_OFFSET(word
), data
);
256 static const struct rt2x00debug rt2500usb_rt2x00debug
= {
257 .owner
= THIS_MODULE
,
259 .read
= rt2500usb_read_csr
,
260 .write
= rt2500usb_write_csr
,
261 .word_size
= sizeof(u16
),
262 .word_count
= CSR_REG_SIZE
/ sizeof(u16
),
265 .read
= rt2x00_eeprom_read
,
266 .write
= rt2x00_eeprom_write
,
267 .word_size
= sizeof(u16
),
268 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
271 .read
= rt2500usb_bbp_read
,
272 .write
= rt2500usb_bbp_write
,
273 .word_size
= sizeof(u8
),
274 .word_count
= BBP_SIZE
/ sizeof(u8
),
277 .read
= rt2x00_rf_read
,
278 .write
= rt2500usb_rf_write
,
279 .word_size
= sizeof(u32
),
280 .word_count
= RF_SIZE
/ sizeof(u32
),
283 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
286 * Configuration handlers.
288 static void rt2500usb_config_mac_addr(struct rt2x00_dev
*rt2x00dev
,
291 rt2500usb_register_multiwrite(rt2x00dev
, MAC_CSR2
, mac
,
292 (3 * sizeof(__le16
)));
295 static void rt2500usb_config_bssid(struct rt2x00_dev
*rt2x00dev
,
298 rt2500usb_register_multiwrite(rt2x00dev
, MAC_CSR5
, bssid
,
299 (3 * sizeof(__le16
)));
302 static void rt2500usb_config_type(struct rt2x00_dev
*rt2x00dev
, const int type
,
307 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, 0);
310 * Enable beacon config
312 rt2500usb_register_read(rt2x00dev
, TXRX_CSR20
, ®
);
313 rt2x00_set_field16(®
, TXRX_CSR20_OFFSET
,
314 (PREAMBLE
+ get_duration(IEEE80211_HEADER
, 20)) >> 6);
315 if (type
== IEEE80211_IF_TYPE_STA
)
316 rt2x00_set_field16(®
, TXRX_CSR20_BCN_EXPECT_WINDOW
, 0);
318 rt2x00_set_field16(®
, TXRX_CSR20_BCN_EXPECT_WINDOW
, 2);
319 rt2500usb_register_write(rt2x00dev
, TXRX_CSR20
, reg
);
322 * Enable synchronisation.
324 rt2500usb_register_read(rt2x00dev
, TXRX_CSR18
, ®
);
325 rt2x00_set_field16(®
, TXRX_CSR18_OFFSET
, 0);
326 rt2500usb_register_write(rt2x00dev
, TXRX_CSR18
, reg
);
328 rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
, ®
);
329 rt2x00_set_field16(®
, TXRX_CSR19_TSF_COUNT
, 1);
330 rt2x00_set_field16(®
, TXRX_CSR19_TBCN
,
331 (tsf_sync
== TSF_SYNC_BEACON
));
332 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 0);
333 rt2x00_set_field16(®
, TXRX_CSR19_TSF_SYNC
, tsf_sync
);
334 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
337 static void rt2500usb_config_preamble(struct rt2x00_dev
*rt2x00dev
,
338 const int short_preamble
,
339 const int ack_timeout
,
340 const int ack_consume_time
)
345 * When in atomic context, reschedule and let rt2x00lib
346 * call this function again.
349 queue_work(rt2x00dev
->hw
->workqueue
, &rt2x00dev
->config_work
);
353 rt2500usb_register_read(rt2x00dev
, TXRX_CSR1
, ®
);
354 rt2x00_set_field16(®
, TXRX_CSR1_ACK_TIMEOUT
, ack_timeout
);
355 rt2500usb_register_write(rt2x00dev
, TXRX_CSR1
, reg
);
357 rt2500usb_register_read(rt2x00dev
, TXRX_CSR10
, ®
);
358 rt2x00_set_field16(®
, TXRX_CSR10_AUTORESPOND_PREAMBLE
,
360 rt2500usb_register_write(rt2x00dev
, TXRX_CSR10
, reg
);
363 static void rt2500usb_config_phymode(struct rt2x00_dev
*rt2x00dev
,
365 const int basic_rate_mask
)
367 rt2500usb_register_write(rt2x00dev
, TXRX_CSR11
, basic_rate_mask
);
369 if (phymode
== HWMODE_B
) {
370 rt2500usb_register_write(rt2x00dev
, MAC_CSR11
, 0x000b);
371 rt2500usb_register_write(rt2x00dev
, MAC_CSR12
, 0x0040);
373 rt2500usb_register_write(rt2x00dev
, MAC_CSR11
, 0x0005);
374 rt2500usb_register_write(rt2x00dev
, MAC_CSR12
, 0x016c);
378 static void rt2500usb_config_channel(struct rt2x00_dev
*rt2x00dev
,
379 struct rf_channel
*rf
, const int txpower
)
384 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
387 * For RT2525E we should first set the channel to half band higher.
389 if (rt2x00_rf(&rt2x00dev
->chip
, RF2525E
)) {
390 static const u32 vals
[] = {
391 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
392 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
393 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
394 0x00000902, 0x00000906
397 rt2500usb_rf_write(rt2x00dev
, 2, vals
[rf
->channel
- 1]);
399 rt2500usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
402 rt2500usb_rf_write(rt2x00dev
, 1, rf
->rf1
);
403 rt2500usb_rf_write(rt2x00dev
, 2, rf
->rf2
);
404 rt2500usb_rf_write(rt2x00dev
, 3, rf
->rf3
);
406 rt2500usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
409 static void rt2500usb_config_txpower(struct rt2x00_dev
*rt2x00dev
,
414 rt2x00_rf_read(rt2x00dev
, 3, &rf3
);
415 rt2x00_set_field32(&rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
416 rt2500usb_rf_write(rt2x00dev
, 3, rf3
);
419 static void rt2500usb_config_antenna(struct rt2x00_dev
*rt2x00dev
,
420 struct antenna_setup
*ant
)
427 rt2500usb_bbp_read(rt2x00dev
, 2, &r2
);
428 rt2500usb_bbp_read(rt2x00dev
, 14, &r14
);
429 rt2500usb_register_read(rt2x00dev
, PHY_CSR5
, &csr5
);
430 rt2500usb_register_read(rt2x00dev
, PHY_CSR6
, &csr6
);
433 * Configure the TX antenna.
436 case ANTENNA_HW_DIVERSITY
:
437 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 1);
438 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK
, 1);
439 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM
, 1);
442 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 0);
443 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK
, 0);
444 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM
, 0);
446 case ANTENNA_SW_DIVERSITY
:
448 * NOTE: We should never come here because rt2x00lib is
449 * supposed to catch this and send us the correct antenna
450 * explicitely. However we are nog going to bug about this.
451 * Instead, just default to antenna B.
454 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 2);
455 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK
, 2);
456 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM
, 2);
461 * Configure the RX antenna.
