generic: add __FINITDATA
[wrt350n-kernel.git] / kernel / sched_debug.c
blob4b5e24cf2f4a98387c849d8461b85a8a9c79aa55
1 /*
2 * kernel/time/sched_debug.c
4 * Print the CFS rbtree
6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/proc_fs.h>
14 #include <linux/sched.h>
15 #include <linux/seq_file.h>
16 #include <linux/kallsyms.h>
17 #include <linux/utsname.h>
20 * This allows printing both to /proc/sched_debug and
21 * to the console
23 #define SEQ_printf(m, x...) \
24 do { \
25 if (m) \
26 seq_printf(m, x); \
27 else \
28 printk(x); \
29 } while (0)
32 * Ease the printing of nsec fields:
34 static long long nsec_high(unsigned long long nsec)
36 if ((long long)nsec < 0) {
37 nsec = -nsec;
38 do_div(nsec, 1000000);
39 return -nsec;
41 do_div(nsec, 1000000);
43 return nsec;
46 static unsigned long nsec_low(unsigned long long nsec)
48 if ((long long)nsec < 0)
49 nsec = -nsec;
51 return do_div(nsec, 1000000);
54 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
56 static void
57 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
59 if (rq->curr == p)
60 SEQ_printf(m, "R");
61 else
62 SEQ_printf(m, " ");
64 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
65 p->comm, p->pid,
66 SPLIT_NS(p->se.vruntime),
67 (long long)(p->nvcsw + p->nivcsw),
68 p->prio);
69 #ifdef CONFIG_SCHEDSTATS
70 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld\n",
71 SPLIT_NS(p->se.vruntime),
72 SPLIT_NS(p->se.sum_exec_runtime),
73 SPLIT_NS(p->se.sum_sleep_runtime));
74 #else
75 SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld\n",
76 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
77 #endif
80 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
82 struct task_struct *g, *p;
83 unsigned long flags;
85 SEQ_printf(m,
86 "\nrunnable tasks:\n"
87 " task PID tree-key switches prio"
88 " exec-runtime sum-exec sum-sleep\n"
89 "------------------------------------------------------"
90 "----------------------------------------------------\n");
92 read_lock_irqsave(&tasklist_lock, flags);
94 do_each_thread(g, p) {
95 if (!p->se.on_rq || task_cpu(p) != rq_cpu)
96 continue;
98 print_task(m, rq, p);
99 } while_each_thread(g, p);
101 read_unlock_irqrestore(&tasklist_lock, flags);
104 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
106 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
107 spread, rq0_min_vruntime, spread0;
108 struct rq *rq = &per_cpu(runqueues, cpu);
109 struct sched_entity *last;
110 unsigned long flags;
112 SEQ_printf(m, "\ncfs_rq\n");
114 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
115 SPLIT_NS(cfs_rq->exec_clock));
117 spin_lock_irqsave(&rq->lock, flags);
118 if (cfs_rq->rb_leftmost)
119 MIN_vruntime = (__pick_next_entity(cfs_rq))->vruntime;
120 last = __pick_last_entity(cfs_rq);
121 if (last)
122 max_vruntime = last->vruntime;
123 min_vruntime = rq->cfs.min_vruntime;
124 rq0_min_vruntime = per_cpu(runqueues, 0).cfs.min_vruntime;
125 spin_unlock_irqrestore(&rq->lock, flags);
126 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
127 SPLIT_NS(MIN_vruntime));
128 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
129 SPLIT_NS(min_vruntime));
130 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
131 SPLIT_NS(max_vruntime));
132 spread = max_vruntime - MIN_vruntime;
