Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / Documentation / lguest / lguest.c
blob4f017e23ea625296c2c1d8192f783665cb47e3f3
1 /*P:100 This is the Launcher code, a simple program which lays out the
2 * "physical" memory for the new Guest by mapping the kernel image and the
3 * virtual devices, then reads repeatedly from /dev/lguest to run the Guest.
4 :*/
5 #define _LARGEFILE64_SOURCE
6 #define _GNU_SOURCE
7 #include <stdio.h>
8 #include <string.h>
9 #include <unistd.h>
10 #include <err.h>
11 #include <stdint.h>
12 #include <stdlib.h>
13 #include <elf.h>
14 #include <sys/mman.h>
15 #include <sys/param.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <sys/wait.h>
19 #include <fcntl.h>
20 #include <stdbool.h>
21 #include <errno.h>
22 #include <ctype.h>
23 #include <sys/socket.h>
24 #include <sys/ioctl.h>
25 #include <sys/time.h>
26 #include <time.h>
27 #include <netinet/in.h>
28 #include <net/if.h>
29 #include <linux/sockios.h>
30 #include <linux/if_tun.h>
31 #include <sys/uio.h>
32 #include <termios.h>
33 #include <getopt.h>
34 #include <zlib.h>
35 #include <assert.h>
36 #include <sched.h>
37 #include <limits.h>
38 #include <stddef.h>
39 #include "linux/lguest_launcher.h"
40 #include "linux/virtio_config.h"
41 #include "linux/virtio_net.h"
42 #include "linux/virtio_blk.h"
43 #include "linux/virtio_console.h"
44 #include "linux/virtio_ring.h"
45 #include "asm-x86/bootparam.h"
46 /*L:110 We can ignore the 38 include files we need for this program, but I do
47 * want to draw attention to the use of kernel-style types.
49 * As Linus said, "C is a Spartan language, and so should your naming be." I
50 * like these abbreviations, so we define them here. Note that u64 is always
51 * unsigned long long, which works on all Linux systems: this means that we can
52 * use %llu in printf for any u64. */
53 typedef unsigned long long u64;
54 typedef uint32_t u32;
55 typedef uint16_t u16;
56 typedef uint8_t u8;
57 /*:*/
59 #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
60 #define NET_PEERNUM 1
61 #define BRIDGE_PFX "bridge:"
62 #ifndef SIOCBRADDIF
63 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
64 #endif
65 /* We can have up to 256 pages for devices. */
66 #define DEVICE_PAGES 256
67 /* This will occupy 2 pages: it must be a power of 2. */
68 #define VIRTQUEUE_NUM 128
70 /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
71 * this, and although I wouldn't recommend it, it works quite nicely here. */
72 static bool verbose;
73 #define verbose(args...) \
74 do { if (verbose) printf(args); } while(0)
75 /*:*/
77 /* The pipe to send commands to the waker process */
78 static int waker_fd;
79 /* The pointer to the start of guest memory. */
80 static void *guest_base;
81 /* The maximum guest physical address allowed, and maximum possible. */
82 static unsigned long guest_limit, guest_max;
84 /* a per-cpu variable indicating whose vcpu is currently running */
85 static unsigned int __thread cpu_id;
87 /* This is our list of devices. */
88 struct device_list
90 /* Summary information about the devices in our list: ready to pass to
91 * select() to ask which need servicing.*/
92 fd_set infds;
93 int max_infd;
95 /* Counter to assign interrupt numbers. */
96 unsigned int next_irq;
98 /* Counter to print out convenient device numbers. */
99 unsigned int device_num;
101 /* The descriptor page for the devices. */
102 u8 *descpage;
104 /* A single linked list of devices. */
105 struct device *dev;
106 /* And a pointer to the last device for easy append and also for
107 * configuration appending. */
108 struct device *lastdev;
111 /* The list of Guest devices, based on command line arguments. */
112 static struct device_list devices;
114 /* The device structure describes a single device. */
115 struct device
117 /* The linked-list pointer. */
118 struct device *next;
120 /* The this device's descriptor, as mapped into the Guest. */
121 struct lguest_device_desc *desc;
123 /* The name of this device, for --verbose. */
124 const char *name;
126 /* If handle_input is set, it wants to be called when this file
127 * descriptor is ready. */
128 int fd;
129 bool (*handle_input)(int fd, struct device *me);
131 /* Any queues attached to this device */
132 struct virtqueue *vq;
134 /* Device-specific data. */
135 void *priv;
138 /* The virtqueue structure describes a queue attached to a device. */
139 struct virtqueue
141 struct virtqueue *next;
143 /* Which device owns me. */
144 struct device *dev;
146 /* The configuration for this queue. */
147 struct lguest_vqconfig config;
149 /* The actual ring of buffers. */
150 struct vring vring;
152 /* Last available index we saw. */
153 u16 last_avail_idx;
155 /* The routine to call when the Guest pings us. */
156 void (*handle_output)(int fd, struct virtqueue *me);
159 /* Remember the arguments to the program so we can "reboot" */
160 static char **main_args;
162 /* Since guest is UP and we don't run at the same time, we don't need barriers.
163 * But I include them in the code in case others copy it. */
164 #define wmb()
166 /* Convert an iovec element to the given type.
168 * This is a fairly ugly trick: we need to know the size of the type and
169 * alignment requirement to check the pointer is kosher. It's also nice to
170 * have the name of the type in case we report failure.
172 * Typing those three things all the time is cumbersome and error prone, so we
173 * have a macro which sets them all up and passes to the real function. */
174 #define convert(iov, type) \
175 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
177 static void *_convert(struct iovec *iov, size_t size, size_t align,
178 const char *name)
180 if (iov->iov_len != size)
181 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
182 if ((unsigned long)iov->iov_base % align != 0)
183 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
184 return iov->iov_base;
187 /* The virtio configuration space is defined to be little-endian. x86 is
188 * little-endian too, but it's nice to be explicit so we have these helpers. */
189 #define cpu_to_le16(v16) (v16)
190 #define cpu_to_le32(v32) (v32)
191 #define cpu_to_le64(v64) (v64)
192 #define le16_to_cpu(v16) (v16)
193 #define le32_to_cpu(v32) (v32)
194 #define le64_to_cpu(v64) (v64)
196 /* The device virtqueue descriptors are followed by feature bitmasks. */
197 static u8 *get_feature_bits(struct device *dev)
199 return (u8 *)(dev->desc + 1)
200 + dev->desc->num_vq * sizeof(struct lguest_vqconfig);
203 /*L:100 The Launcher code itself takes us out into userspace, that scary place
204 * where pointers run wild and free! Unfortunately, like most userspace
205 * programs, it's quite boring (which is why everyone likes to hack on the
206 * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
207 * will get you through this section. Or, maybe not.
209 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
210 * memory and stores it in "guest_base". In other words, Guest physical ==
211 * Launcher virtual with an offset.
213 * This can be tough to get your head around, but usually it just means that we
214 * use these trivial conversion functions when the Guest gives us it's
215 * "physical" addresses: */
216 static void *from_guest_phys(unsigned long addr)
218 return guest_base + addr;
221 static unsigned long to_guest_phys(const void *addr)
223 return (addr - guest_base);
226 /*L:130
227 * Loading the Kernel.