464 case ANTENNA_HW_DIVERSITY
:
465 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 1);
468 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 0);
470 case ANTENNA_SW_DIVERSITY
:
472 * NOTE: We should never come here because rt2x00lib is
473 * supposed to catch this and send us the correct antenna
474 * explicitely. However we are nog going to bug about this.
475 * Instead, just default to antenna B.
478 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 2);
483 * RT2525E and RT5222 need to flip TX I/Q
485 if (rt2x00_rf(&rt2x00dev
->chip
, RF2525E
) ||
486 rt2x00_rf(&rt2x00dev
->chip
, RF5222
)) {
487 rt2x00_set_field8(&r2
, BBP_R2_TX_IQ_FLIP
, 1);
488 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK_FLIP
, 1);
489 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM_FLIP
, 1);
492 * RT2525E does not need RX I/Q Flip.
494 if (rt2x00_rf(&rt2x00dev
->chip
, RF2525E
))
495 rt2x00_set_field8(&r14
, BBP_R14_RX_IQ_FLIP
, 0);
497 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK_FLIP
, 0);
498 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM_FLIP
, 0);
501 rt2500usb_bbp_write(rt2x00dev
, 2, r2
);
502 rt2500usb_bbp_write(rt2x00dev
, 14, r14
);
503 rt2500usb_register_write(rt2x00dev
, PHY_CSR5
, csr5
);
504 rt2500usb_register_write(rt2x00dev
, PHY_CSR6
, csr6
);
507 static void rt2500usb_config_duration(struct rt2x00_dev
*rt2x00dev
,
508 struct rt2x00lib_conf
*libconf
)
512 rt2500usb_register_write(rt2x00dev
, MAC_CSR10
, libconf
->slot_time
);
514 rt2500usb_register_read(rt2x00dev
, TXRX_CSR18
, ®
);
515 rt2x00_set_field16(®
, TXRX_CSR18_INTERVAL
,
516 libconf
->conf
->beacon_int
* 4);
517 rt2500usb_register_write(rt2x00dev
, TXRX_CSR18
, reg
);
520 static void rt2500usb_config(struct rt2x00_dev
*rt2x00dev
,
521 const unsigned int flags
,
522 struct rt2x00lib_conf
*libconf
)
524 if (flags
& CONFIG_UPDATE_PHYMODE
)
525 rt2500usb_config_phymode(rt2x00dev
, libconf
->phymode
,
526 libconf
->basic_rates
);
527 if (flags
& CONFIG_UPDATE_CHANNEL
)
528 rt2500usb_config_channel(rt2x00dev
, &libconf
->rf
,
529 libconf
->conf
->power_level
);
530 if ((flags
& CONFIG_UPDATE_TXPOWER
) && !(flags
& CONFIG_UPDATE_CHANNEL
))
531 rt2500usb_config_txpower(rt2x00dev
,
532 libconf
->conf
->power_level
);
533 if (flags
& CONFIG_UPDATE_ANTENNA
)
534 rt2500usb_config_antenna(rt2x00dev
, &libconf
->ant
);
535 if (flags
& (CONFIG_UPDATE_SLOT_TIME
| CONFIG_UPDATE_BEACON_INT
))
536 rt2500usb_config_duration(rt2x00dev
, libconf
);
542 static void rt2500usb_enable_led(struct rt2x00_dev
*rt2x00dev
)
546 rt2500usb_register_read(rt2x00dev
, MAC_CSR21
, ®
);
547 rt2x00_set_field16(®
, MAC_CSR21_ON_PERIOD
, 70);
548 rt2x00_set_field16(®
, MAC_CSR21_OFF_PERIOD
, 30);
549 rt2500usb_register_write(rt2x00dev
, MAC_CSR21
, reg
);
551 rt2500usb_register_read(rt2x00dev
, MAC_CSR20
, ®
);
552 rt2x00_set_field16(®
, MAC_CSR20_LINK
,
553 (rt2x00dev
->led_mode
!= LED_MODE_ASUS
));
554 rt2x00_set_field16(®
, MAC_CSR20_ACTIVITY
,
555 (rt2x00dev
->led_mode
!= LED_MODE_TXRX_ACTIVITY
));
556 rt2500usb_register_write(rt2x00dev
, MAC_CSR20
, reg
);
559 static void rt2500usb_disable_led(struct rt2x00_dev
*rt2x00dev
)
563 rt2500usb_register_read(rt2x00dev
, MAC_CSR20
, ®
);
564 rt2x00_set_field16(®
, MAC_CSR20_LINK
, 0);
565 rt2x00_set_field16(®
, MAC_CSR20_ACTIVITY
, 0);
566 rt2500usb_register_write(rt2x00dev
, MAC_CSR20
, reg
);
572 static void rt2500usb_link_stats(struct rt2x00_dev
*rt2x00dev
,
573 struct link_qual
*qual
)
578 * Update FCS error count from register.
580 rt2500usb_register_read(rt2x00dev
, STA_CSR0
, ®
);
581 qual
->rx_failed
= rt2x00_get_field16(reg
, STA_CSR0_FCS_ERROR
);
584 * Update False CCA count from register.
586 rt2500usb_register_read(rt2x00dev
, STA_CSR3
, ®
);
587 qual
->false_cca
= rt2x00_get_field16(reg
, STA_CSR3_FALSE_CCA_ERROR
);
590 static void rt2500usb_reset_tuner(struct rt2x00_dev
*rt2x00dev
)
595 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R24
, &eeprom
);
596 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_R24_LOW
);
597 rt2500usb_bbp_write(rt2x00dev
, 24, value
);
599 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R25
, &eeprom
);
600 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_R25_LOW
);
601 rt2500usb_bbp_write(rt2x00dev
, 25, value
);
603 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R61
, &eeprom
);
604 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_R61_LOW
);
605 rt2500usb_bbp_write(rt2x00dev
, 61, value
);
607 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_VGC
, &eeprom
);
608 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_VGCUPPER
);
609 rt2500usb_bbp_write(rt2x00dev
, 17, value
);
611 rt2x00dev
->link
.vgc_level
= value
;
614 static void rt2500usb_link_tuner(struct rt2x00_dev
*rt2x00dev
)
616 int rssi
= rt2x00_get_link_rssi(&rt2x00dev
->link
);
629 * Determine the BBP tuning threshold and correctly
630 * set BBP 24, 25 and 61.
632 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE
, &bbp_thresh
);
633 bbp_thresh
= rt2x00_get_field16(bbp_thresh
, EEPROM_BBPTUNE_THRESHOLD
);
635 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R24
, &r24
);
636 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R25
, &r25
);
637 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R61
, &r61
);
639 if ((rssi
+ bbp_thresh
) > 0) {
640 r24
= rt2x00_get_field16(r24
, EEPROM_BBPTUNE_R24_HIGH
);
641 r25
= rt2x00_get_field16(r25
, EEPROM_BBPTUNE_R25_HIGH
);
642 r61
= rt2x00_get_field16(r61
, EEPROM_BBPTUNE_R61_HIGH
);
644 r24
= rt2x00_get_field16(r24
, EEPROM_BBPTUNE_R24_LOW
);
645 r25
= rt2x00_get_field16(r25
, EEPROM_BBPTUNE_R25_LOW
);
646 r61
= rt2x00_get_field16(r61
, EEPROM_BBPTUNE_R61_LOW
);
649 rt2500usb_bbp_write(rt2x00dev
, 24, r24
);
650 rt2500usb_bbp_write(rt2x00dev
, 25, r25
);
651 rt2500usb_bbp_write(rt2x00dev
, 61, r61
);
654 * Read current r17 value, as well as the sensitivity values
655 * for the r17 register.
