2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
37 #include <asm/pgtable.h>
38 #include <asm/uaccess.h>
39 #include <asm/system.h>
41 #include <asm/processor.h>
44 #include <asm/machdep.h>
46 #include <asm/syscalls.h>
48 #include <asm/firmware.h>
51 extern unsigned long _get_SP(void);
54 struct task_struct
*last_task_used_math
= NULL
;
55 struct task_struct
*last_task_used_altivec
= NULL
;
56 struct task_struct
*last_task_used_spe
= NULL
;
60 * Make sure the floating-point register state in the
61 * the thread_struct is up to date for task tsk.
63 void flush_fp_to_thread(struct task_struct
*tsk
)
65 if (tsk
->thread
.regs
) {
67 * We need to disable preemption here because if we didn't,
68 * another process could get scheduled after the regs->msr
69 * test but before we have finished saving the FP registers
70 * to the thread_struct. That process could take over the
71 * FPU, and then when we get scheduled again we would store
72 * bogus values for the remaining FP registers.
75 if (tsk
->thread
.regs
->msr
& MSR_FP
) {
78 * This should only ever be called for current or
79 * for a stopped child process. Since we save away
80 * the FP register state on context switch on SMP,
81 * there is something wrong if a stopped child appears
82 * to still have its FP state in the CPU registers.
84 BUG_ON(tsk
!= current
);
92 void enable_kernel_fp(void)
94 WARN_ON(preemptible());
97 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_FP
))
100 giveup_fpu(NULL
); /* just enables FP for kernel */
102 giveup_fpu(last_task_used_math
);
103 #endif /* CONFIG_SMP */
105 EXPORT_SYMBOL(enable_kernel_fp
);
107 int dump_task_fpu(struct task_struct
*tsk
, elf_fpregset_t
*fpregs
)
109 if (!tsk
->thread
.regs
)
111 flush_fp_to_thread(current
);
113 memcpy(fpregs
, &tsk
->thread
.fpr
[0], sizeof(*fpregs
));
118 #ifdef CONFIG_ALTIVEC
119 void enable_kernel_altivec(void)
121 WARN_ON(preemptible());
124 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VEC
))
125 giveup_altivec(current
);
127 giveup_altivec(NULL
); /* just enable AltiVec for kernel - force */
129 giveup_altivec(last_task_used_altivec
);
130 #endif /* CONFIG_SMP */
132 EXPORT_SYMBOL(enable_kernel_altivec
);
135 * Make sure the VMX/Altivec register state in the
136 * the thread_struct is up to date for task tsk.
138 void flush_altivec_to_thread(struct task_struct
*tsk
)
140 if (tsk
->thread
.regs
) {
142 if (tsk
->thread
.regs
->msr
& MSR_VEC
) {
144 BUG_ON(tsk
!= current
);
152 int dump_task_altivec(struct task_struct
*tsk
, elf_vrregset_t
*vrregs
)
154 /* ELF_NVRREG includes the VSCR and VRSAVE which we need to save
155 * separately, see below */
156 const int nregs
= ELF_NVRREG
- 2;
161 flush_altivec_to_thread(tsk
);
163 reg
= (elf_vrreg_t
*)vrregs
;
165 /* copy the 32 vr registers */
166 memcpy(reg
, &tsk
->thread
.vr
[0], nregs
* sizeof(*reg
));
170 memcpy(reg
, &tsk
->thread
.vscr
, sizeof(*reg
));
173 /* vrsave is stored in the high 32bit slot of the final 128bits */
174 memset(reg
, 0, sizeof(*reg
));
176 *dest
= tsk
->thread
.vrsave
;
180 #endif /* CONFIG_ALTIVEC */
184 void enable_kernel_spe(void)
186 WARN_ON(preemptible());
189 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_SPE
))
192 giveup_spe(NULL
); /* just enable SPE for kernel - force */
194 giveup_spe(last_task_used_spe
);
195 #endif /* __SMP __ */
197 EXPORT_SYMBOL(enable_kernel_spe
);
199 void flush_spe_to_thread(struct task_struct
*tsk
)
201 if (tsk
->thread
.regs
) {
203 if (tsk
->thread
.regs
->msr
& MSR_SPE
) {
205 BUG_ON(tsk
!= current
);
213 int dump_spe(struct pt_regs
*regs
, elf_vrregset_t
*evrregs
)
215 flush_spe_to_thread(current
);
216 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
217 memcpy(evrregs
, ¤t
->thread
.evr
[0], sizeof(u32
) * 35);
220 #endif /* CONFIG_SPE */
224 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
225 * and the current task has some state, discard it.