133 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
134 SPLIT_NS(spread));
135 spread0 = min_vruntime - rq0_min_vruntime;
136 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
137 SPLIT_NS(spread0));
138 SEQ_printf(m, " .%-30s: %ld\n", "nr_running", cfs_rq->nr_running);
139 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
140 #ifdef CONFIG_SCHEDSTATS
141 SEQ_printf(m, " .%-30s: %d\n", "bkl_count",
142 rq->bkl_count);
143 #endif
144 SEQ_printf(m, " .%-30s: %ld\n", "nr_spread_over",
145 cfs_rq->nr_spread_over);
148 static void print_cpu(struct seq_file *m, int cpu)
150 struct rq *rq = &per_cpu(runqueues, cpu);
152 #ifdef CONFIG_X86
154 unsigned int freq = cpu_khz ? : 1;
156 SEQ_printf(m, "\ncpu#%d, %u.%03u MHz\n",
157 cpu, freq / 1000, (freq % 1000));
159 #else
160 SEQ_printf(m, "\ncpu#%d\n", cpu);
161 #endif
163 #define P(x) \
164 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x))
165 #define PN(x) \
166 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
168 P(nr_running);
169 SEQ_printf(m, " .%-30s: %lu\n", "load",
170 rq->load.weight);
171 P(nr_switches);
172 P(nr_load_updates);
173 P(nr_uninterruptible);
174 SEQ_printf(m, " .%-30s: %lu\n", "jiffies", jiffies);
175 PN(next_balance);
176 P(curr->pid);
177 PN(clock);
178 PN(idle_clock);
179 PN(prev_clock_raw);
180 P(clock_warps);
181 P(clock_overflows);
182 P(clock_underflows);
183 P(clock_deep_idle_events);
184 PN(clock_max_delta);
185 P(cpu_load[0]);
186 P(cpu_load[1]);
187 P(cpu_load[2]);
188 P(cpu_load[3]);
189 P(cpu_load[4]);
190 #undef P
191 #undef PN
193 print_cfs_stats(m, cpu);
195 print_rq(m, rq, cpu);
198 static int sched_debug_show(struct seq_file *m, void *v)
200 u64 now = ktime_to_ns(ktime_get());
201 int cpu;
203 SEQ_printf(m, "Sched Debug Version: v0.07, %s %.*s\n",
204 init_utsname()->release,
205 (int)strcspn(init_utsname()->version, " "),
206 init_utsname()->version);
208 SEQ_printf(m, "now at %Lu.%06ld msecs\n", SPLIT_NS(now));
210 #define P(x) \
211 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
212 #define PN(x) \
213 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
214 PN(sysctl_sched_latency);
215 PN(sysctl_sched_min_granularity);
216 PN(sysctl_sched_wakeup_granularity);
217 PN(sysctl_sched_batch_wakeup_granularity);
218 PN(sysctl_sched_child_runs_first);
219 P(sysctl_sched_features);
220 #undef PN
221 #undef P
223 for_each_online_cpu(cpu)
224 print_cpu(m, cpu);
226 SEQ_printf(m, "\n");
228 return 0;
231 static void sysrq_sched_debug_show(void)
233 sched_debug_show(NULL, NULL);
236 static int sched_debug_open(struct inode *inode, struct file *filp)
238 return single_open(filp, sched_debug_show, NULL);
241 static const struct file_operations sched_debug_fops = {
242 .open = sched_debug_open,
243 .read = seq_read,
244 .llseek = seq_lseek,
245 .release = single_release,
248 static int __init init_sched_debug_procfs(void)
250 struct proc_dir_entry *pe;
252 pe = create_proc_entry("sched_debug", 0644, NULL);
253 if (!pe)
254 return -ENOMEM;
256 pe->proc_fops = &sched_debug_fops;
258 return 0;
261 __initcall(init_sched_debug_procfs);
263 void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
265 unsigned long nr_switches;
266 unsigned long flags;
267 int num_threads = 1;
269 rcu_read_lock();
270 if (lock_task_sighand(p, &flags)) {