229 * We start with couple of simple helper routines. open_or_die() avoids
230 * error-checking code cluttering the callers: */
231 static int open_or_die(const char *name, int flags)
233 int fd = open(name, flags);
234 if (fd < 0)
235 err(1, "Failed to open %s", name);
236 return fd;
239 /* map_zeroed_pages() takes a number of pages. */
240 static void *map_zeroed_pages(unsigned int num)
242 int fd = open_or_die("/dev/zero", O_RDONLY);
243 void *addr;
245 /* We use a private mapping (ie. if we write to the page, it will be
246 * copied). */
247 addr = mmap(NULL, getpagesize() * num,
248 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
249 if (addr == MAP_FAILED)
250 err(1, "Mmaping %u pages of /dev/zero", num);
252 return addr;
255 /* Get some more pages for a device. */
256 static void *get_pages(unsigned int num)
258 void *addr = from_guest_phys(guest_limit);
260 guest_limit += num * getpagesize();
261 if (guest_limit > guest_max)
262 errx(1, "Not enough memory for devices");
263 return addr;
266 /* This routine is used to load the kernel or initrd. It tries mmap, but if
267 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
268 * it falls back to reading the memory in. */
269 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
271 ssize_t r;
273 /* We map writable even though for some segments are marked read-only.
274 * The kernel really wants to be writable: it patches its own
275 * instructions.
277 * MAP_PRIVATE means that the page won't be copied until a write is
278 * done to it. This allows us to share untouched memory between
279 * Guests. */
280 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
281 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
282 return;
284 /* pread does a seek and a read in one shot: saves a few lines. */
285 r = pread(fd, addr, len, offset);
286 if (r != len)
287 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
290 /* This routine takes an open vmlinux image, which is in ELF, and maps it into
291 * the Guest memory. ELF = Embedded Linking Format, which is the format used
292 * by all modern binaries on Linux including the kernel.
294 * The ELF headers give *two* addresses: a physical address, and a virtual
295 * address. We use the physical address; the Guest will map itself to the
296 * virtual address.
298 * We return the starting address. */
299 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
301 Elf32_Phdr phdr[ehdr->e_phnum];
302 unsigned int i;
304 /* Sanity checks on the main ELF header: an x86 executable with a
305 * reasonable number of correctly-sized program headers. */
306 if (ehdr->e_type != ET_EXEC
307 || ehdr->e_machine != EM_386
308 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
309 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
310 errx(1, "Malformed elf header");
312 /* An ELF executable contains an ELF header and a number of "program"
313 * headers which indicate which parts ("segments") of the program to
314 * load where. */
316 /* We read in all the program headers at once: */
317 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
318 err(1, "Seeking to program headers");
319 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
320 err(1, "Reading program headers");
322 /* Try all the headers: there are usually only three. A read-only one,
323 * a read-write one, and a "note" section which isn't loadable. */
324 for (i = 0; i < ehdr->e_phnum; i++) {
325 /* If this isn't a loadable segment, we ignore it */
326 if (phdr[i].p_type != PT_LOAD)
327 continue;
329 verbose("Section %i: size %i addr %p\n",
330 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
332 /* We map this section of the file at its physical address. */
333 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
334 phdr[i].p_offset, phdr[i].p_filesz);
337 /* The entry point is given in the ELF header. */
338 return ehdr->e_entry;
341 /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
342 * supposed to jump into it and it will unpack itself. We used to have to
343 * perform some hairy magic because the unpacking code scared me.
345 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
346 * a small patch to jump over the tricky bits in the Guest, so now we just read
347 * the funky header so we know where in the file to load, and away we go! */
348 static unsigned long load_bzimage(int fd)
350 struct boot_params boot;
351 int r;
352 /* Modern bzImages get loaded at 1M. */
353 void *p = from_guest_phys(0x100000);
355 /* Go back to the start of the file and read the header. It should be
356 * a Linux boot header (see Documentation/i386/boot.txt) */
357 lseek(fd, 0, SEEK_SET);
358 read(fd, &boot, sizeof(boot));
360 /* Inside the setup_hdr, we expect the magic "HdrS" */
361 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
362 errx(1, "This doesn't look like a bzImage to me");
364 /* Skip over the extra sectors of the header. */
365 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
367 /* Now read everything into memory. in nice big chunks. */
368 while ((r = read(fd, p, 65536)) > 0)
369 p += r;
371 /* Finally, code32_start tells us where to enter the kernel. */
372 return boot.hdr.code32_start;
375 /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
376 * come wrapped up in the self-decompressing "bzImage" format. With a little
377 * work, we can load those, too. */
378 static unsigned long load_kernel(int fd)
380 Elf32_Ehdr hdr;
382 /* Read in the first few bytes. */
383 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
384 err(1, "Reading kernel");
386 /* If it's an ELF file, it starts with "\177ELF" */
387 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
388 return map_elf(fd, &hdr);
390 /* Otherwise we assume it's a bzImage, and try to unpack it */
391 return load_bzimage(fd);
394 /* This is a trivial little helper to align pages. Andi Kleen hated it because
395 * it calls getpagesize() twice: "it's dumb code."
397 * Kernel guys get really het up about optimization, even when it's not
398 * necessary. I leave this code as a reaction against that. */
399 static inline unsigned long page_align(unsigned long addr)
401 /* Add upwards and truncate downwards. */
402 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
405 /*L:180 An "initial ram disk" is a disk image loaded into memory along with
406 * the kernel which the kernel can use to boot from without needing any
407 * drivers. Most distributions now use this as standard: the initrd contains
408 * the code to load the appropriate driver modules for the current machine.
410 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
411 * kernels. He sent me this (and tells me when I break it). */
412 static unsigned long load_initrd(const char *name, unsigned long mem)
414 int ifd;
415 struct stat st;
416 unsigned long len;
418 ifd = open_or_die(name, O_RDONLY);
419 /* fstat() is needed to get the file size. */
420 if (fstat(ifd, &st) < 0)
421 err(1, "fstat() on initrd '%s'", name);
423 /* We map the initrd at the top of memory, but mmap wants it to be
424 * page-aligned, so we round the size up for that. */
425 len = page_align(st.st_size);
426 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
427 /* Once a file is mapped, you can close the file descriptor. It's a
428 * little odd, but quite useful. */
429 close(ifd);
430 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
432 /* We return the initrd size. */
433 return len;
436 /* Once we know how much memory we have, we can construct simple linear page
437 * tables which set virtual == physical which will get the Guest far enough
438 * into the boot to create its own.