227 void discard_lazy_cpu_state(void)
230 if (last_task_used_math
== current
)
231 last_task_used_math
= NULL
;
232 #ifdef CONFIG_ALTIVEC
233 if (last_task_used_altivec
== current
)
234 last_task_used_altivec
= NULL
;
235 #endif /* CONFIG_ALTIVEC */
237 if (last_task_used_spe
== current
)
238 last_task_used_spe
= NULL
;
242 #endif /* CONFIG_SMP */
244 int set_dabr(unsigned long dabr
)
246 #ifdef CONFIG_PPC_MERGE /* XXX for now */
248 return ppc_md
.set_dabr(dabr
);
251 /* XXX should we have a CPU_FTR_HAS_DABR ? */
252 #if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
253 mtspr(SPRN_DABR
, dabr
);
259 DEFINE_PER_CPU(struct cpu_usage
, cpu_usage_array
);
262 static DEFINE_PER_CPU(unsigned long, current_dabr
);
264 struct task_struct
*__switch_to(struct task_struct
*prev
,
265 struct task_struct
*new)
267 struct thread_struct
*new_thread
, *old_thread
;
269 struct task_struct
*last
;
272 /* avoid complexity of lazy save/restore of fpu
273 * by just saving it every time we switch out if
274 * this task used the fpu during the last quantum.
276 * If it tries to use the fpu again, it'll trap and
277 * reload its fp regs. So we don't have to do a restore
278 * every switch, just a save.
281 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_FP
))
283 #ifdef CONFIG_ALTIVEC
285 * If the previous thread used altivec in the last quantum
286 * (thus changing altivec regs) then save them.
287 * We used to check the VRSAVE register but not all apps
288 * set it, so we don't rely on it now (and in fact we need
289 * to save & restore VSCR even if VRSAVE == 0). -- paulus
291 * On SMP we always save/restore altivec regs just to avoid the
292 * complexity of changing processors.
295 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_VEC
))
296 giveup_altivec(prev
);
297 #endif /* CONFIG_ALTIVEC */
300 * If the previous thread used spe in the last quantum
301 * (thus changing spe regs) then save them.
303 * On SMP we always save/restore spe regs just to avoid the
304 * complexity of changing processors.
306 if ((prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_SPE
)))
308 #endif /* CONFIG_SPE */
310 #else /* CONFIG_SMP */
311 #ifdef CONFIG_ALTIVEC
312 /* Avoid the trap. On smp this this never happens since
313 * we don't set last_task_used_altivec -- Cort
315 if (new->thread
.regs
&& last_task_used_altivec
== new)
316 new->thread
.regs
->msr
|= MSR_VEC
;
317 #endif /* CONFIG_ALTIVEC */
319 /* Avoid the trap. On smp this this never happens since
320 * we don't set last_task_used_spe
322 if (new->thread
.regs
&& last_task_used_spe
== new)
323 new->thread
.regs
->msr
|= MSR_SPE
;
324 #endif /* CONFIG_SPE */
326 #endif /* CONFIG_SMP */
328 if (unlikely(__get_cpu_var(current_dabr
) != new->thread
.dabr
)) {
329 set_dabr(new->thread
.dabr
);
330 __get_cpu_var(current_dabr
) = new->thread
.dabr
;
333 new_thread
= &new->thread
;
334 old_thread
= ¤t
->thread
;
338 * Collect processor utilization data per process
340 if (firmware_has_feature(FW_FEATURE_SPLPAR
)) {
341 struct cpu_usage
*cu
= &__get_cpu_var(cpu_usage_array
);
342 long unsigned start_tb
, current_tb
;
343 start_tb
= old_thread
->start_tb
;
344 cu
->current_tb
= current_tb
= mfspr(SPRN_PURR
);
345 old_thread
->accum_tb
+= (current_tb
- start_tb
);
346 new_thread
->start_tb
= current_tb
;
350 local_irq_save(flags
);
352 account_system_vtime(current
);
353 account_process_vtime(current
);
354 calculate_steal_time();
356 last
= _switch(old_thread
, new_thread
);
358 local_irq_restore(flags
);
363 static int instructions_to_print
= 16;
365 static void show_instructions(struct pt_regs
*regs
)
368 unsigned long pc
= regs
->nip
- (instructions_to_print
* 3 / 4 *
371 printk("Instruction dump:");
373 for (i
= 0; i
< instructions_to_print
; i
++) {
379 #if !defined(CONFIG_BOOKE)
380 /* If executing with the IMMU off, adjust pc rather
381 * than print XXXXXXXX.