657 rt2500usb_bbp_read(rt2x00dev
, 17, &r17
);
658 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R17
, &r17_sens
);
661 * A too low RSSI will cause too much false CCA which will
662 * then corrupt the R17 tuning. To remidy this the tuning should
663 * be stopped (While making sure the R17 value will not exceed limits)
667 rt2500usb_bbp_write(rt2x00dev
, 17, 0x60);
672 * Special big-R17 for short distance
675 sens
= rt2x00_get_field16(r17_sens
, EEPROM_BBPTUNE_R17_LOW
);
677 rt2500usb_bbp_write(rt2x00dev
, 17, sens
);
682 * Special mid-R17 for middle distance
685 sens
= rt2x00_get_field16(r17_sens
, EEPROM_BBPTUNE_R17_HIGH
);
687 rt2500usb_bbp_write(rt2x00dev
, 17, sens
);
692 * Leave short or middle distance condition, restore r17
693 * to the dynamic tuning range.
695 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_VGC
, &vgc_bound
);
696 vgc_bound
= rt2x00_get_field16(vgc_bound
, EEPROM_BBPTUNE_VGCUPPER
);
700 up_bound
= vgc_bound
;
702 up_bound
= vgc_bound
- (-77 - rssi
);
704 if (up_bound
< low_bound
)
705 up_bound
= low_bound
;
707 if (r17
> up_bound
) {
708 rt2500usb_bbp_write(rt2x00dev
, 17, up_bound
);
709 rt2x00dev
->link
.vgc_level
= up_bound
;
710 } else if (rt2x00dev
->link
.qual
.false_cca
> 512 && r17
< up_bound
) {
711 rt2500usb_bbp_write(rt2x00dev
, 17, ++r17
);
712 rt2x00dev
->link
.vgc_level
= r17
;
713 } else if (rt2x00dev
->link
.qual
.false_cca
< 100 && r17
> low_bound
) {
714 rt2500usb_bbp_write(rt2x00dev
, 17, --r17
);
715 rt2x00dev
->link
.vgc_level
= r17
;
720 * Initialization functions.
722 static int rt2500usb_init_registers(struct rt2x00_dev
*rt2x00dev
)
726 rt2x00usb_vendor_request_sw(rt2x00dev
, USB_DEVICE_MODE
, 0x0001,
727 USB_MODE_TEST
, REGISTER_TIMEOUT
);
728 rt2x00usb_vendor_request_sw(rt2x00dev
, USB_SINGLE_WRITE
, 0x0308,
729 0x00f0, REGISTER_TIMEOUT
);
731 rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
732 rt2x00_set_field16(®
, TXRX_CSR2_DISABLE_RX
, 1);
733 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
735 rt2500usb_register_write(rt2x00dev
, MAC_CSR13
, 0x1111);
736 rt2500usb_register_write(rt2x00dev
, MAC_CSR14
, 0x1e11);
738 rt2500usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
739 rt2x00_set_field16(®
, MAC_CSR1_SOFT_RESET
, 1);
740 rt2x00_set_field16(®
, MAC_CSR1_BBP_RESET
, 1);
741 rt2x00_set_field16(®
, MAC_CSR1_HOST_READY
, 0);
742 rt2500usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
744 rt2500usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
745 rt2x00_set_field16(®
, MAC_CSR1_SOFT_RESET
, 0);
746 rt2x00_set_field16(®
, MAC_CSR1_BBP_RESET
, 0);
747 rt2x00_set_field16(®
, MAC_CSR1_HOST_READY
, 0);
748 rt2500usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
750 rt2500usb_register_read(rt2x00dev
, TXRX_CSR5
, ®
);
751 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID0
, 13);
752 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID0_VALID
, 1);
753 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID1
, 12);
754 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID1_VALID
, 1);
755 rt2500usb_register_write(rt2x00dev
, TXRX_CSR5
, reg
);
757 rt2500usb_register_read(rt2x00dev
, TXRX_CSR6
, ®
);
758 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID0
, 10);
759 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID0_VALID
, 1);
760 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID1
, 11);
761 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID1_VALID
, 1);
762 rt2500usb_register_write(rt2x00dev
, TXRX_CSR6
, reg
);
764 rt2500usb_register_read(rt2x00dev
, TXRX_CSR7
, ®
);
765 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID0
, 7);
766 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID0_VALID
, 1);
767 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID1
, 6);
768 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID1_VALID
, 1);
769 rt2500usb_register_write(rt2x00dev
, TXRX_CSR7
, reg
);
771 rt2500usb_register_read(rt2x00dev
, TXRX_CSR8
, ®
);
772 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID0
, 5);
773 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID0_VALID
, 1);
774 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID1
, 0);
775 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID1_VALID
, 0);
776 rt2500usb_register_write(rt2x00dev
, TXRX_CSR8
, reg
);
778 rt2500usb_register_write(rt2x00dev
, TXRX_CSR21
, 0xe78f);
779 rt2500usb_register_write(rt2x00dev
, MAC_CSR9
, 0xff1d);
781 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
784 rt2500usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
785 rt2x00_set_field16(®
, MAC_CSR1_SOFT_RESET
, 0);
786 rt2x00_set_field16(®
, MAC_CSR1_BBP_RESET
, 0);
787 rt2x00_set_field16(®
, MAC_CSR1_HOST_READY
, 1);
788 rt2500usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
790 if (rt2x00_rev(&rt2x00dev
->chip
) >= RT2570_VERSION_C
) {
791 rt2500usb_register_read(rt2x00dev
, PHY_CSR2
, ®
);
792 rt2x00_set_field16(®
, PHY_CSR2_LNA
, 0);
795 rt2x00_set_field16(®
, PHY_CSR2_LNA
, 1);
796 rt2x00_set_field16(®
, PHY_CSR2_LNA_MODE
, 3);
798 rt2500usb_register_write(rt2x00dev
, PHY_CSR2
, reg
);
800 rt2500usb_register_write(rt2x00dev
, MAC_CSR11
, 0x0002);
801 rt2500usb_register_write(rt2x00dev
