generic: add __FINITDATA
[wrt350n-kernel.git] / kernel / time / tick-sched.c
blob88267f0a84713082dfb8ca719a76337b69990f04
1 /*
2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
24 #include <asm/irq_regs.h>
26 #include "tick-internal.h"
29 * Per cpu nohz control structure
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
34 * The time, when the last jiffy update happened. Protected by xtime_lock.
36 static ktime_t last_jiffies_update;
38 struct tick_sched *tick_get_tick_sched(int cpu)
40 return &per_cpu(tick_cpu_sched, cpu);
44 * Must be called with interrupts disabled !
46 static void tick_do_update_jiffies64(ktime_t now)
48 unsigned long ticks = 0;
49 ktime_t delta;
51 /* Reevalute with xtime_lock held */
52 write_seqlock(&xtime_lock);
54 delta = ktime_sub(now, last_jiffies_update);
55 if (delta.tv64 >= tick_period.tv64) {
57 delta = ktime_sub(delta, tick_period);
58 last_jiffies_update = ktime_add(last_jiffies_update,
59 tick_period);
61 /* Slow path for long timeouts */
62 if (unlikely(delta.tv64 >= tick_period.tv64)) {
63 s64 incr = ktime_to_ns(tick_period);
65 ticks = ktime_divns(delta, incr);
67 last_jiffies_update = ktime_add_ns(last_jiffies_update,
68 incr * ticks);
70 do_timer(++ticks);
72 write_sequnlock(&xtime_lock);
76 * Initialize and return retrieve the jiffies update.
78 static ktime_t tick_init_jiffy_update(void)
80 ktime_t period;
82 write_seqlock(&xtime_lock);
83 /* Did we start the jiffies update yet ? */
84 if (last_jiffies_update.tv64 == 0)
85 last_jiffies_update = tick_next_period;
86 period = last_jiffies_update;
87 write_sequnlock(&xtime_lock);
88 return period;
92 * NOHZ - aka dynamic tick functionality
94 #ifdef CONFIG_NO_HZ
96 * NO HZ enabled ?
98 static int tick_nohz_enabled __read_mostly = 1;
101 * Enable / Disable tickless mode
103 static int __init setup_tick_nohz(char *str)
105 if (!strcmp(str, "off"))
106 tick_nohz_enabled = 0;
107 else if (!strcmp(str, "on"))
108 tick_nohz_enabled = 1;
109 else
110 return 0;
111 return 1;
114 __setup("nohz=", setup_tick_nohz);
117 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
119 * Called from interrupt entry when the CPU was idle
121 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
122 * must be updated. Otherwise an interrupt handler could use a stale jiffy
123 * value. We do this unconditionally on any cpu, as we don't know whether the
124 * cpu, which has the update task assigned is in a long sleep.
126 void tick_nohz_update_jiffies(void)
128 int cpu = smp_processor_id();
129 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
130 unsigned long flags;
131 ktime_t now;
133 if (!ts->tick_stopped)
134 return;
136 touch_softlockup_watchdog();
138 cpu_clear(cpu, nohz_cpu_mask);
139 now = ktime_get();
140 ts->idle_waketime = now;
142 local_irq_save(flags);
143 tick_do_update_jiffies64(now);
144 local_irq_restore(flags);
147 void tick_nohz_stop_idle(int cpu)
149 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
151 if (ts->idle_active) {
152 ktime_t now, delta;
153 now = ktime_get();
154 delta = ktime_sub(now, ts->idle_entrytime);
155 ts->idle_lastupdate = now;
156 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
157 ts->idle_active = 0;
161 static ktime_t tick_nohz_start_idle(int cpu)
163 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
164 ktime_t now, delta;
166 now = ktime_get();
167 if (ts->idle_active) {
168 delta = ktime_sub(now, ts->idle_entrytime);
169 ts->idle_lastupdate = now;
170 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
172 ts->idle_entrytime = now;
173 ts->idle_active = 1;
174 return now;
177 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
179 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
181 *last_update_time = ktime_to_us(ts->idle_lastupdate);
182 return ktime_to_us(ts->idle_sleeptime);
186 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
188 * When the next event is more than a tick into the future, stop the idle tick
189 * Called either from the idle loop or from irq_exit() when an idle period was
190 * just interrupted by an interrupt which did not cause a reschedule.