440 * We lay them out of the way, just below the initrd (which is why we need to
441 * know its size). */
442 static unsigned long setup_pagetables(unsigned long mem,
443 unsigned long initrd_size)
445 unsigned long *pgdir, *linear;
446 unsigned int mapped_pages, i, linear_pages;
447 unsigned int ptes_per_page = getpagesize()/sizeof(void *);
449 mapped_pages = mem/getpagesize();
451 /* Each PTE page can map ptes_per_page pages: how many do we need? */
452 linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
454 /* We put the toplevel page directory page at the top of memory. */
455 pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
457 /* Now we use the next linear_pages pages as pte pages */
458 linear = (void *)pgdir - linear_pages*getpagesize();
460 /* Linear mapping is easy: put every page's address into the mapping in
461 * order. PAGE_PRESENT contains the flags Present, Writable and
462 * Executable. */
463 for (i = 0; i < mapped_pages; i++)
464 linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
466 /* The top level points to the linear page table pages above. */
467 for (i = 0; i < mapped_pages; i += ptes_per_page) {
468 pgdir[i/ptes_per_page]
469 = ((to_guest_phys(linear) + i*sizeof(void *))
470 | PAGE_PRESENT);
473 verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
474 mapped_pages, linear_pages, to_guest_phys(linear));
476 /* We return the top level (guest-physical) address: the kernel needs
477 * to know where it is. */
478 return to_guest_phys(pgdir);
480 /*:*/
482 /* Simple routine to roll all the commandline arguments together with spaces
483 * between them. */
484 static void concat(char *dst, char *args[])
486 unsigned int i, len = 0;
488 for (i = 0; args[i]; i++) {
489 <<<<<<< HEAD:Documentation/lguest/lguest.c
490 =======
491 if (i) {
492 strcat(dst+len, " ");
493 len++;
495 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:Documentation/lguest/lguest.c
496 strcpy(dst+len, args[i]);
497 <<<<<<< HEAD:Documentation/lguest/lguest.c
498 strcat(dst+len, " ");
499 len += strlen(args[i]) + 1;
500 =======
501 len += strlen(args[i]);
502 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:Documentation/lguest/lguest.c
504 /* In case it's empty. */
505 dst[len] = '\0';
508 /*L:185 This is where we actually tell the kernel to initialize the Guest. We
509 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
510 * the base of Guest "physical" memory, the top physical page to allow, the
511 * top level pagetable and the entry point for the Guest. */
512 static int tell_kernel(unsigned long pgdir, unsigned long start)
514 unsigned long args[] = { LHREQ_INITIALIZE,
515 (unsigned long)guest_base,
516 guest_limit / getpagesize(), pgdir, start };
517 int fd;
519 verbose("Guest: %p - %p (%#lx)\n",
520 guest_base, guest_base + guest_limit, guest_limit);
521 fd = open_or_die("/dev/lguest", O_RDWR);
522 if (write(fd, args, sizeof(args)) < 0)
523 err(1, "Writing to /dev/lguest");
525 /* We return the /dev/lguest file descriptor to control this Guest */
526 return fd;
528 /*:*/
530 static void add_device_fd(int fd)
532 FD_SET(fd, &devices.infds);
533 if (fd > devices.max_infd)
534 devices.max_infd = fd;
537 /*L:200
538 * The Waker.
540 * With console, block and network devices, we can have lots of input which we
541 * need to process. We could try to tell the kernel what file descriptors to
542 * watch, but handing a file descriptor mask through to the kernel is fairly
543 * icky.
545 * Instead, we fork off a process which watches the file descriptors and writes
546 * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
547 * stop running the Guest. This causes the Launcher to return from the
548 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
549 * the LHREQ_BREAK and wake us up again.
551 * This, of course, is merely a different *kind* of icky.
553 static void wake_parent(int pipefd, int lguest_fd)
555 /* Add the pipe from the Launcher to the fdset in the device_list, so
556 * we watch it, too. */
557 add_device_fd(pipefd);
559 for (;;) {
560 fd_set rfds = devices.infds;
561 unsigned long args[] = { LHREQ_BREAK, 1 };
563 /* Wait until input is ready from one of the devices. */
564 select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
565 /* Is it a message from the Launcher? */
566 if (FD_ISSET(pipefd, &rfds)) {
567 int fd;
568 /* If read() returns 0, it means the Launcher has
569 * exited. We silently follow. */
570 if (read(pipefd, &fd, sizeof(fd)) == 0)
571 exit(0);
572 /* Otherwise it's telling us to change what file
573 * descriptors we're to listen to. Positive means
574 * listen to a new one, negative means stop
575 * listening. */
576 if (fd >= 0)
577 FD_SET(fd, &devices.infds);
578 else
579 FD_CLR(-fd - 1, &devices.infds);
580 } else /* Send LHREQ_BREAK command. */
581 pwrite(lguest_fd, args, sizeof(args), cpu_id);
585 /* This routine just sets up a pipe to the Waker process. */
586 static int setup_waker(int lguest_fd)
588 int pipefd[2], child;
590 /* We create a pipe to talk to the Waker, and also so it knows when the
591 * Launcher dies (and closes pipe). */
592 pipe(pipefd);
593 child = fork();
594 if (child == -1)
595 err(1, "forking");
597 if (child == 0) {
598 /* We are the Waker: close the "writing" end of our copy of the
599 * pipe and start waiting for input. */
600 close(pipefd[1]);
601 wake_parent(pipefd[0], lguest_fd);
603 /* Close the reading end of our copy of the pipe. */
604 close(pipefd[0]);
606 /* Here is the fd used to talk to the waker. */
607 return pipefd[1];
611 * Device Handling.
613 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
614 * We need to make sure it's not trying to reach into the Launcher itself, so
615 * we have a convenient routine which checks it and exits with an error message
616 * if something funny is going on:
618 static void *_check_pointer(unsigned long addr, unsigned int size,
619 unsigned int line)
621 /* We have to separately check addr and addr+size, because size could
622 * be huge and addr + size might wrap around. */
623 if (addr >= guest_limit || addr + size >= guest_limit)
624 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
625 /* We return a pointer for the caller's convenience, now we know it's
626 * safe to use. */
627 return from_guest_phys(addr);
629 /* A macro which transparently hands the line number to the real function. */
630 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
632 /* Each buffer in the virtqueues is actually a chain of descriptors. This
633 * function returns the next descriptor in the chain, or vq->vring.num if we're
634 * at the end. */
635 static unsigned next_desc(struct virtqueue *vq, unsigned int i)
637 unsigned int next;
639 /* If this descriptor says it doesn't chain, we're done. */
640 if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
641 return vq->vring.num;
643 /* Check they're not leading us off end of descriptors. */
644 next = vq->vring.desc[i].next;
645 /* Make sure compiler knows to grab that: we don't want it changing! */
646 wmb();
648 if (next >= vq->vring.num)
649 errx(1, "Desc next is %u", next);
651 return next;
654 /* This looks in the virtqueue and for the first available buffer, and converts
655 * it to an iovec for convenient access. Since descriptors consist of some
656 * number of output then some number of input descriptors, it's actually two
657 * iovecs, but we pack them into one and note how many of each there were.