, MAC_CSR22
, 0x0053);
802 rt2500usb_register_write(rt2x00dev
, MAC_CSR15
, 0x01ee);
803 rt2500usb_register_write(rt2x00dev
, MAC_CSR16
, 0x0000);
805 rt2500usb_register_read(rt2x00dev
, MAC_CSR8
, ®
);
806 rt2x00_set_field16(®
, MAC_CSR8_MAX_FRAME_UNIT
,
807 rt2x00dev
->rx
->data_size
);
808 rt2500usb_register_write(rt2x00dev
, MAC_CSR8
, reg
);
810 rt2500usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
811 rt2x00_set_field16(®
, TXRX_CSR0_IV_OFFSET
, IEEE80211_HEADER
);
812 rt2x00_set_field16(®
, TXRX_CSR0_KEY_ID
, 0xff);
813 rt2500usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
815 rt2500usb_register_read(rt2x00dev
, MAC_CSR18
, ®
);
816 rt2x00_set_field16(®
, MAC_CSR18_DELAY_AFTER_BEACON
, 90);
817 rt2500usb_register_write(rt2x00dev
, MAC_CSR18
, reg
);
819 rt2500usb_register_read(rt2x00dev
, PHY_CSR4
, ®
);
820 rt2x00_set_field16(®
, PHY_CSR4_LOW_RF_LE
, 1);
821 rt2500usb_register_write(rt2x00dev
, PHY_CSR4
, reg
);
823 rt2500usb_register_read(rt2x00dev
, TXRX_CSR1
, ®
);
824 rt2x00_set_field16(®
, TXRX_CSR1_AUTO_SEQUENCE
, 1);
825 rt2500usb_register_write(rt2x00dev
, TXRX_CSR1
, reg
);
830 static int rt2500usb_init_bbp(struct rt2x00_dev
*rt2x00dev
)
837 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
838 rt2500usb_bbp_read(rt2x00dev
, 0, &value
);
839 if ((value
!= 0xff) && (value
!= 0x00))
840 goto continue_csr_init
;
841 NOTICE(rt2x00dev
, "Waiting for BBP register.\n");
842 udelay(REGISTER_BUSY_DELAY
);
845 ERROR(rt2x00dev
, "BBP register access failed, aborting.\n");
849 rt2500usb_bbp_write(rt2x00dev
, 3, 0x02);
850 rt2500usb_bbp_write(rt2x00dev
, 4, 0x19);
851 rt2500usb_bbp_write(rt2x00dev
, 14, 0x1c);
852 rt2500usb_bbp_write(rt2x00dev
, 15, 0x30);
853 rt2500usb_bbp_write(rt2x00dev
, 16, 0xac);
854 rt2500usb_bbp_write(rt2x00dev
, 18, 0x18);
855 rt2500usb_bbp_write(rt2x00dev
, 19, 0xff);
856 rt2500usb_bbp_write(rt2x00dev
, 20, 0x1e);
857 rt2500usb_bbp_write(rt2x00dev
, 21, 0x08);
858 rt2500usb_bbp_write(rt2x00dev
, 22, 0x08);
859 rt2500usb_bbp_write(rt2x00dev
, 23, 0x08);
860 rt2500usb_bbp_write(rt2x00dev
, 24, 0x80);
861 rt2500usb_bbp_write(rt2x00dev
, 25, 0x50);
862 rt2500usb_bbp_write(rt2x00dev
, 26, 0x08);
863 rt2500usb_bbp_write(rt2x00dev
, 27, 0x23);
864 rt2500usb_bbp_write(rt2x00dev
, 30, 0x10);
865 rt2500usb_bbp_write(rt2x00dev
, 31, 0x2b);
866 rt2500usb_bbp_write(rt2x00dev
, 32, 0xb9);
867 rt2500usb_bbp_write(rt2x00dev
, 34, 0x12);
868 rt2500usb_bbp_write(rt2x00dev
, 35, 0x50);
869 rt2500usb_bbp_write(rt2x00dev
, 39, 0xc4);
870 rt2500usb_bbp_write(rt2x00dev
, 40, 0x02);
871 rt2500usb_bbp_write(rt2x00dev
, 41, 0x60);
872 rt2500usb_bbp_write(rt2x00dev
, 53, 0x10);
873 rt2500usb_bbp_write(rt2x00dev
, 54, 0x18);
874 rt2500usb_bbp_write(rt2x00dev
, 56, 0x08);
875 rt2500usb_bbp_write(rt2x00dev
, 57, 0x10);
876 rt2500usb_bbp_write(rt2x00dev
, 58, 0x08);
877 rt2500usb_bbp_write(rt2x00dev
, 61, 0x60);
878 rt2500usb_bbp_write(rt2x00dev
, 62, 0x10);
879 rt2500usb_bbp_write(rt2x00dev
, 75, 0xff);
881 DEBUG(rt2x00dev
, "Start initialization from EEPROM...\n");
882 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
883 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
, &eeprom
);
885 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
886 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
887 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
888 DEBUG(rt2x00dev
, "BBP: 0x%02x, value: 0x%02x.\n",
890 rt2500usb_bbp_write(rt2x00dev
, reg_id
, value
);
893 DEBUG(rt2x00dev
, "...End initialization from EEPROM.\n");
899 * Device state switch handlers.
901 static void rt2500usb_toggle_rx(struct rt2x00_dev
*rt2x00dev
,
902 enum dev_state state
)
906 rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
907 rt2x00_set_field16(®
, TXRX_CSR2_DISABLE_RX
,
908 state
== STATE_RADIO_RX_OFF
);
909 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
912 static int rt2500usb_enable_radio(struct rt2x00_dev
*rt2x00dev
)
915 * Initialize all registers.
917 if (rt2500usb_init_registers(rt2x00dev
) ||
918 rt2500usb_init_bbp(rt2x00dev
)) {
919 ERROR(rt2x00dev
, "Register initialization failed.\n");
926 rt2500usb_enable_led(rt2x00dev
);
931 static void rt2500usb_disable_radio(struct rt2x00_dev
*rt2x00dev
)
936 rt2500usb_disable_led(rt2x00dev
);
938 rt2500usb_register_write(rt2x00dev
, MAC_CSR13
, 0x2121);
939 rt2500usb_register_write(rt2x00dev
, MAC_CSR14
, 0x2121);
942 * Disable synchronisation.
944 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, 0);
946 rt2x00usb_disable_radio(rt2x00dev
);
949 static int rt2500usb_set_state(struct rt2x00_dev
*rt2x00dev
,
950 enum dev_state state
)
959 put_to_sleep
= (state
!= STATE_AWAKE
);
962 rt2x00_set_field16(®
, MAC_CSR17_BBP_DESIRE_STATE
, state
);
963 rt2x00_set_field16(®
, MAC_CSR17_RF_DESIRE_STATE
, state
);
964 rt2x00_set_field16(®
, MAC_CSR17_PUT_TO_SLEEP
, put_to_sleep
);
965 rt2500usb_register_write(rt2x00dev
, MAC_CSR17
, reg
);
966 rt2x00_set_field16(®
, MAC_CSR17_SET_STATE
, 1);
967 rt2500usb_register_write(rt2x00dev
, MAC_CSR17
, reg
);
970 * Device is not guaranteed to be in the requested state yet.
971 * We must wait until the register indicates that the
972 * device has entered the correct state.