192 void tick_nohz_stop_sched_tick(void)
194 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
195 unsigned long rt_jiffies;
196 struct tick_sched *ts;
197 ktime_t last_update, expires, now;
198 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
199 int cpu;
201 local_irq_save(flags);
203 cpu = smp_processor_id();
204 now = tick_nohz_start_idle(cpu);
205 ts = &per_cpu(tick_cpu_sched, cpu);
208 * If this cpu is offline and it is the one which updates
209 * jiffies, then give up the assignment and let it be taken by
210 * the cpu which runs the tick timer next. If we don't drop
211 * this here the jiffies might be stale and do_timer() never
212 * invoked.
214 if (unlikely(!cpu_online(cpu))) {
215 if (cpu == tick_do_timer_cpu)
216 tick_do_timer_cpu = -1;
219 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
220 goto end;
222 if (need_resched())
223 goto end;
225 cpu = smp_processor_id();
226 if (unlikely(local_softirq_pending())) {
227 static int ratelimit;
229 if (ratelimit < 10) {
230 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
231 local_softirq_pending());
232 ratelimit++;
236 ts->idle_calls++;
237 /* Read jiffies and the time when jiffies were updated last */
238 do {
239 seq = read_seqbegin(&xtime_lock);
240 last_update = last_jiffies_update;
241 last_jiffies = jiffies;
242 } while (read_seqretry(&xtime_lock, seq));
244 /* Get the next timer wheel timer */
245 next_jiffies = get_next_timer_interrupt(last_jiffies);
246 delta_jiffies = next_jiffies - last_jiffies;
248 rt_jiffies = rt_needs_cpu(cpu);
249 if (rt_jiffies && rt_jiffies < delta_jiffies)
250 delta_jiffies = rt_jiffies;
252 if (rcu_needs_cpu(cpu))
253 delta_jiffies = 1;
255 * Do not stop the tick, if we are only one off
256 * or if the cpu is required for rcu
258 if (!ts->tick_stopped && delta_jiffies == 1)
259 goto out;
261 /* Schedule the tick, if we are at least one jiffie off */
262 if ((long)delta_jiffies >= 1) {
264 if (delta_jiffies > 1)
265 cpu_set(cpu, nohz_cpu_mask);
267 * nohz_stop_sched_tick can be called several times before
268 * the nohz_restart_sched_tick is called. This happens when
269 * interrupts arrive which do not cause a reschedule. In the
270 * first call we save the current tick time, so we can restart
271 * the scheduler tick in nohz_restart_sched_tick.
273 if (!ts->tick_stopped) {
274 if (select_nohz_load_balancer(1)) {
276 * sched tick not stopped!
278 cpu_clear(cpu, nohz_cpu_mask);
279 goto out;
282 ts->idle_tick = ts->sched_timer.expires;
283 ts->tick_stopped = 1;
284 ts->idle_jiffies = last_jiffies;
288 * If this cpu is the one which updates jiffies, then
289 * give up the assignment and let it be taken by the
290 * cpu which runs the tick timer next, which might be
291 * this cpu as well. If we don't drop this here the
292 * jiffies might be stale and do_timer() never
293 * invoked.
295 if (cpu == tick_do_timer_cpu)
296 tick_do_timer_cpu = -1;
298 ts->idle_sleeps++;
301 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
302 * there is no timer pending or at least extremly far
303 * into the future (12 days for HZ=1000). In this case
304 * we simply stop the tick timer:
306 if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
307 ts->idle_expires.tv64 = KTIME_MAX;
308 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
309 hrtimer_cancel(&ts->sched_timer);
310 goto out;
314 * calculate the expiry time for the next timer wheel
315 * timer
317 expires = ktime_add_ns(last_update, tick_period.tv64 *
318 delta_jiffies);
319 ts->idle_expires = expires;
321 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
322 hrtimer_start(&ts->sched_timer, expires,
323 HRTIMER_MODE_ABS);
324 /* Check, if the timer was already in the past */
325 if (hrtimer_active(&ts->sched_timer))
326 goto out;
327 } else if (!tick_program_event(expires, 0))
328 goto out;
330 * We are past the event already. So we crossed a
331 * jiffie boundary. Update jiffies and raise the
332 * softirq.