383 if (!(regs
->msr
& MSR_IR
))
384 pc
= (unsigned long)phys_to_virt(pc
);
387 /* We use __get_user here *only* to avoid an OOPS on a
388 * bad address because the pc *should* only be a
391 if (!__kernel_text_address(pc
) ||
392 __get_user(instr
, (unsigned int __user
*)pc
)) {
396 printk("<%08x> ", instr
);
398 printk("%08x ", instr
);
407 static struct regbit
{
420 static void printbits(unsigned long val
, struct regbit
*bits
)
422 const char *sep
= "";
425 for (; bits
->bit
; ++bits
)
426 if (val
& bits
->bit
) {
427 printk("%s%s", sep
, bits
->name
);
435 #define REGS_PER_LINE 4
436 #define LAST_VOLATILE 13
439 #define REGS_PER_LINE 8
440 #define LAST_VOLATILE 12
443 void show_regs(struct pt_regs
* regs
)
447 printk("NIP: "REG
" LR: "REG
" CTR: "REG
"\n",
448 regs
->nip
, regs
->link
, regs
->ctr
);
449 printk("REGS: %p TRAP: %04lx %s (%s)\n",
450 regs
, regs
->trap
, print_tainted(), init_utsname()->release
);
451 printk("MSR: "REG
" ", regs
->msr
);
452 printbits(regs
->msr
, msr_bits
);
453 printk(" CR: %08lx XER: %08lx\n", regs
->ccr
, regs
->xer
);
455 if (trap
== 0x300 || trap
== 0x600)
456 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
457 printk("DEAR: "REG
", ESR: "REG
"\n", regs
->dar
, regs
->dsisr
);
459 printk("DAR: "REG
", DSISR: "REG
"\n", regs
->dar
, regs
->dsisr
);
461 printk("TASK = %p[%d] '%s' THREAD: %p",
462 current
, task_pid_nr(current
), current
->comm
, task_thread_info(current
));
465 printk(" CPU: %d", smp_processor_id());
466 #endif /* CONFIG_SMP */
468 for (i
= 0; i
< 32; i
++) {
469 if ((i
% REGS_PER_LINE
) == 0)
470 printk("\n" KERN_INFO
"GPR%02d: ", i
);
471 printk(REG
" ", regs
->gpr
[i
]);
472 if (i
== LAST_VOLATILE
&& !FULL_REGS(regs
))
476 #ifdef CONFIG_KALLSYMS
478 * Lookup NIP late so we have the best change of getting the
479 * above info out without failing
481 printk("NIP ["REG
"] ", regs
->nip
);
482 print_symbol("%s\n", regs
->nip
);
483 printk("LR ["REG
"] ", regs
->link
);
484 print_symbol("%s\n", regs
->link
);
486 show_stack(current
, (unsigned long *) regs
->gpr
[1]);
487 if (!user_mode(regs
))
488 show_instructions(regs
);
491 void exit_thread(void)
493 discard_lazy_cpu_state();
496 void flush_thread(void)
499 struct thread_info
*t
= current_thread_info();
501 if (test_ti_thread_flag(t
, TIF_ABI_PENDING
)) {
502 clear_ti_thread_flag(t
, TIF_ABI_PENDING
);
503 if (test_ti_thread_flag(t
, TIF_32BIT
))
504 clear_ti_thread_flag(t
, TIF_32BIT
);
506 set_ti_thread_flag(t
, TIF_32BIT
);
510 discard_lazy_cpu_state();
512 if (current
->thread
.dabr
) {
513 current
->thread
.dabr
= 0;
519 release_thread(struct task_struct
*t
)
524 * This gets called before we allocate a new thread and copy
525 * the current task into it.