974 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
975 rt2500usb_register_read(rt2x00dev
, MAC_CSR17
, ®2
);
976 bbp_state
= rt2x00_get_field16(reg2
, MAC_CSR17_BBP_CURR_STATE
);
977 rf_state
= rt2x00_get_field16(reg2
, MAC_CSR17_RF_CURR_STATE
);
978 if (bbp_state
== state
&& rf_state
== state
)
980 rt2500usb_register_write(rt2x00dev
, MAC_CSR17
, reg
);
984 NOTICE(rt2x00dev
, "Device failed to enter state %d, "
985 "current device state: bbp %d and rf %d.\n",
986 state
, bbp_state
, rf_state
);
991 static int rt2500usb_set_device_state(struct rt2x00_dev
*rt2x00dev
,
992 enum dev_state state
)
998 retval
= rt2500usb_enable_radio(rt2x00dev
);
1000 case STATE_RADIO_OFF
:
1001 rt2500usb_disable_radio(rt2x00dev
);
1003 case STATE_RADIO_RX_ON
:
1004 case STATE_RADIO_RX_OFF
:
1005 rt2500usb_toggle_rx(rt2x00dev
, state
);
1007 case STATE_DEEP_SLEEP
:
1011 retval
= rt2500usb_set_state(rt2x00dev
, state
);
1022 * TX descriptor initialization
1024 static void rt2500usb_write_tx_desc(struct rt2x00_dev
*rt2x00dev
,
1025 struct sk_buff
*skb
,
1026 struct txdata_entry_desc
*desc
,
1027 struct ieee80211_tx_control
*control
)
1029 struct skb_desc
*skbdesc
= get_skb_desc(skb
);
1030 __le32
*txd
= skbdesc
->desc
;
1034 * Start writing the descriptor words.
1036 rt2x00_desc_read(txd
, 1, &word
);
1037 rt2x00_set_field32(&word
, TXD_W1_IV_OFFSET
, IEEE80211_HEADER
);
1038 rt2x00_set_field32(&word
, TXD_W1_AIFS
, desc
->aifs
);
1039 rt2x00_set_field32(&word
, TXD_W1_CWMIN
, desc
->cw_min
);
1040 rt2x00_set_field32(&word
, TXD_W1_CWMAX
, desc
->cw_max
);
1041 rt2x00_desc_write(txd
, 1, word
);
1043 rt2x00_desc_read(txd
, 2, &word
);
1044 rt2x00_set_field32(&word
, TXD_W2_PLCP_SIGNAL
, desc
->signal
);
1045 rt2x00_set_field32(&word
, TXD_W2_PLCP_SERVICE
, desc
->service
);
1046 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_LOW
, desc
->length_low
);
1047 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_HIGH
, desc
->length_high
);
1048 rt2x00_desc_write(txd
, 2, word
);
1050 rt2x00_desc_read(txd
, 0, &word
);
1051 rt2x00_set_field32(&word
, TXD_W0_RETRY_LIMIT
, control
->retry_limit
);
1052 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1053 test_bit(ENTRY_TXD_MORE_FRAG
, &desc
->flags
));
1054 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1055 test_bit(ENTRY_TXD_ACK
, &desc
->flags
));
1056 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1057 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &desc
->flags
));
1058 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1059 test_bit(ENTRY_TXD_OFDM_RATE
, &desc
->flags
));
1060 rt2x00_set_field32(&word
, TXD_W0_NEW_SEQ
,
1061 !!(control
->flags
& IEEE80211_TXCTL_FIRST_FRAGMENT
));
1062 rt2x00_set_field32(&word
, TXD_W0_IFS
, desc
->ifs
);
1063 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, skbdesc
->data_len
);
1064 rt2x00_set_field32(&word
, TXD_W0_CIPHER
, CIPHER_NONE
);
1065 rt2x00_desc_write(txd
, 0, word
);
1068 static int rt2500usb_get_tx_data_len(struct rt2x00_dev
*rt2x00dev
,
1069 struct sk_buff
*skb
)
1074 * The length _must_ be a multiple of 2,
1075 * but it must _not_ be a multiple of the USB packet size.
1077 length
= roundup(skb
->len
, 2);
1078 length
+= (2 * !(length
% rt2x00dev
->usb_maxpacket
));
1084 * TX data initialization
1086 static void rt2500usb_kick_tx_queue(struct rt2x00_dev
*rt2x00dev
,
1091 if (queue
!= IEEE80211_TX_QUEUE_BEACON
)
1094 rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
, ®
);
1095 if (!rt2x00_get_field16(reg
, TXRX_CSR19_BEACON_GEN
)) {
1096 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 1);
1098 * Beacon generation will fail initially.
1099 * To prevent this we need to register the TXRX_CSR19
1100 * register several times.
1102 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1103 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, 0);
1104 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1105 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, 0);
1106 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1111 * RX control handlers
1113 static void rt2500usb_fill_rxdone(struct data_entry
*entry
,
1114 struct rxdata_entry_desc
*desc
)
1116 struct skb_desc
*skbdesc
= get_skb_desc(entry
->skb
);
1117 struct urb
*urb
= entry
->priv
;
1118 __le32
*rxd
= (__le32
*)(entry
->skb
->data
+
1119 (urb
->actual_length
- entry
->ring
->desc_size
));
1123 rt2x00_desc_read(rxd
, 0, &word0
);
1124 rt2x00_desc_read(rxd
, 1, &word1
);
1127 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1128 desc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1129 if (rt2x00_get_field32(word0
, RXD_W0_PHYSICAL_ERROR
))
1130 desc
->flags
|= RX_FLAG_FAILED_PLCP_CRC
;
1133 * Obtain the status about this packet.
1135 desc
->signal
= rt2x00_get_field32(word1
, RXD_W1_SIGNAL
);
1136 desc
->rssi
= rt2x00_get_field32(word1
, RXD_W1_RSSI
) -
1137 entry
->ring
->rt2x00dev
->rssi_offset
;
1138 desc
->ofdm
= rt2x00_get_field32(word0
, RXD_W0_OFDM
);
1139 desc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1140 desc
->my_bss
= !!rt2x00_get_field32(word0
, RXD_W0_MY_BSS
);
1143 * Set descriptor and data pointer.
1145 skbdesc
->desc
= entry
->skb
->data
+ desc
->size
;
1146 skbdesc
->desc_len
= entry
->ring
->desc_size
;
1147 skbdesc
->data
= entry
->skb
->data
;
1148 skbdesc
->data_len
= desc
->size
;
1152 * Interrupt functions.
1154 static void rt2500usb_beacondone(struct urb
*urb
)
1156 struct data_entry
*entry
= (struct data_entry
*)urb
->context
;
1157 struct data_ring
*ring
= entry
->ring
;
1159 if (!test_bit(DEVICE_ENABLED_RADIO
, &ring
->rt2x00dev
->flags
))
1163 * Check if this was the guardian beacon,
1164 * if that was the case we need to send the real beacon now.
1165 * Otherwise we should free the sk_buffer, the device
1166 * should be doing the rest of the work now.