334 tick_do_update_jiffies64(ktime_get());
335 cpu_clear(cpu, nohz_cpu_mask);
337 raise_softirq_irqoff(TIMER_SOFTIRQ);
338 out:
339 ts->next_jiffies = next_jiffies;
340 ts->last_jiffies = last_jiffies;
341 ts->sleep_length = ktime_sub(dev->next_event, now);
342 end:
343 local_irq_restore(flags);
347 * tick_nohz_get_sleep_length - return the length of the current sleep
349 * Called from power state control code with interrupts disabled
351 ktime_t tick_nohz_get_sleep_length(void)
353 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
355 return ts->sleep_length;
359 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
361 * Restart the idle tick when the CPU is woken up from idle
363 void tick_nohz_restart_sched_tick(void)
365 int cpu = smp_processor_id();
366 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
367 unsigned long ticks;
368 ktime_t now;
370 local_irq_disable();
371 tick_nohz_stop_idle(cpu);
373 if (!ts->tick_stopped) {
374 local_irq_enable();
375 return;
378 /* Update jiffies first */
379 select_nohz_load_balancer(0);
380 now = ktime_get();
381 tick_do_update_jiffies64(now);
382 cpu_clear(cpu, nohz_cpu_mask);
385 * We stopped the tick in idle. Update process times would miss the
386 * time we slept as update_process_times does only a 1 tick
387 * accounting. Enforce that this is accounted to idle !
389 ticks = jiffies - ts->idle_jiffies;
391 * We might be one off. Do not randomly account a huge number of ticks!
393 if (ticks && ticks < LONG_MAX) {
394 add_preempt_count(HARDIRQ_OFFSET);
395 account_system_time(current, HARDIRQ_OFFSET,
396 jiffies_to_cputime(ticks));
397 sub_preempt_count(HARDIRQ_OFFSET);
401 * Cancel the scheduled timer and restore the tick
403 ts->tick_stopped = 0;
404 ts->idle_exittime = now;
405 hrtimer_cancel(&ts->sched_timer);
406 ts->sched_timer.expires = ts->idle_tick;
408 while (1) {
409 /* Forward the time to expire in the future */
410 hrtimer_forward(&ts->sched_timer, now, tick_period);
412 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
413 hrtimer_start(&ts->sched_timer,
414 ts->sched_timer.expires,
415 HRTIMER_MODE_ABS);
416 /* Check, if the timer was already in the past */
417 if (hrtimer_active(&ts->sched_timer))
418 break;
419 } else {
420 if (!tick_program_event(ts->sched_timer.expires, 0))
421 break;
423 /* Update jiffies and reread time */
424 tick_do_update_jiffies64(now);
425 now = ktime_get();
427 local_irq_enable();
430 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
432 hrtimer_forward(&ts->sched_timer, now, tick_period);
433 return tick_program_event(ts->sched_timer.expires, 0);
437 * The nohz low res interrupt handler
439 static void tick_nohz_handler(struct clock_event_device *dev)
441 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
442 struct pt_regs *regs = get_irq_regs();
443 int cpu = smp_processor_id();
444 ktime_t now = ktime_get();
446 dev->next_event.tv64 = KTIME_MAX;
449 * Check if the do_timer duty was dropped. We don't care about
450 * concurrency: This happens only when the cpu in charge went
451 * into a long sleep. If two cpus happen to assign themself to
452 * this duty, then the jiffies update is still serialized by
453 * xtime_lock.
455 if (unlikely(tick_do_timer_cpu == -1))
456 tick_do_timer_cpu = cpu;
458 /* Check, if the jiffies need an update */
459 if (tick_do_timer_cpu == cpu)
460 tick_do_update_jiffies64(now);
463 * When we are idle and the tick is stopped, we have to touch
464 * the watchdog as we might not schedule for a really long
465 * time. This happens on complete idle SMP systems while
466 * waiting on the login prompt. We also increment the "start
467 * of idle" jiffy stamp so the idle accounting adjustment we
468 * do when we go busy again does not account too much ticks.
470 if (ts->tick_stopped) {
471 touch_softlockup_watchdog();
472 ts->idle_jiffies++;
475 update_process_times(user_mode(regs));
476 profile_tick(CPU_PROFILING);
478 /* Do not restart, when we are in the idle loop */
479 if (ts->tick_stopped)
480 return;
482 while (tick_nohz_reprogram(ts, now)) {
483 now = ktime_get();
484 tick_do_update_jiffies64(now);
489 * tick_nohz_switch_to_nohz - switch to nohz mode
491 static void tick_nohz_switch_to_nohz(void)
493 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
494 ktime_t next;
496 if (!tick_nohz_enabled)
497 return;
499 local_irq_disable();
500 if (tick_switch_to_oneshot(tick_nohz_handler)) {
501 local_irq_enable();
502 return;
505 ts->nohz_mode = NOHZ_MODE_LOWRES;
508 * Recycle the hrtimer in ts, so we can share the
509 * hrtimer_forward with the highres code.