527 void prepare_to_copy(struct task_struct
*tsk
)
529 flush_fp_to_thread(current
);
530 flush_altivec_to_thread(current
);
531 flush_spe_to_thread(current
);
537 int copy_thread(int nr
, unsigned long clone_flags
, unsigned long usp
,
538 unsigned long unused
, struct task_struct
*p
,
539 struct pt_regs
*regs
)
541 struct pt_regs
*childregs
, *kregs
;
542 extern void ret_from_fork(void);
543 unsigned long sp
= (unsigned long)task_stack_page(p
) + THREAD_SIZE
;
545 CHECK_FULL_REGS(regs
);
547 sp
-= sizeof(struct pt_regs
);
548 childregs
= (struct pt_regs
*) sp
;
550 if ((childregs
->msr
& MSR_PR
) == 0) {
551 /* for kernel thread, set `current' and stackptr in new task */
552 childregs
->gpr
[1] = sp
+ sizeof(struct pt_regs
);
554 childregs
->gpr
[2] = (unsigned long) p
;
556 clear_tsk_thread_flag(p
, TIF_32BIT
);
558 p
->thread
.regs
= NULL
; /* no user register state */
560 childregs
->gpr
[1] = usp
;
561 p
->thread
.regs
= childregs
;
562 if (clone_flags
& CLONE_SETTLS
) {
564 if (!test_thread_flag(TIF_32BIT
))
565 childregs
->gpr
[13] = childregs
->gpr
[6];
568 childregs
->gpr
[2] = childregs
->gpr
[6];
571 childregs
->gpr
[3] = 0; /* Result from fork() */
572 sp
-= STACK_FRAME_OVERHEAD
;
575 * The way this works is that at some point in the future
576 * some task will call _switch to switch to the new task.
577 * That will pop off the stack frame created below and start
578 * the new task running at ret_from_fork. The new task will
579 * do some house keeping and then return from the fork or clone
580 * system call, using the stack frame created above.
582 sp
-= sizeof(struct pt_regs
);
583 kregs
= (struct pt_regs
*) sp
;
584 sp
-= STACK_FRAME_OVERHEAD
;
588 if (cpu_has_feature(CPU_FTR_SLB
)) {
589 unsigned long sp_vsid
;
590 unsigned long llp
= mmu_psize_defs
[mmu_linear_psize
].sllp
;
592 if (cpu_has_feature(CPU_FTR_1T_SEGMENT
))
593 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_1T
)
594 << SLB_VSID_SHIFT_1T
;
596 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_256M
)
598 sp_vsid
|= SLB_VSID_KERNEL
| llp
;
599 p
->thread
.ksp_vsid
= sp_vsid
;
603 * The PPC64 ABI makes use of a TOC to contain function
604 * pointers. The function (ret_from_except) is actually a pointer
605 * to the TOC entry. The first entry is a pointer to the actual
608 kregs
->nip
= *((unsigned long *)ret_from_fork
);
610 kregs
->nip
= (unsigned long)ret_from_fork
;
617 * Set up a thread for executing a new program
619 void start_thread(struct pt_regs
*regs
, unsigned long start
, unsigned long sp
)
622 unsigned long load_addr
= regs
->gpr
[2]; /* saved by ELF_PLAT_INIT */
628 * If we exec out of a kernel thread then thread.regs will not be
631 if (!current
->thread
.regs
) {
632 struct pt_regs
*regs
= task_stack_page(current
) + THREAD_SIZE
;
633 current
->thread
.regs
= regs
- 1;
636 memset(regs
->gpr
, 0, sizeof(regs
->gpr
));
644 * We have just cleared all the nonvolatile GPRs, so make
645 * FULL_REGS(regs) return true. This is necessary to allow
646 * ptrace to examine the thread immediately after exec.