1168 if (ring
->index
== 1) {
1169 rt2x00_ring_index_done_inc(ring
);
1170 entry
= rt2x00_get_data_entry(ring
);
1171 usb_submit_urb(entry
->priv
, GFP_ATOMIC
);
1172 rt2x00_ring_index_inc(ring
);
1173 } else if (ring
->index_done
== 1) {
1174 entry
= rt2x00_get_data_entry_done(ring
);
1176 dev_kfree_skb(entry
->skb
);
1179 rt2x00_ring_index_done_inc(ring
);
1184 * Device probe functions.
1186 static int rt2500usb_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1191 rt2x00usb_eeprom_read(rt2x00dev
, rt2x00dev
->eeprom
, EEPROM_SIZE
);
1194 * Start validation of the data that has been read.
1196 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1197 if (!is_valid_ether_addr(mac
)) {
1198 DECLARE_MAC_BUF(macbuf
);
1200 random_ether_addr(mac
);
1201 EEPROM(rt2x00dev
, "MAC: %s\n", print_mac(macbuf
, mac
));
1204 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &word
);
1205 if (word
== 0xffff) {
1206 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
1207 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
1208 ANTENNA_SW_DIVERSITY
);
1209 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
1210 ANTENNA_SW_DIVERSITY
);
1211 rt2x00_set_field16(&word
, EEPROM_ANTENNA_LED_MODE
,
1213 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
1214 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
1215 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF2522
);
1216 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
1217 EEPROM(rt2x00dev
, "Antenna: 0x%04x\n", word
);
1220 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &word
);
1221 if (word
== 0xffff) {
1222 rt2x00_set_field16(&word
, EEPROM_NIC_CARDBUS_ACCEL
, 0);
1223 rt2x00_set_field16(&word
, EEPROM_NIC_DYN_BBP_TUNE
, 0);
1224 rt2x00_set_field16(&word
, EEPROM_NIC_CCK_TX_POWER
, 0);
1225 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
1226 EEPROM(rt2x00dev
, "NIC: 0x%04x\n", word
);
1229 rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, &word
);
1230 if (word
== 0xffff) {
1231 rt2x00_set_field16(&word
, EEPROM_CALIBRATE_OFFSET_RSSI
,
1232 DEFAULT_RSSI_OFFSET
);
1233 rt2x00_eeprom_write(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, word
);
1234 EEPROM(rt2x00dev
, "Calibrate offset: 0x%04x\n", word
);
1237 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE
, &word
);
1238 if (word
== 0xffff) {
1239 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_THRESHOLD
, 45);
1240 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE
, word
);
1241 EEPROM(rt2x00dev
, "BBPtune: 0x%04x\n", word
);
1244 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_VGC
, &word
);
1245 if (word
== 0xffff) {
1246 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_VGCUPPER
, 0x40);
1247 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_VGC
, word
);
1248 EEPROM(rt2x00dev
, "BBPtune vgc: 0x%04x\n", word
);
1251 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R17
, &word
);
1252 if (word
== 0xffff) {
1253 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R17_LOW
, 0x48);
1254 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R17_HIGH
, 0x41);
1255 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R17
, word
);
1256 EEPROM(rt2x00dev
, "BBPtune r17: 0x%04x\n", word
);
1259 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R24
, &word
);
1260 if (word
== 0xffff) {
1261 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R24_LOW
, 0x40);
1262 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R24_HIGH
, 0x80);
1263 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R24
, word
);
1264 EEPROM(rt2x00dev
, "BBPtune r24: 0x%04x\n", word
);
1267 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R25
, &word
);
1268 if (word
== 0xffff) {
1269 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R25_LOW
, 0x40);
1270 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R25_HIGH
, 0x50);
1271 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R25
, word
);
1272 EEPROM(rt2x00dev
, "BBPtune r25: 0x%04x\n", word
);
1275 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R61
, &word
);
1276 if (word
== 0xffff) {
1277 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R61_LOW
, 0x60);
1278 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R61_HIGH
, 0x6d);
1279 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R61
, word
);
1280 EEPROM(rt2x00dev
, "BBPtune r61: 0x%04x\n", word
);
1286 static int rt2500usb_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1293 * Read EEPROM word for configuration.
1295 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &eeprom
);
1298 * Identify RF chipset.
1300 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1301 rt2500usb_register_read(rt2x00dev
, MAC_CSR0
, ®
);
1302 rt2x00_set_chip(rt2x00dev
, RT2570
, value
, reg
);
1304 if (!rt2x00_check_rev(&rt2x00dev
->chip
, 0)) {
1305 ERROR(rt2x00dev
, "Invalid RT chipset detected.\n");
1309 if (!rt2x00_rf(&rt2x00dev
->chip
, RF2522
) &&
1310 !rt2x00_rf(&rt2x00dev
->chip
, RF2523
) &&
1311 !rt2x00_rf(&rt2x00dev
->chip
, RF2524
) &&
1312 !rt2x00_rf(&rt2x00dev
->chip
, RF2525
) &&
1313 !rt2x00_rf(&rt2x00dev
->chip
, RF2525E
) &&
1314 !rt2x00_rf(&rt2x00dev
->chip
, RF5222
)) {
1315 ERROR(rt2x00dev
, "Invalid RF chipset detected.\n");
1320 * Identify default antenna configuration.
1322 rt2x00dev
->default_ant
.tx
=
1323 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1324 rt2x00dev
->default_ant
.rx
=
1325 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1328 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1329 * I am not 100% sure about this, but the legacy drivers do not
1330 * indicate antenna swapping in software is required when
1331 * diversity is enabled.
1333 if (rt2x00dev
->default_ant
.tx
== ANTENNA_SW_DIVERSITY
)
1334 rt2x00dev
->default_ant
.tx
= ANTENNA_HW_DIVERSITY
;
1335 if (rt2x00dev
->default_ant
.rx
== ANTENNA_SW_DIVERSITY
)
1336 rt2x00dev
->default_ant
.rx
= ANTENNA_HW_DIVERSITY
;
1339 * Store led mode, for correct led behaviour.
1341 rt2x00dev
->led_mode
=
1342 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_LED_MODE
);
1345 * Check if the BBP tuning should be disabled.
1347 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &eeprom
);
1348 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_DYN_BBP_TUNE
))
1349 __set_bit(CONFIG_DISABLE_LINK_TUNING
, &rt2x00dev
->flags
);
1352 * Read the RSSI <-> dBm offset information.