659 * This function returns the descriptor number found, or vq->vring.num (which
660 * is never a valid descriptor number) if none was found. */
661 static unsigned get_vq_desc(struct virtqueue *vq,
662 struct iovec iov[],
663 unsigned int *out_num, unsigned int *in_num)
665 unsigned int i, head;
667 /* Check it isn't doing very strange things with descriptor numbers. */
668 if ((u16)(vq->vring.avail->idx - vq->last_avail_idx) > vq->vring.num)
669 errx(1, "Guest moved used index from %u to %u",
670 vq->last_avail_idx, vq->vring.avail->idx);
672 /* If there's nothing new since last we looked, return invalid. */
673 if (vq->vring.avail->idx == vq->last_avail_idx)
674 return vq->vring.num;
676 /* Grab the next descriptor number they're advertising, and increment
677 * the index we've seen. */
678 head = vq->vring.avail->ring[vq->last_avail_idx++ % vq->vring.num];
680 /* If their number is silly, that's a fatal mistake. */
681 if (head >= vq->vring.num)
682 errx(1, "Guest says index %u is available", head);
684 /* When we start there are none of either input nor output. */
685 *out_num = *in_num = 0;
687 i = head;
688 do {
689 /* Grab the first descriptor, and check it's OK. */
690 iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
691 iov[*out_num + *in_num].iov_base
692 = check_pointer(vq->vring.desc[i].addr,
693 vq->vring.desc[i].len);
694 /* If this is an input descriptor, increment that count. */
695 if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
696 (*in_num)++;
697 else {
698 /* If it's an output descriptor, they're all supposed
699 * to come before any input descriptors. */
700 if (*in_num)
701 errx(1, "Descriptor has out after in");
702 (*out_num)++;
705 /* If we've got too many, that implies a descriptor loop. */
706 if (*out_num + *in_num > vq->vring.num)
707 errx(1, "Looped descriptor");
708 } while ((i = next_desc(vq, i)) != vq->vring.num);
710 return head;
713 /* After we've used one of their buffers, we tell them about it. We'll then
714 * want to send them an interrupt, using trigger_irq(). */
715 static void add_used(struct virtqueue *vq, unsigned int head, int len)
717 struct vring_used_elem *used;
719 /* The virtqueue contains a ring of used buffers. Get a pointer to the
720 * next entry in that used ring. */
721 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
722 used->id = head;
723 used->len = len;
724 /* Make sure buffer is written before we update index. */
725 wmb();
726 vq->vring.used->idx++;
729 /* This actually sends the interrupt for this virtqueue */
730 static void trigger_irq(int fd, struct virtqueue *vq)
732 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
734 /* If they don't want an interrupt, don't send one. */
735 if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
736 return;
738 /* Send the Guest an interrupt tell them we used something up. */
739 if (write(fd, buf, sizeof(buf)) != 0)
740 err(1, "Triggering irq %i", vq->config.irq);
743 /* And here's the combo meal deal. Supersize me! */
744 static void add_used_and_trigger(int fd, struct virtqueue *vq,
745 unsigned int head, int len)
747 add_used(vq, head, len);
748 trigger_irq(fd, vq);
752 * The Console
754 * Here is the input terminal setting we save, and the routine to restore them
755 * on exit so the user gets their terminal back. */
756 static struct termios orig_term;
757 static void restore_term(void)
759 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
762 /* We associate some data with the console for our exit hack. */
763 struct console_abort
765 /* How many times have they hit ^C? */
766 int count;
767 /* When did they start? */
768 struct timeval start;
771 /* This is the routine which handles console input (ie. stdin). */
772 static bool handle_console_input(int fd, struct device *dev)
774 int len;
775 unsigned int head, in_num, out_num;
776 struct iovec iov[dev->vq->vring.num];
777 struct console_abort *abort = dev->priv;
779 /* First we need a console buffer from the Guests's input virtqueue. */
780 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
782 /* If they're not ready for input, stop listening to this file
783 * descriptor. We'll start again once they add an input buffer. */
784 if (head == dev->vq->vring.num)
785 return false;
787 if (out_num)
788 errx(1, "Output buffers in console in queue?");
790 /* This is why we convert to iovecs: the readv() call uses them, and so
791 * it reads straight into the Guest's buffer. */
792 len = readv(dev->fd, iov, in_num);
793 if (len <= 0) {
794 /* This implies that the console is closed, is /dev/null, or
795 * something went terribly wrong. */
796 warnx("Failed to get console input, ignoring console.");
797 /* Put the input terminal back. */
798 restore_term();
799 /* Remove callback from input vq, so it doesn't restart us. */
800 dev->vq->handle_output = NULL;
801 /* Stop listening to this fd: don't call us again. */
802 return false;
805 /* Tell the Guest about the new input. */
806 add_used_and_trigger(fd, dev->vq, head, len);
808 /* Three ^C within one second? Exit.
810 * This is such a hack, but works surprisingly well. Each ^C has to be
811 * in a buffer by itself, so they can't be too fast. But we check that
812 * we get three within about a second, so they can't be too slow. */
813 if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
814 if (!abort->count++)
815 gettimeofday(&abort->start, NULL);
816 else if (abort->count == 3) {
817 struct timeval now;
818 gettimeofday(&now, NULL);
819 if (now.tv_sec <= abort->start.tv_sec+1) {
820 unsigned long args[] = { LHREQ_BREAK, 0 };
821 /* Close the fd so Waker will know it has to
822 * exit. */
823 close(waker_fd);
824 /* Just in case waker is blocked in BREAK, send
825 * unbreak now. */
826 write(fd, args, sizeof(args));
827 exit(2);
829 abort->count = 0;
831 } else
832 /* Any other key resets the abort counter. */
833 abort->count = 0;
835 /* Everything went OK! */
836 return true;
839 /* Handling output for console is simple: we just get all the output buffers
840 * and write them to stdout. */
841 static void handle_console_output(int fd, struct virtqueue *vq)
843 unsigned int head, out, in;
844 int len;
845 struct iovec iov[vq->vring.num];
847 /* Keep getting output buffers from the Guest until we run out. */
848 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
849 if (in)
850 errx(1, "Input buffers in output queue?");
851 len = writev(STDOUT_FILENO, iov, out);
852 add_used_and_trigger(fd, vq, head, len);
857 * The Network
859 * Handling output for network is also simple: we get all the output buffers
860 * and write them (ignoring the first element) to this device's file descriptor
861 * (stdout). */
862 static void handle_net_output(int fd, struct virtqueue *vq)
864 unsigned int head, out, in;
865 int len;
866 struct iovec iov[vq->vring.num];
868 /* Keep getting output buffers from the Guest until we run out. */
869 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
870 if (in)
871 errx(1, "Input buffers in output queue?");
872 /* Check header, but otherwise ignore it (we told the Guest we
873 * supported no features, so it shouldn't have anything
874 * interesting). */
875 (void)convert(&iov[0], struct virtio_net_hdr);
876 len = writev(vq->dev->fd, iov+1, out-1);
877 add_used_and_trigger(fd, vq, head, len);
881 /* This is where we handle a packet coming in from the tun device to our
882 * Guest. */
883 static bool handle_tun_input(int fd, struct device *dev)
885 unsigned int head, in_num, out_num;
886 int len;
887 struct iovec iov[dev->vq->vring.num];
888 struct virtio_net_hdr *hdr;
890 /* First we need a network buffer from the Guests's recv virtqueue. */
891 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
892 if (head == dev->vq->vring.num) {
893 /* Now, it's expected that if we try to send a packet too
894 * early, the Guest won't be ready yet. Wait until the device
895 * status says it's ready. */
896 /* FIXME: Actually want DRIVER_ACTIVE here. */
897 if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK)
898 warn("network: no dma buffer!");
899 /* We'll turn this back on if input buffers are registered. */
900 return false;
901 } else if (out_num)
902 errx(1, "Output buffers in network recv queue?");
904 /* First element is the header: we set it to 0 (no features). */
905 hdr = convert(&iov[0], struct virtio_net_hdr);
906 hdr->flags = 0;