653 regs
->msr
= MSR_USER
;
655 if (!test_thread_flag(TIF_32BIT
)) {
656 unsigned long entry
, toc
;
658 /* start is a relocated pointer to the function descriptor for
659 * the elf _start routine. The first entry in the function
660 * descriptor is the entry address of _start and the second
661 * entry is the TOC value we need to use.
663 __get_user(entry
, (unsigned long __user
*)start
);
664 __get_user(toc
, (unsigned long __user
*)start
+1);
666 /* Check whether the e_entry function descriptor entries
667 * need to be relocated before we can use them.
669 if (load_addr
!= 0) {
675 regs
->msr
= MSR_USER64
;
679 regs
->msr
= MSR_USER32
;
683 discard_lazy_cpu_state();
684 memset(current
->thread
.fpr
, 0, sizeof(current
->thread
.fpr
));
685 current
->thread
.fpscr
.val
= 0;
686 #ifdef CONFIG_ALTIVEC
687 memset(current
->thread
.vr
, 0, sizeof(current
->thread
.vr
));
688 memset(¤t
->thread
.vscr
, 0, sizeof(current
->thread
.vscr
));
689 current
->thread
.vscr
.u
[3] = 0x00010000; /* Java mode disabled */
690 current
->thread
.vrsave
= 0;
691 current
->thread
.used_vr
= 0;
692 #endif /* CONFIG_ALTIVEC */
694 memset(current
->thread
.evr
, 0, sizeof(current
->thread
.evr
));
695 current
->thread
.acc
= 0;
696 current
->thread
.spefscr
= 0;
697 current
->thread
.used_spe
= 0;
698 #endif /* CONFIG_SPE */
701 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
702 | PR_FP_EXC_RES | PR_FP_EXC_INV)
704 int set_fpexc_mode(struct task_struct
*tsk
, unsigned int val
)
706 struct pt_regs
*regs
= tsk
->thread
.regs
;
708 /* This is a bit hairy. If we are an SPE enabled processor
709 * (have embedded fp) we store the IEEE exception enable flags in
710 * fpexc_mode. fpexc_mode is also used for setting FP exception
711 * mode (asyn, precise, disabled) for 'Classic' FP. */
712 if (val
& PR_FP_EXC_SW_ENABLE
) {
714 if (cpu_has_feature(CPU_FTR_SPE
)) {
715 tsk
->thread
.fpexc_mode
= val
&
716 (PR_FP_EXC_SW_ENABLE
| PR_FP_ALL_EXCEPT
);
726 /* on a CONFIG_SPE this does not hurt us. The bits that
727 * __pack_fe01 use do not overlap with bits used for
728 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
729 * on CONFIG_SPE implementations are reserved so writing to
730 * them does not change anything */
731 if (val
> PR_FP_EXC_PRECISE
)
733 tsk
->thread
.fpexc_mode
= __pack_fe01(val
);
734 if (regs
!= NULL
&& (regs
->msr
& MSR_FP
) != 0)
735 regs
->msr
= (regs
->msr
& ~(MSR_FE0
|MSR_FE1
))
736 | tsk
->thread
.fpexc_mode
;
740 int get_fpexc_mode(struct task_struct
*tsk
, unsigned long adr
)
744 if (tsk
->thread
.fpexc_mode
& PR_FP_EXC_SW_ENABLE
)
746 if (cpu_has_feature(CPU_FTR_SPE
))
747 val
= tsk
->thread
.fpexc_mode
;
754 val
= __unpack_fe01(tsk
->thread
.fpexc_mode
);
755 return put_user(val
, (unsigned int __user
*) adr
);
758 int set_endian(struct task_struct
*tsk
, unsigned int val
)
760 struct pt_regs
*regs
= tsk
->thread
.regs
;