1354 rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, &eeprom
);
1355 rt2x00dev
->rssi_offset
=
1356 rt2x00_get_field16(eeprom
, EEPROM_CALIBRATE_OFFSET_RSSI
);
1362 * RF value list for RF2522
1365 static const struct rf_channel rf_vals_bg_2522
[] = {
1366 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1367 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1368 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1369 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1370 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1371 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1372 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1373 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1374 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1375 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1376 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1377 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1378 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1379 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1383 * RF value list for RF2523
1386 static const struct rf_channel rf_vals_bg_2523
[] = {
1387 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1388 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1389 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1390 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1391 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1392 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1393 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1394 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1395 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1396 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1397 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1398 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1399 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1400 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1404 * RF value list for RF2524
1407 static const struct rf_channel rf_vals_bg_2524
[] = {
1408 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1409 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1410 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1411 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1412 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1413 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1414 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1415 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1416 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1417 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1418 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1419 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1420 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1421 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1425 * RF value list for RF2525
1428 static const struct rf_channel rf_vals_bg_2525
[] = {
1429 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1430 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1431 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1432 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1433 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1434 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1435 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1436 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1437 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1438 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1439 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1440 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1441 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1442 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1446 * RF value list for RF2525e
1449 static const struct rf_channel rf_vals_bg_2525e
[] = {
1450 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1451 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1452 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1453 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1454 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1455 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1456 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1457 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1458 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1459 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1460 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1461 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1462 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1463 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1467 * RF value list for RF5222
1468 * Supports: 2.4 GHz & 5.2 GHz
1470 static const struct rf_channel rf_vals_5222
[] = {
1471 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1472 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1473 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1474 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1475 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1476 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1477 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1478 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1479 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1480 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1481 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1482 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1483 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1484 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1486 /* 802.11 UNI / HyperLan 2 */
1487 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1488 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1489 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1490 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1491 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1492 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1493 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1494 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1496 /* 802.11 HyperLan 2 */
1497 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1498 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1499 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1500 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1501 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1502 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1503 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1504 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1505 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1506 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1509 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1510 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1511 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1512 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1513 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1516 static void rt2500usb_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
1518 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
1523 * Initialize all hw fields.
1525 rt2x00dev
->hw
->flags
=
1526 IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE
|
1527 IEEE80211_HW_RX_INCLUDES_FCS
|
1528 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
;
1529 rt2x00dev
->hw
->extra_tx_headroom
= TXD_DESC_SIZE
;
1530 rt2x00dev
->hw
->max_signal
= MAX_SIGNAL
;
1531 rt2x00dev
->hw
->max_rssi
= MAX_RX_SSI
;
1532 rt2x00dev
->hw
->queues
= 2;
1534 SET_IEEE80211_DEV(rt2x00dev
->hw
, &rt2x00dev_usb(rt2x00dev
)->dev
);
1535 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
1536 rt2x00_eeprom_addr(rt2x00dev
,
1537 EEPROM_MAC_ADDR_0
));
1540 * Convert tx_power array in eeprom.
1542 txpower
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_START
);
1543 for (i
= 0; i
< 14; i
++)
1544 txpower
[i
] = TXPOWER_FROM_DEV(txpower
[i
]);
1547 * Initialize hw_mode information.
1549 spec
->num_modes
= 2;
1550 spec
->num_rates
= 12;
1551 spec
->tx_power_a
= NULL
;
1552 spec
->tx_power_bg
= txpower
;
1553 spec
->tx_power_default
= DEFAULT_TXPOWER
;
1555 if (rt2x00_rf(&rt2x00dev
->chip
, RF2522
)) {
1556 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2522
);
1557 spec
->channels
= rf_vals_bg_2522
;
1558 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF2523
)) {
1559 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2523
);
1560 spec
->channels
= rf_vals_bg_2523
;
1561 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF2524
)) {
1562 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2524
);
1563 spec
->channels
= rf_vals_bg_2524
;
1564 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF2525
)) {
1565 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525
);
1566 spec
->channels
= rf_vals_bg_2525
;
1567 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF2525E
)) {
1568 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525e
);
1569 spec
->channels
= rf_vals_bg_2525e
;
1570 } else if (rt2x00_rf(&rt2x00dev
->chip
, RF5222
)) {
1571 spec
->num_channels
= ARRAY_SIZE(rf_vals_5222
);
1572 spec
->channels
= rf_vals_5222
;
1573 spec
->num_modes
= 3;
1577 static int rt2500usb_probe_hw(struct rt2x00_dev
*rt2x00dev
)
1582 * Allocate eeprom data.
1584 retval
= rt2500usb_validate_eeprom(rt2x00dev
);
1588 retval
= rt2500usb_init_eeprom(rt2x00dev
);
1593 * Initialize hw specifications.
1595 rt2500usb_probe_hw_mode(rt2x00dev
);
1598 * This device requires the beacon ring
1600 __set_bit(DRIVER_REQUIRE_BEACON_RING
, &rt2x00dev
->flags
);
1603 * Set the rssi offset.
1605 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
1611 * IEEE80211 stack callback functions.
1613 static void rt2500usb_configure_filter(struct ieee80211_hw
*hw
,
1614 unsigned int changed_flags
,
1615 unsigned int *total_flags
,
1617 struct dev_addr_list
*mc_list
)
1619 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1623 * Mask off any flags we are going to ignore from
1624 * the total_flags field.
1635 * Apply some rules to the filters:
1636 * - Some filters imply different filters to be set.
1637 * - Some things we can't filter out at all.
1640 *total_flags
|= FIF_ALLMULTI
;
1641 if (*total_flags
& FIF_OTHER_BSS
||
1642 *total_flags
& FIF_PROMISC_IN_BSS
)
1643 *total_flags
|= FIF_PROMISC_IN_BSS
| FIF_OTHER_BSS
;
1646 * Check if there is any work left for us.
1648 if (rt2x00dev
->packet_filter
== *total_flags
)
1650 rt2x00dev
->packet_filter
= *total_flags
;
1653 * When in atomic context, reschedule and let rt2x00lib
1654 * call this function again.
1657 queue_work(rt2x00dev
->hw
->workqueue
, &rt2x00dev
->filter_work
);
1662 * Start configuration steps.
1663 * Note that the version error will always be dropped
1664 * and broadcast frames will always be accepted since
1665 * there is no filter for it at this time.
1667 rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
1668 rt2x00_set_field16(®
, TXRX_CSR2_DROP_CRC
,
1669 !(*total_flags
& FIF_FCSFAIL
));
1670 rt2x00_set_field16(®
, TXRX_CSR2_DROP_PHYSICAL
,
1671 !(*total_flags
& FIF_PLCPFAIL
));
1672 rt2x00_set_field16(®
, TXRX_CSR2_DROP_CONTROL
,
1673 !(*total_flags
& FIF_CONTROL
));
1674 rt2x00_set_field16(®
, TXRX_CSR2_DROP_NOT_TO_ME
,
1675 !(*total_flags
& FIF_PROMISC_IN_BSS
));
1676 rt2x00_set_field16(®
, TXRX_CSR2_DROP_TODS
,
1677 !(*total_flags
& FIF_PROMISC_IN_BSS
));
1678 rt2x00_set_field16(®
, TXRX_CSR2_DROP_VERSION_ERROR
, 1);
1679 rt2x00_set_field16(®
, TXRX_CSR2_DROP_MULTICAST
,
1680 !(*total_flags
& FIF_ALLMULTI
));
1681 rt2x00_set_field16(®
, TXRX_CSR2_DROP_BROADCAST
, 0);
1682 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
1685 static int rt2500usb_beacon_update(struct ieee80211_hw
*hw
,
1686 struct sk_buff
*skb
,
1687 struct ieee80211_tx_control
*control
)
1689 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1690 struct usb_device
*usb_dev
=
1691 interface_to_usbdev(rt2x00dev_usb(rt2x00dev
));
1692 struct skb_desc
*desc
;
1693 struct data_ring
*ring
;
1694 struct data_entry
*beacon
;
1695 struct data_entry
*guardian
;
1696 int pipe
= usb_sndbulkpipe(usb_dev
, 1);
1700 * Just in case the ieee80211 doesn't set this,
1701 * but we need this queue set for the descriptor
1704 control
->queue
= IEEE80211_TX_QUEUE_BEACON
;
1705 ring
= rt2x00lib_get_ring(rt2x00dev
, control
->queue
);
1708 * Obtain 2 entries, one for the guardian byte,
1709 * the second for the actual beacon.