907 hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
909 /* Read the packet from the device directly into the Guest's buffer. */
910 len = readv(dev->fd, iov+1, in_num-1);
911 if (len <= 0)
912 err(1, "reading network");
914 /* Tell the Guest about the new packet. */
915 add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len);
917 verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
918 ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
919 head != dev->vq->vring.num ? "sent" : "discarded");
921 /* All good. */
922 return true;
925 /*L:215 This is the callback attached to the network and console input
926 * virtqueues: it ensures we try again, in case we stopped console or net
927 * delivery because Guest didn't have any buffers. */
928 static void enable_fd(int fd, struct virtqueue *vq)
930 add_device_fd(vq->dev->fd);
931 /* Tell waker to listen to it again */
932 write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd));
935 /* Resetting a device is fairly easy. */
936 static void reset_device(struct device *dev)
938 struct virtqueue *vq;
940 verbose("Resetting device %s\n", dev->name);
941 /* Clear the status. */
942 dev->desc->status = 0;
944 /* Clear any features they've acked. */
945 memset(get_feature_bits(dev) + dev->desc->feature_len, 0,
946 dev->desc->feature_len);
948 /* Zero out the virtqueues. */
949 for (vq = dev->vq; vq; vq = vq->next) {
950 memset(vq->vring.desc, 0,
951 vring_size(vq->config.num, getpagesize()));
952 vq->last_avail_idx = 0;
956 /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
957 static void handle_output(int fd, unsigned long addr)
959 struct device *i;
960 struct virtqueue *vq;
962 /* Check each device and virtqueue. */
963 for (i = devices.dev; i; i = i->next) {
964 /* Notifications to device descriptors reset the device. */
965 if (from_guest_phys(addr) == i->desc) {
966 reset_device(i);
967 return;
970 /* Notifications to virtqueues mean output has occurred. */
971 for (vq = i->vq; vq; vq = vq->next) {
972 if (vq->config.pfn != addr/getpagesize())
973 continue;
975 /* Guest should acknowledge (and set features!) before
976 * using the device. */
977 if (i->desc->status == 0) {
978 warnx("%s gave early output", i->name);
979 return;
982 if (strcmp(vq->dev->name, "console") != 0)
983 verbose("Output to %s\n", vq->dev->name);
984 if (vq->handle_output)
985 vq->handle_output(fd, vq);
986 return;
990 /* Early console write is done using notify on a nul-terminated string
991 * in Guest memory. */
992 if (addr >= guest_limit)
993 errx(1, "Bad NOTIFY %#lx", addr);
995 write(STDOUT_FILENO, from_guest_phys(addr),
996 strnlen(from_guest_phys(addr), guest_limit - addr));
999 /* This is called when the Waker wakes us up: check for incoming file
1000 * descriptors. */
1001 static void handle_input(int fd)
1003 /* select() wants a zeroed timeval to mean "don't wait". */
1004 struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
1006 for (;;) {
1007 struct device *i;
1008 fd_set fds = devices.infds;
1010 /* If nothing is ready, we're done. */
1011 if (select(devices.max_infd+1, &fds, NULL, NULL, &poll) == 0)
1012 break;
1014 /* Otherwise, call the device(s) which have readable
1015 * file descriptors and a method of handling them. */
1016 for (i = devices.dev; i; i = i->next) {
1017 if (i->handle_input && FD_ISSET(i->fd, &fds)) {
1018 int dev_fd;
1019 if (i->handle_input(fd, i))
1020 continue;
1022 /* If handle_input() returns false, it means we
1023 * should no longer service it. Networking and
1024 * console do this when there's no input
1025 * buffers to deliver into. Console also uses
1026 * it when it discovers that stdin is
1027 * closed. */
1028 FD_CLR(i->fd, &devices.infds);
1029 /* Tell waker to ignore it too, by sending a
1030 * negative fd number (-1, since 0 is a valid
1031 * FD number). */
1032 dev_fd = -i->fd - 1;
1033 write(waker_fd, &dev_fd, sizeof(dev_fd));
1039 /*L:190
1040 * Device Setup
1042 * All devices need a descriptor so the Guest knows it exists, and a "struct
1043 * device" so the Launcher can keep track of it. We have common helper
1044 * routines to allocate and manage them. */
1046 /* The layout of the device page is a "struct lguest_device_desc" followed by a
1047 * number of virtqueue descriptors, then two sets of feature bits, then an
1048 * array of configuration bytes. This routine returns the configuration
1049 * pointer. */
1050 static u8 *device_config(const struct device *dev)
1052 return (void *)(dev->desc + 1)
1053 + dev->desc->num_vq * sizeof(struct lguest_vqconfig)
1054 + dev->desc->feature_len * 2;
1057 /* This routine allocates a new "struct lguest_device_desc" from descriptor
1058 * table page just above the Guest's normal memory. It returns a pointer to
1059 * that descriptor. */
1060 static struct lguest_device_desc *new_dev_desc(u16 type)
1062 struct lguest_device_desc d = { .type = type };
1063 void *p;
1065 /* Figure out where the next device config is, based on the last one. */
1066 if (devices.lastdev)
1067 p = device_config(devices.lastdev)
1068 + devices.lastdev->desc->config_len;
1069 else
1070 p = devices.descpage;
1072 /* We only have one page for all the descriptors. */
1073 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1074 errx(1, "Too many devices");
1076 /* p might not be aligned, so we memcpy in. */
1077 return memcpy(p, &d, sizeof(d));
1080 /* Each device descriptor is followed by the description of its virtqueues. We
1081 * specify how many descriptors the virtqueue is to have. */
1082 static void add_virtqueue(struct device *dev, unsigned int num_descs,
1083 void (*handle_output)(int fd, struct virtqueue *me))
1085 unsigned int pages;
1086 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1087 void *p;
1089 /* First we need some pages for this virtqueue. */
1090 pages = (vring_size(num_descs, getpagesize()) + getpagesize() - 1)
1091 / getpagesize();
1092 p = get_pages(pages);
1094 /* Initialize the virtqueue */
1095 vq->next = NULL;
1096 vq->last_avail_idx = 0;
1097 vq->dev = dev;
1099 /* Initialize the configuration. */
1100 vq->config.num = num_descs;
1101 vq->config.irq = devices.next_irq++;
1102 vq->config.pfn = to_guest_phys(p) / getpagesize();
1104 /* Initialize the vring. */
1105 vring_init(&vq->vring, num_descs, p, getpagesize());
1107 /* Append virtqueue to this device's descriptor. We use
1108 * device_config() to get the end of the device's current virtqueues;
1109 * we check that we haven't added any config or feature information
1110 * yet, otherwise we'd be overwriting them. */
1111 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1112 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1113 dev->desc->num_vq++;
1115 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
1117 /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1118 * second. */
1119 for (i = &dev->vq; *i; i = &(*i)->next);
1120 *i = vq;
1122 /* Set the routine to call when the Guest does something to this
1123 * virtqueue. */
1124 vq->handle_output = handle_output;
1126 /* As an optimization, set the advisory "Don't Notify Me" flag if we
1127 * don't have a handler */
1128 if (!handle_output)
1129 vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
1132 /* The first half of the feature bitmask is for us to advertise features. The
1133 * second half if for the Guest to accept features. */
1134 static void add_feature(struct device *dev, unsigned bit)
1136 u8 *features = get_feature_bits(dev);
1138 /* We can't extend the feature bits once we've added config bytes */
1139 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1140 assert(dev->desc->config_len == 0);
1141 dev->desc->feature_len = (bit / CHAR_BIT) + 1;
1144 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1147 /* This routine sets the configuration fields for an existing device's
1148 * descriptor. It only works for the last device, but that's OK because that's
1149 * how we use it. */
1150 static void set_config(struct device *dev, unsigned len, const void *conf)
1152 /* Check we haven't overflowed our single page. */
1153 if (device_config(dev) + len > devices.descpage + getpagesize())
1154 errx(1, "Too many devices");
1156 /* Copy in the config information, and store the length. */
1157 memcpy(device_config(dev), conf, len);
1158 dev->desc->config_len = len;
1161 /* This routine does all the creation and setup of a new device, including