271 num_threads = atomic_read(&p->signal->count);
272 unlock_task_sighand(p, &flags);
274 rcu_read_unlock();
276 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, num_threads);
277 SEQ_printf(m,
278 "---------------------------------------------------------\n");
279 #define __P(F) \
280 SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F)
281 #define P(F) \
282 SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F)
283 #define __PN(F) \
284 SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
285 #define PN(F) \
286 SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
288 PN(se.exec_start);
289 PN(se.vruntime);
290 PN(se.sum_exec_runtime);
292 nr_switches = p->nvcsw + p->nivcsw;
294 #ifdef CONFIG_SCHEDSTATS
295 PN(se.wait_start);
296 PN(se.sleep_start);
297 PN(se.block_start);
298 PN(se.sleep_max);
299 PN(se.block_max);
300 PN(se.exec_max);
301 PN(se.slice_max);
302 PN(se.wait_max);
303 PN(se.wait_sum);
304 P(se.wait_count);
305 P(sched_info.bkl_count);
306 P(se.nr_migrations);
307 P(se.nr_migrations_cold);
308 P(se.nr_failed_migrations_affine);
309 P(se.nr_failed_migrations_running);
310 P(se.nr_failed_migrations_hot);
311 P(se.nr_forced_migrations);
312 P(se.nr_forced2_migrations);
313 P(se.nr_wakeups);
314 P(se.nr_wakeups_sync);
315 P(se.nr_wakeups_migrate);
316 P(se.nr_wakeups_local);
317 P(se.nr_wakeups_remote);
318 P(se.nr_wakeups_affine);
319 P(se.nr_wakeups_affine_attempts);
320 P(se.nr_wakeups_passive);
321 P(se.nr_wakeups_idle);
324 u64 avg_atom, avg_per_cpu;
326 avg_atom = p->se.sum_exec_runtime;
327 if (nr_switches)
328 do_div(avg_atom, nr_switches);
329 else
330 avg_atom = -1LL;
332 avg_per_cpu = p->se.sum_exec_runtime;
333 if (p->se.nr_migrations) {
334 avg_per_cpu = div64_64(avg_per_cpu,
335 p->se.nr_migrations);
336 } else {
337 avg_per_cpu = -1LL;
340 __PN(avg_atom);
341 __PN(avg_per_cpu);
343 #endif
344 __P(nr_switches);
345 SEQ_printf(m, "%-35s:%21Ld\n",
346 "nr_voluntary_switches", (long long)p->nvcsw);
347 SEQ_printf(m, "%-35s:%21Ld\n",
348 "nr_involuntary_switches", (long long)p->nivcsw);
350 P(se.load.weight);
351 P(policy);
352 P(prio);
353 #undef PN
354 #undef __PN
355 #undef P
356 #undef __P
359 u64 t0, t1;
361 t0 = sched_clock();
362 t1 = sched_clock();
363 SEQ_printf(m, "%-35s:%21Ld\n",
364 "clock-delta", (long long)(t1-t0));
368 void proc_sched_set_task(struct task_struct *p)
370 #ifdef CONFIG_SCHEDSTATS
371 p->se.wait_max = 0;
372 p->se.wait_sum = 0;
373 p->se.wait_count = 0;
374 p->se.sleep_max = 0;
375 p->se.sum_sleep_runtime = 0;
376 p->se.block_max = 0;
377 p->se.exec_max = 0;
378 p->se.slice_max = 0;
379 p->se.nr_migrations = 0;
380 p->se.nr_migrations_cold = 0;
381 p->se.nr_failed_migrations_affine = 0;
382 p->se.nr_failed_migrations_running = 0;
383 p->se.nr_failed_migrations_hot = 0;
384 p->se.nr_forced_migrations = 0;
385 p->se.nr_forced2_migrations = 0;
386 p->se.nr_wakeups = 0;
387 p->se.nr_wakeups_sync = 0;
388 p->se.nr_wakeups_migrate = 0;
389 p->se.nr_wakeups_local = 0;
390 p->se.nr_wakeups_remote = 0;
391 p->se.nr_wakeups_affine = 0;
392 p->se.nr_wakeups_affine_attempts = 0;
393 p->se.nr_wakeups_passive = 0;
394 p->se.nr_wakeups_idle = 0;
395 p->sched_info.bkl_count = 0;
396 #endif
397 p->se.sum_exec_runtime = 0;
398 p->se.prev_sum_exec_runtime = 0;
399 p->nvcsw = 0;
400 p->nivcsw = 0;