1711 guardian
= rt2x00_get_data_entry(ring
);
1712 rt2x00_ring_index_inc(ring
);
1713 beacon
= rt2x00_get_data_entry(ring
);
1716 * Add the descriptor in front of the skb.
1718 skb_push(skb
, ring
->desc_size
);
1719 memset(skb
->data
, 0, ring
->desc_size
);
1722 * Fill in skb descriptor
1724 desc
= get_skb_desc(skb
);
1725 desc
->desc_len
= ring
->desc_size
;
1726 desc
->data_len
= skb
->len
- ring
->desc_size
;
1727 desc
->desc
= skb
->data
;
1728 desc
->data
= skb
->data
+ ring
->desc_size
;
1730 desc
->entry
= beacon
;
1732 rt2x00lib_write_tx_desc(rt2x00dev
, skb
, control
);
1735 * USB devices cannot blindly pass the skb->len as the
1736 * length of the data to usb_fill_bulk_urb. Pass the skb
1737 * to the driver to determine what the length should be.
1739 length
= rt2500usb_get_tx_data_len(rt2x00dev
, skb
);
1741 usb_fill_bulk_urb(beacon
->priv
, usb_dev
, pipe
,
1742 skb
->data
, length
, rt2500usb_beacondone
, beacon
);
1745 * Second we need to create the guardian byte.
1746 * We only need a single byte, so lets recycle
1747 * the 'flags' field we are not using for beacons.
1749 guardian
->flags
= 0;
1750 usb_fill_bulk_urb(guardian
->priv
, usb_dev
, pipe
,
1751 &guardian
->flags
, 1, rt2500usb_beacondone
, guardian
);
1754 * Send out the guardian byte.
1756 usb_submit_urb(guardian
->priv
, GFP_ATOMIC
);
1759 * Enable beacon generation.
1761 rt2500usb_kick_tx_queue(rt2x00dev
, IEEE80211_TX_QUEUE_BEACON
);
1766 static const struct ieee80211_ops rt2500usb_mac80211_ops
= {
1768 .start
= rt2x00mac_start
,
1769 .stop
= rt2x00mac_stop
,
1770 .add_interface
= rt2x00mac_add_interface
,
1771 .remove_interface
= rt2x00mac_remove_interface
,
1772 .config
= rt2x00mac_config
,
1773 .config_interface
= rt2x00mac_config_interface
,
1774 .configure_filter
= rt2500usb_configure_filter
,
1775 .get_stats
= rt2x00mac_get_stats
,
1776 .bss_info_changed
= rt2x00mac_bss_info_changed
,
1777 .conf_tx
= rt2x00mac_conf_tx
,
1778 .get_tx_stats
= rt2x00mac_get_tx_stats
,
1779 .beacon_update
= rt2500usb_beacon_update
,
1782 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops
= {
1783 .probe_hw
= rt2500usb_probe_hw
,
1784 .initialize
= rt2x00usb_initialize
,
1785 .uninitialize
= rt2x00usb_uninitialize
,
1786 .init_rxentry
= rt2x00usb_init_rxentry
,
1787 .init_txentry
= rt2x00usb_init_txentry
,
1788 .set_device_state
= rt2500usb_set_device_state
,
1789 .link_stats
= rt2500usb_link_stats
,
1790 .reset_tuner
= rt2500usb_reset_tuner
,
1791 .link_tuner
= rt2500usb_link_tuner
,
1792 .write_tx_desc
= rt2500usb_write_tx_desc
,
1793 .write_tx_data
= rt2x00usb_write_tx_data
,
1794 .get_tx_data_len
= rt2500usb_get_tx_data_len
,
1795 .kick_tx_queue
= rt2500usb_kick_tx_queue
,
1796 .fill_rxdone
= rt2500usb_fill_rxdone
,
1797 .config_mac_addr
= rt2500usb_config_mac_addr
,
1798 .config_bssid
= rt2500usb_config_bssid
,
1799 .config_type
= rt2500usb_config_type
,
1800 .config_preamble
= rt2500usb_config_preamble
,
1801 .config
= rt2500usb_config
,
1804 static const struct rt2x00_ops rt2500usb_ops
= {
1805 .name
= KBUILD_MODNAME
,
1806 .rxd_size
= RXD_DESC_SIZE
,
1807 .txd_size
= TXD_DESC_SIZE
,
1808 .eeprom_size
= EEPROM_SIZE
,
1810 .lib
= &rt2500usb_rt2x00_ops
,
1811 .hw
= &rt2500usb_mac80211_ops
,
1812 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1813 .debugfs
= &rt2500usb_rt2x00debug
,
1814 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1818 * rt2500usb module information.
1820 static struct usb_device_id rt2500usb_device_table
[] = {
1822 { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops
) },
1823 { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops
) },
1825 { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops
) },
1826 { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops
) },
1827 { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops
) },
1829 { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops
) },
1830 { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops
) },
1831 { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops
) },
1833 { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops
) },
1835 { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops
) },
1837 { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops
) },
1838 { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops
) },
1840 { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops
) },
1842 { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops
) },
1843 { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops
) },
1844 { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops
) },
1845 { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops
) },
1848 { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops
) },
1849 { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops
) },
1850 { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops
) },
1852 { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops
) },
1853 { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops
) },
1854 { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops
) },
1855 { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops
) },
1857 { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops
) },
1859 { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops
) },
1861 { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops
) },
1863 { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops
) },
1865 { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops
) },
1869 MODULE_AUTHOR(DRV_PROJECT
);
1870 MODULE_VERSION(DRV_VERSION
);
1871 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1872 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1873 MODULE_DEVICE_TABLE(usb
, rt2500usb_device_table
);
1874 MODULE_LICENSE("GPL");
1876 static struct usb_driver rt2500usb_driver
= {
1877 .name
= KBUILD_MODNAME
,
1878 .id_table
= rt2500usb_device_table
,
1879 .probe
= rt2x00usb_probe
,
1880 .disconnect
= rt2x00usb_disconnect
,
1881 .suspend
= rt2x00usb_suspend
,
1882 .resume
= rt2x00usb_resume
,
1885 static int __init
rt2500usb_init(void)
1887 return usb_register(&rt2500usb_driver
);
1890 static void __exit
rt2500usb_exit(void)
1892 usb_deregister(&rt2500usb_driver
);
1895 module_init(rt2500usb_init
);
1896 module_exit(rt2500usb_exit
);