762 if ((val
== PR_ENDIAN_LITTLE
&& !cpu_has_feature(CPU_FTR_REAL_LE
)) ||
763 (val
== PR_ENDIAN_PPC_LITTLE
&& !cpu_has_feature(CPU_FTR_PPC_LE
)))
769 if (val
== PR_ENDIAN_BIG
)
770 regs
->msr
&= ~MSR_LE
;
771 else if (val
== PR_ENDIAN_LITTLE
|| val
== PR_ENDIAN_PPC_LITTLE
)
779 int get_endian(struct task_struct
*tsk
, unsigned long adr
)
781 struct pt_regs
*regs
= tsk
->thread
.regs
;
784 if (!cpu_has_feature(CPU_FTR_PPC_LE
) &&
785 !cpu_has_feature(CPU_FTR_REAL_LE
))
791 if (regs
->msr
& MSR_LE
) {
792 if (cpu_has_feature(CPU_FTR_REAL_LE
))
793 val
= PR_ENDIAN_LITTLE
;
795 val
= PR_ENDIAN_PPC_LITTLE
;
799 return put_user(val
, (unsigned int __user
*)adr
);
802 int set_unalign_ctl(struct task_struct
*tsk
, unsigned int val
)
804 tsk
->thread
.align_ctl
= val
;
808 int get_unalign_ctl(struct task_struct
*tsk
, unsigned long adr
)
810 return put_user(tsk
->thread
.align_ctl
, (unsigned int __user
*)adr
);
813 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
815 int sys_clone(unsigned long clone_flags
, unsigned long usp
,
816 int __user
*parent_tidp
, void __user
*child_threadptr
,
817 int __user
*child_tidp
, int p6
,
818 struct pt_regs
*regs
)
820 CHECK_FULL_REGS(regs
);
822 usp
= regs
->gpr
[1]; /* stack pointer for child */
824 if (test_thread_flag(TIF_32BIT
)) {
825 parent_tidp
= TRUNC_PTR(parent_tidp
);
826 child_tidp
= TRUNC_PTR(child_tidp
);
829 return do_fork(clone_flags
, usp
, regs
, 0, parent_tidp
, child_tidp
);
832 int sys_fork(unsigned long p1
, unsigned long p2
, unsigned long p3
,
833 unsigned long p4
, unsigned long p5
, unsigned long p6
,
834 struct pt_regs
*regs
)
836 CHECK_FULL_REGS(regs
);
837 return do_fork(SIGCHLD
, regs
->gpr
[1], regs
, 0, NULL
, NULL
);
840 int sys_vfork(unsigned long p1
, unsigned long p2
, unsigned long p3
,
841 unsigned long p4
, unsigned long p5
, unsigned long p6
,
842 struct pt_regs
*regs
)
844 CHECK_FULL_REGS(regs
);
845 return do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, regs
->gpr
[1],
846 regs
, 0, NULL
, NULL
);
849 int sys_execve(unsigned long a0
, unsigned long a1
, unsigned long a2
,
850 unsigned long a3
, unsigned long a4
, unsigned long a5
,
851 struct pt_regs
*regs
)
856 filename
= getname((char __user
*) a0
);
857 error
= PTR_ERR(filename
);
858 if (IS_ERR(filename
))
860 flush_fp_to_thread(current
);
861 flush_altivec_to_thread(current
);
862 flush_spe_to_thread(current
);
863 error
= do_execve(filename
, (char __user
* __user
*) a1
,
864 (char __user
* __user
*) a2
, regs
);
867 current
->ptrace
&= ~PT_DTRACE
;
868 task_unlock(current
);
875 #ifdef CONFIG_IRQSTACKS
876 static inline int valid_irq_stack(unsigned long sp
, struct task_struct
*p
,
877 unsigned long nbytes
)
879 unsigned long stack_page
;
880 unsigned long cpu
= task_cpu(p
);
883 * Avoid crashing if the stack has overflowed and corrupted
884 * task_cpu(p), which is in the thread_info struct.