1162 * calling new_dev_desc() to allocate the descriptor and device memory. */
1163 static struct device *new_device(const char *name, u16 type, int fd,
1164 bool (*handle_input)(int, struct device *))
1166 struct device *dev = malloc(sizeof(*dev));
1168 /* Now we populate the fields one at a time. */
1169 dev->fd = fd;
1170 /* If we have an input handler for this file descriptor, then we add it
1171 * to the device_list's fdset and maxfd. */
1172 if (handle_input)
1173 add_device_fd(dev->fd);
1174 dev->desc = new_dev_desc(type);
1175 dev->handle_input = handle_input;
1176 dev->name = name;
1177 dev->vq = NULL;
1179 /* Append to device list. Prepending to a single-linked list is
1180 * easier, but the user expects the devices to be arranged on the bus
1181 * in command-line order. The first network device on the command line
1182 * is eth0, the first block device /dev/vda, etc. */
1183 if (devices.lastdev)
1184 devices.lastdev->next = dev;
1185 else
1186 devices.dev = dev;
1187 devices.lastdev = dev;
1189 return dev;
1192 /* Our first setup routine is the console. It's a fairly simple device, but
1193 * UNIX tty handling makes it uglier than it could be. */
1194 static void setup_console(void)
1196 struct device *dev;
1198 /* If we can save the initial standard input settings... */
1199 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1200 struct termios term = orig_term;
1201 /* Then we turn off echo, line buffering and ^C etc. We want a
1202 * raw input stream to the Guest. */
1203 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1204 tcsetattr(STDIN_FILENO, TCSANOW, &term);
1205 /* If we exit gracefully, the original settings will be
1206 * restored so the user can see what they're typing. */
1207 atexit(restore_term);
1210 dev = new_device("console", VIRTIO_ID_CONSOLE,
1211 STDIN_FILENO, handle_console_input);
1212 /* We store the console state in dev->priv, and initialize it. */
1213 dev->priv = malloc(sizeof(struct console_abort));
1214 ((struct console_abort *)dev->priv)->count = 0;
1216 /* The console needs two virtqueues: the input then the output. When
1217 * they put something the input queue, we make sure we're listening to
1218 * stdin. When they put something in the output queue, we write it to
1219 * stdout. */
1220 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1221 add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
1223 verbose("device %u: console\n", devices.device_num++);
1225 /*:*/
1227 /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
1228 * --sharenet=<name> option which opens or creates a named pipe. This can be
1229 * used to send packets to another guest in a 1:1 manner.
1231 * More sopisticated is to use one of the tools developed for project like UML
1232 * to do networking.
1234 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1235 * completely generic ("here's my vring, attach to your vring") and would work
1236 * for any traffic. Of course, namespace and permissions issues need to be
1237 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1238 * multiple inter-guest channels behind one interface, although it would
1239 * require some manner of hotplugging new virtio channels.
1241 * Finally, we could implement a virtio network switch in the kernel. :*/
1243 static u32 str2ip(const char *ipaddr)
1245 unsigned int byte[4];
1247 sscanf(ipaddr, "%u.%u.%u.%u", &byte[0], &byte[1], &byte[2], &byte[3]);
1248 return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3];
1251 /* This code is "adapted" from libbridge: it attaches the Host end of the
1252 * network device to the bridge device specified by the command line.
1254 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1255 * dislike bridging), and I just try not to break it. */
1256 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1258 int ifidx;
1259 struct ifreq ifr;
1261 if (!*br_name)
1262 errx(1, "must specify bridge name");
1264 ifidx = if_nametoindex(if_name);
1265 if (!ifidx)
1266 errx(1, "interface %s does not exist!", if_name);
1268 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1269 ifr.ifr_ifindex = ifidx;
1270 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1271 err(1, "can't add %s to bridge %s", if_name, br_name);
1274 /* This sets up the Host end of the network device with an IP address, brings
1275 * it up so packets will flow, the copies the MAC address into the hwaddr
1276 * pointer. */
1277 static void configure_device(int fd, const char *devname, u32 ipaddr,
1278 unsigned char hwaddr[6])
1280 struct ifreq ifr;
1281 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1283 /* Don't read these incantations. Just cut & paste them like I did! */
1284 memset(&ifr, 0, sizeof(ifr));
1285 strcpy(ifr.ifr_name, devname);
1286 sin->sin_family = AF_INET;
1287 sin->sin_addr.s_addr = htonl(ipaddr);
1288 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1289 err(1, "Setting %s interface address", devname);
1290 ifr.ifr_flags = IFF_UP;
1291 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1292 err(1, "Bringing interface %s up", devname);
1294 /* SIOC stands for Socket I/O Control. G means Get (vs S for Set
1295 * above). IF means Interface, and HWADDR is hardware address.
1296 * Simple! */
1297 if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
1298 err(1, "getting hw address for %s", devname);
1299 memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
1302 /*L:195 Our network is a Host<->Guest network. This can either use bridging or
1303 * routing, but the principle is the same: it uses the "tun" device to inject
1304 * packets into the Host as if they came in from a normal network card. We
1305 * just shunt packets between the Guest and the tun device. */
1306 static void setup_tun_net(const char *arg)
1308 struct device *dev;
1309 struct ifreq ifr;
1310 int netfd, ipfd;
1311 u32 ip;
1312 const char *br_name = NULL;
1313 struct virtio_net_config conf;
1315 /* We open the /dev/net/tun device and tell it we want a tap device. A
1316 * tap device is like a tun device, only somehow different. To tell
1317 * the truth, I completely blundered my way through this code, but it
1318 * works now! */
1319 netfd = open_or_die("/dev/net/tun", O_RDWR);
1320 memset(&ifr, 0, sizeof(ifr));
1321 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1322 strcpy(ifr.ifr_name, "tap%d");
1323 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1324 err(1, "configuring /dev/net/tun");
1325 /* We don't need checksums calculated for packets coming in this
1326 * device: trust us! */
1327 ioctl(netfd, TUNSETNOCSUM, 1);
1329 /* First we create a new network device. */
1330 dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
1332 /* Network devices need a receive and a send queue, just like
1333 * console. */
1334 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1335 add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
1337 /* We need a socket to perform the magic network ioctls to bring up the
1338 * tap interface, connect to the bridge etc. Any socket will do! */
1339 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1340 if (ipfd < 0)
1341 err(1, "opening IP socket");
1343 /* If the command line was --tunnet=bridge:<name> do bridging. */
1344 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1345 ip = INADDR_ANY;
1346 br_name = arg + strlen(BRIDGE_PFX);
1347 add_to_bridge(ipfd, ifr.ifr_name, br_name);
1348 } else /* It is an IP address to set up the device with */
1349 ip = str2ip(arg);
1351 /* Set up the tun device, and get the mac address for the interface. */
1352 configure_device(ipfd, ifr.ifr_name, ip, conf.mac);
1354 /* Tell Guest what MAC address to use. */
1355 add_feature(dev, VIRTIO_NET_F_MAC);
1356 set_config(dev, sizeof(conf), &conf);
1358 /* We don't need the socket any more; setup is done. */
1359 close(ipfd);
1361 verbose("device %u: tun net %u.%u.%u.%u\n",
1362 devices.device_num++,
1363 (u8)(ip>>24),(u8)(ip>>16),(u8)(ip>>8),(u8)ip);
1364 if (br_name)
1365 verbose("attached to bridge: %s\n", br_name);
1368 /* Our block (disk) device should be really simple: the Guest asks for a block
1369 * number and we read or write that position in the file. Unfortunately, that
1370 * was amazingly slow: the Guest waits until the read is finished before
1371 * running anything else, even if it could have been doing useful work.