511 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
512 /* Get the next period */
513 next = tick_init_jiffy_update();
515 for (;;) {
516 ts->sched_timer.expires = next;
517 if (!tick_program_event(next, 0))
518 break;
519 next = ktime_add(next, tick_period);
521 local_irq_enable();
523 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
524 smp_processor_id());
527 #else
529 static inline void tick_nohz_switch_to_nohz(void) { }
531 #endif /* NO_HZ */
534 * High resolution timer specific code
536 #ifdef CONFIG_HIGH_RES_TIMERS
538 * We rearm the timer until we get disabled by the idle code.
539 * Called with interrupts disabled and timer->base->cpu_base->lock held.
541 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
543 struct tick_sched *ts =
544 container_of(timer, struct tick_sched, sched_timer);
545 struct pt_regs *regs = get_irq_regs();
546 ktime_t now = ktime_get();
547 int cpu = smp_processor_id();
549 #ifdef CONFIG_NO_HZ
551 * Check if the do_timer duty was dropped. We don't care about
552 * concurrency: This happens only when the cpu in charge went
553 * into a long sleep. If two cpus happen to assign themself to
554 * this duty, then the jiffies update is still serialized by
555 * xtime_lock.
557 if (unlikely(tick_do_timer_cpu == -1))
558 tick_do_timer_cpu = cpu;
559 #endif
561 /* Check, if the jiffies need an update */
562 if (tick_do_timer_cpu == cpu)
563 tick_do_update_jiffies64(now);
566 * Do not call, when we are not in irq context and have
567 * no valid regs pointer
569 if (regs) {
571 * When we are idle and the tick is stopped, we have to touch
572 * the watchdog as we might not schedule for a really long
573 * time. This happens on complete idle SMP systems while
574 * waiting on the login prompt. We also increment the "start of
575 * idle" jiffy stamp so the idle accounting adjustment we do
576 * when we go busy again does not account too much ticks.
578 if (ts->tick_stopped) {
579 touch_softlockup_watchdog();
580 ts->idle_jiffies++;
582 update_process_times(user_mode(regs));
583 profile_tick(CPU_PROFILING);
586 /* Do not restart, when we are in the idle loop */
587 if (ts->tick_stopped)
588 return HRTIMER_NORESTART;
590 hrtimer_forward(timer, now, tick_period);
592 return HRTIMER_RESTART;
596 * tick_setup_sched_timer - setup the tick emulation timer
598 void tick_setup_sched_timer(void)
600 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
601 ktime_t now = ktime_get();
602 u64 offset;
605 * Emulate tick processing via per-CPU hrtimers:
607 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
608 ts->sched_timer.function = tick_sched_timer;
609 ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
611 /* Get the next period (per cpu) */
612 ts->sched_timer.expires = tick_init_jiffy_update();
613 offset = ktime_to_ns(tick_period) >> 1;
614 do_div(offset, num_possible_cpus());
615 offset *= smp_processor_id();
616 ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset);
618 for (;;) {
619 hrtimer_forward(&ts->sched_timer, now, tick_period);
620 hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
621 HRTIMER_MODE_ABS);
622 /* Check, if the timer was already in the past */
623 if (hrtimer_active(&ts->sched_timer))
624 break;
625 now = ktime_get();
628 #ifdef CONFIG_NO_HZ
629 if (tick_nohz_enabled)
630 ts->nohz_mode = NOHZ_MODE_HIGHRES;
631 #endif
634 void tick_cancel_sched_timer(int cpu)
636 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
638 if (ts->sched_timer.base)
639 hrtimer_cancel(&ts->sched_timer);
640 ts->tick_stopped = 0;
641 ts->nohz_mode = NOHZ_MODE_INACTIVE;
643 #endif /* HIGH_RES_TIMERS */
646 * Async notification about clocksource changes
648 void tick_clock_notify(void)
650 int cpu;
652 for_each_possible_cpu(cpu)
653 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
657 * Async notification about clock event changes
659 void tick_oneshot_notify(void)
661 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
663 set_bit(0, &ts->check_clocks);
667 * Check, if a change happened, which makes oneshot possible.
669 * Called cyclic from the hrtimer softirq (driven by the timer
670 * softirq) allow_nohz signals, that we can switch into low-res nohz
671 * mode, because high resolution timers are disabled (either compile
672 * or runtime).
674 int tick_check_oneshot_change(int allow_nohz)
676 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
678 if (!test_and_clear_bit(0, &ts->check_clocks))
679 return 0;
681 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
682 return 0;
684 if (!timekeeping_is_continuous() || !tick_is_oneshot_available())
685 return 0;
687 if (!allow_nohz)
688 return 1;
690 tick_nohz_switch_to_nohz();
691 return 0;