886 if (cpu
< NR_CPUS
&& cpu_possible(cpu
)) {
887 stack_page
= (unsigned long) hardirq_ctx
[cpu
];
888 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
889 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
892 stack_page
= (unsigned long) softirq_ctx
[cpu
];
893 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
894 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
901 #define valid_irq_stack(sp, p, nb) 0
902 #endif /* CONFIG_IRQSTACKS */
904 int validate_sp(unsigned long sp
, struct task_struct
*p
,
905 unsigned long nbytes
)
907 unsigned long stack_page
= (unsigned long)task_stack_page(p
);
909 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
910 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
913 return valid_irq_stack(sp
, p
, nbytes
);
917 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */
918 #define FRAME_LR_SAVE 2
919 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
920 #define REGS_MARKER 0x7265677368657265ul
921 #define FRAME_MARKER 12
923 #define MIN_STACK_FRAME 16
924 #define FRAME_LR_SAVE 1
925 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
926 #define REGS_MARKER 0x72656773ul
927 #define FRAME_MARKER 2
930 EXPORT_SYMBOL(validate_sp
);
932 unsigned long get_wchan(struct task_struct
*p
)
934 unsigned long ip
, sp
;
937 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
941 if (!validate_sp(sp
, p
, MIN_STACK_FRAME
))
945 sp
= *(unsigned long *)sp
;
946 if (!validate_sp(sp
, p
, MIN_STACK_FRAME
))
949 ip
= ((unsigned long *)sp
)[FRAME_LR_SAVE
];
950 if (!in_sched_functions(ip
))
953 } while (count
++ < 16);
957 static int kstack_depth_to_print
= 64;
959 void show_stack(struct task_struct
*tsk
, unsigned long *stack
)
961 unsigned long sp
, ip
, lr
, newsp
;
965 sp
= (unsigned long) stack
;
970 asm("mr %0,1" : "=r" (sp
));
972 sp
= tsk
->thread
.ksp
;
976 printk("Call Trace:\n");
978 if (!validate_sp(sp
, tsk
, MIN_STACK_FRAME
))
981 stack
= (unsigned long *) sp
;
983 ip
= stack
[FRAME_LR_SAVE
];
984 if (!firstframe
|| ip
!= lr
) {
985 printk("["REG
"] ["REG
"] ", sp
, ip
);
986 print_symbol("%s", ip
);
988 printk(" (unreliable)");
994 * See if this is an exception frame.
995 * We look for the "regshere" marker in the current frame.
997 if (validate_sp(sp
, tsk
, INT_FRAME_SIZE
)
998 && stack
[FRAME_MARKER
] == REGS_MARKER
) {
999 struct pt_regs
*regs
= (struct pt_regs
*)
1000 (sp
+ STACK_FRAME_OVERHEAD
);
1001 printk("--- Exception: %lx", regs
->trap
);
1002 print_symbol(" at %s\n", regs
->nip
);
1004 print_symbol(" LR = %s\n", lr
);
1009 } while (count
++ < kstack_depth_to_print
);
1012 void dump_stack(void)
1014 show_stack(current
, NULL
);
1016 EXPORT_SYMBOL(dump_stack
);
1019 void ppc64_runlatch_on(void)
1023 if (cpu_has_feature(CPU_FTR_CTRL
) && !test_thread_flag(TIF_RUNLATCH
)) {
1026 ctrl
= mfspr(SPRN_CTRLF
);
1027 ctrl
|= CTRL_RUNLATCH
;
1028 mtspr(SPRN_CTRLT
, ctrl
);
1030 set_thread_flag(TIF_RUNLATCH
);
1034 void ppc64_runlatch_off(void)
1038 if (cpu_has_feature(CPU_FTR_CTRL
) && test_thread_flag(TIF_RUNLATCH
)) {
1041 clear_thread_flag(TIF_RUNLATCH
);
1043 ctrl
= mfspr(SPRN_CTRLF
);
1044 ctrl
&= ~CTRL_RUNLATCH
;
1045 mtspr(SPRN_CTRLT
, ctrl
);