1373 * We could use async I/O, except it's reputed to suck so hard that characters
1374 * actually go missing from your code when you try to use it.
1376 * So we farm the I/O out to thread, and communicate with it via a pipe. */
1378 /* This hangs off device->priv. */
1379 struct vblk_info
1381 /* The size of the file. */
1382 off64_t len;
1384 /* The file descriptor for the file. */
1385 int fd;
1387 /* IO thread listens on this file descriptor [0]. */
1388 int workpipe[2];
1390 /* IO thread writes to this file descriptor to mark it done, then
1391 * Launcher triggers interrupt to Guest. */
1392 int done_fd;
1394 /*:*/
1396 /*L:210
1397 * The Disk
1399 * Remember that the block device is handled by a separate I/O thread. We head
1400 * straight into the core of that thread here:
1402 static bool service_io(struct device *dev)
1404 struct vblk_info *vblk = dev->priv;
1405 unsigned int head, out_num, in_num, wlen;
1406 int ret;
1407 struct virtio_blk_inhdr *in;
1408 struct virtio_blk_outhdr *out;
1409 struct iovec iov[dev->vq->vring.num];
1410 off64_t off;
1412 /* See if there's a request waiting. If not, nothing to do. */
1413 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1414 if (head == dev->vq->vring.num)
1415 return false;
1417 /* Every block request should contain at least one output buffer
1418 * (detailing the location on disk and the type of request) and one
1419 * input buffer (to hold the result). */
1420 if (out_num == 0 || in_num == 0)
1421 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1422 head, out_num, in_num);
1424 out = convert(&iov[0], struct virtio_blk_outhdr);
1425 in = convert(&iov[out_num+in_num-1], struct virtio_blk_inhdr);
1426 off = out->sector * 512;
1428 /* The block device implements "barriers", where the Guest indicates
1429 * that it wants all previous writes to occur before this write. We
1430 * don't have a way of asking our kernel to do a barrier, so we just
1431 * synchronize all the data in the file. Pretty poor, no? */
1432 if (out->type & VIRTIO_BLK_T_BARRIER)
1433 fdatasync(vblk->fd);
1435 /* In general the virtio block driver is allowed to try SCSI commands.
1436 * It'd be nice if we supported eject, for example, but we don't. */
1437 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1438 fprintf(stderr, "Scsi commands unsupported\n");
1439 in->status = VIRTIO_BLK_S_UNSUPP;
1440 wlen = sizeof(*in);
1441 } else if (out->type & VIRTIO_BLK_T_OUT) {
1442 /* Write */
1444 /* Move to the right location in the block file. This can fail
1445 * if they try to write past end. */
1446 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1447 err(1, "Bad seek to sector %llu", out->sector);
1449 ret = writev(vblk->fd, iov+1, out_num-1);
1450 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1452 /* Grr... Now we know how long the descriptor they sent was, we
1453 * make sure they didn't try to write over the end of the block
1454 * file (possibly extending it). */
1455 if (ret > 0 && off + ret > vblk->len) {
1456 /* Trim it back to the correct length */
1457 ftruncate64(vblk->fd, vblk->len);
1458 /* Die, bad Guest, die. */
1459 errx(1, "Write past end %llu+%u", off, ret);
1461 wlen = sizeof(*in);
1462 in->status = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1463 } else {
1464 /* Read */
1466 /* Move to the right location in the block file. This can fail
1467 * if they try to read past end. */
1468 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1469 err(1, "Bad seek to sector %llu", out->sector);
1471 ret = readv(vblk->fd, iov+1, in_num-1);
1472 verbose("READ from sector %llu: %i\n", out->sector, ret);
1473 if (ret >= 0) {
1474 wlen = sizeof(*in) + ret;
1475 in->status = VIRTIO_BLK_S_OK;
1476 } else {
1477 wlen = sizeof(*in);
1478 in->status = VIRTIO_BLK_S_IOERR;
1482 /* We can't trigger an IRQ, because we're not the Launcher. It does
1483 * that when we tell it we're done. */
1484 add_used(dev->vq, head, wlen);
1485 return true;
1488 /* This is the thread which actually services the I/O. */
1489 static int io_thread(void *_dev)
1491 struct device *dev = _dev;
1492 struct vblk_info *vblk = dev->priv;
1493 char c;
1495 /* Close other side of workpipe so we get 0 read when main dies. */
1496 close(vblk->workpipe[1]);
1497 /* Close the other side of the done_fd pipe. */
1498 close(dev->fd);
1500 /* When this read fails, it means Launcher died, so we follow. */
1501 while (read(vblk->workpipe[0], &c, 1) == 1) {
1502 /* We acknowledge each request immediately to reduce latency,
1503 * rather than waiting until we've done them all. I haven't
1504 * measured to see if it makes any difference. */
1505 while (service_io(dev))
1506 write(vblk->done_fd, &c, 1);
1508 return 0;
1511 /* Now we've seen the I/O thread, we return to the Launcher to see what happens
1512 * when the thread tells us it's completed some I/O. */
1513 static bool handle_io_finish(int fd, struct device *dev)
1515 char c;
1517 /* If the I/O thread died, presumably it printed the error, so we
1518 * simply exit. */
1519 if (read(dev->fd, &c, 1) != 1)
1520 exit(1);
1522 /* It did some work, so trigger the irq. */
1523 trigger_irq(fd, dev->vq);
1524 return true;
1527 /* When the Guest submits some I/O, we just need to wake the I/O thread. */
1528 static void handle_virtblk_output(int fd, struct virtqueue *vq)
1530 struct vblk_info *vblk = vq->dev->priv;
1531 char c = 0;
1533 /* Wake up I/O thread and tell it to go to work! */
1534 if (write(vblk->workpipe[1], &c, 1) != 1)
1535 /* Presumably it indicated why it died. */
1536 exit(1);
1539 /*L:198 This actually sets up a virtual block device. */
1540 static void setup_block_file(const char *filename)
1542 int p[2];
1543 struct device *dev;
1544 struct vblk_info *vblk;
1545 void *stack;
1546 struct virtio_blk_config conf;
1548 /* This is the pipe the I/O thread will use to tell us I/O is done. */
1549 pipe(p);
1551 /* The device responds to return from I/O thread. */
1552 dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
1554 /* The device has one virtqueue, where the Guest places requests. */
1555 add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
1557 /* Allocate the room for our own bookkeeping */
1558 vblk = dev->priv = malloc(sizeof(*vblk));
1560 /* First we open the file and store the length. */
1561 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1562 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1564 /* We support barriers. */
1565 add_feature(dev, VIRTIO_BLK_F_BARRIER);
1567 /* Tell Guest how many sectors this device has. */
1568 conf.capacity = cpu_to_le64(vblk->len / 512);
1570 /* Tell Guest not to put in too many descriptors at once: two are used
1571 * for the in and out elements. */
1572 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1573 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1575 set_config(dev, sizeof(conf), &conf);
1577 /* The I/O thread writes to this end of the pipe when done. */
1578 vblk->done_fd = p[1];
1580 /* This is the second pipe, which is how we tell the I/O thread about
1581 * more work. */
1582 pipe(vblk->workpipe);
1584 /* Create stack for thread and run it */
1585 stack = malloc(32768);
1586 /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
1587 * becoming a zombie. */
1588 if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
1589 err(1, "Creating clone");
1591 /* We don't need to keep the I/O thread's end of the pipes open. */
1592 close(vblk->done_fd);
1593 close(vblk->workpipe[0]);
1595 verbose("device %u: virtblock %llu sectors\n",
1596 devices.device_num, le64_to_cpu(conf.capacity));
1598 /* That's the end of device setup. :*/
1600 /* Reboot */
1601 static void __attribute__((noreturn)) restart_guest(void)
1603 unsigned int i;
1605 /* Closing pipes causes the waker thread and io_threads to die, and
1606 * closing /dev/lguest cleans up the Guest. Since we don't track all
1607 * open fds, we simply close everything beyond stderr. */
1608 for (i = 3; i < FD_SETSIZE; i++)
1609 close(i);
1610 execv(main_args[0], main_args);
1611 err(1, "Could not exec %s", main_args[0]);
1614 /*L:220 Finally we reach the core of the Launcher, which runs the Guest, serves
1615 * its input and output, and finally, lays it to rest. */
1616 static void __attribute__((noreturn)) run_guest(int lguest_fd)
1618 for (;;) {
1619 unsigned long args[] = { LHREQ_BREAK, 0 };
1620 unsigned long notify_addr;
1621 int readval;
1623 /* We read from the /dev/lguest device to run the Guest. */
1624 readval = pread(lguest_fd, &notify_addr,
1625 sizeof(notify_addr), cpu_id);
1627 /* One unsigned long means the Guest did HCALL_NOTIFY */
1628 if (readval == sizeof(notify_addr)) {
1629 verbose("Notify on address %#lx\n", notify_addr);
1630 handle_output(lguest_fd, notify_addr);
1631 continue;
1632 /* ENOENT means the Guest died. Reading tells us why. */
1633 } else if (errno == ENOENT) {
1634 char reason[1024] = { 0 };
1635 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
1636 errx(1, "%s", reason);
1637 /* ERESTART means that we need to reboot the guest */
1638 } else if (errno == ERESTART) {
1639 restart_guest();
1640 /* EAGAIN means the Waker wanted us to look at some input.
1641 * Anything else means a bug or incompatible change. */
1642 } else if (errno != EAGAIN)
1643 err(1, "Running guest failed");
1645 /* Only service input on thread for CPU 0. */
1646 if (cpu_id != 0)
1647 continue;
1649 /* Service input, then unset the BREAK to release the Waker. */
1650 handle_input(lguest_fd);
1651 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
1652 err(1, "Resetting break");
1656 * This is the end of the Launcher. The good news: we are over halfway
1657 * through! The bad news: the most fiendish part of the code still lies ahead
1658 * of us.
1660 * Are you ready? Take a deep breath and join me in the core of the Host, in
1661 * "make Host".
1664 static struct option opts[] = {
1665 { "verbose", 0, NULL, 'v' },
1666 { "tunnet", 1, NULL, 't' },
1667 { "block", 1, NULL, 'b' },
1668 { "initrd", 1, NULL, 'i' },
1669 { NULL },
1671 static void usage(void)
1673 errx(1, "Usage: lguest [--verbose] "
1674 "[--tunnet=(<ipaddr>|bridge:<bridgename>)\n"
1675 "|--block=<filename>|--initrd=<filename>]...\n"
1676 "<mem-in-mb> vmlinux [args...]");
1679 /*L:105 The main routine is where the real work begins: */
1680 int main(int argc, char *argv[])
1682 /* Memory, top-level pagetable, code startpoint and size of the
1683 * (optional) initrd. */
1684 unsigned long mem = 0, pgdir, start, initrd_size = 0;
1685 /* Two temporaries and the /dev/lguest file descriptor. */
1686 int i, c, lguest_fd;
1687 /* The boot information for the Guest. */
1688 struct boot_params *boot;
1689 /* If they specify an initrd file to load. */
1690 const char *initrd_name = NULL;
1692 /* Save the args: we "reboot" by execing ourselves again. */
1693 main_args = argv;
1694 /* We don't "wait" for the children, so prevent them from becoming
1695 * zombies. */
1696 signal(SIGCHLD, SIG_IGN);
1698 /* First we initialize the device list. Since console and network
1699 * device receive input from a file descriptor, we keep an fdset
1700 * (infds) and the maximum fd number (max_infd) with the head of the
1701 * list. We also keep a pointer to the last device. Finally, we keep
1702 * the next interrupt number to hand out (1: remember that 0 is used by
1703 * the timer). */
1704 FD_ZERO(&devices.infds);
1705 devices.max_infd = -1;
1706 devices.lastdev = NULL;
1707 devices.next_irq = 1;
1709 cpu_id = 0;
1710 /* We need to know how much memory so we can set up the device
1711 * descriptor and memory pages for the devices as we parse the command
1712 * line. So we quickly look through the arguments to find the amount
1713 * of memory now. */
1714 for (i = 1; i < argc; i++) {
1715 if (argv[i][0] != '-') {
1716 mem = atoi(argv[i]) * 1024 * 1024;
1717 /* We start by mapping anonymous pages over all of
1718 * guest-physical memory range. This fills it with 0,
1719 * and ensures that the Guest won't be killed when it
1720 * tries to access it. */
1721 guest_base = map_zeroed_pages(mem / getpagesize()
1722 + DEVICE_PAGES);
1723 guest_limit = mem;
1724 guest_max = mem + DEVICE_PAGES*getpagesize();
1725 devices.descpage = get_pages(1);
1726 break;
1730 /* The options are fairly straight-forward */
1731 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1732 switch (c) {
1733 case 'v':
1734 verbose = true;
1735 break;
1736 case 't':
1737 setup_tun_net(optarg);
1738 break;
1739 case 'b':
1740 setup_block_file(optarg);
1741 break;
1742 case 'i':
1743 initrd_name = optarg;
1744 break;
1745 default:
1746 warnx("Unknown argument %s", argv[optind]);
1747 usage();
1750 /* After the other arguments we expect memory and kernel image name,
1751 * followed by command line arguments for the kernel. */
1752 if (optind + 2 > argc)
1753 usage();
1755 verbose("Guest base is at %p\n", guest_base);
1757 /* We always have a console device */
1758 setup_console();
1760 /* Now we load the kernel */
1761 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1763 /* Boot information is stashed at physical address 0 */
1764 boot = from_guest_phys(0);
1766 /* Map the initrd image if requested (at top of physical memory) */
1767 if (initrd_name) {
1768 initrd_size = load_initrd(initrd_name, mem);
1769 /* These are the location in the Linux boot header where the
1770 * start and size of the initrd are expected to be found. */
1771 boot->hdr.ramdisk_image = mem - initrd_size;
1772 boot->hdr.ramdisk_size = initrd_size;
1773 /* The bootloader type 0xFF means "unknown"; that's OK. */
1774 boot->hdr.type_of_loader = 0xFF;
1777 /* Set up the initial linear pagetables, starting below the initrd. */
1778 pgdir = setup_pagetables(mem, initrd_size);
1780 /* The Linux boot header contains an "E820" memory map: ours is a
1781 * simple, single region. */
1782 boot->e820_entries = 1;
1783 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
1784 /* The boot header contains a command line pointer: we put the command
1785 * line after the boot header. */
1786 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
1787 /* We use a simple helper to copy the arguments separated by spaces. */
1788 concat((char *)(boot + 1), argv+optind+2);
1790 /* Boot protocol version: 2.07 supports the fields for lguest. */
1791 boot->hdr.version = 0x207;
1793 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
1794 boot->hdr.hardware_subarch = 1;
1796 /* Tell the entry path not to try to reload segment registers. */
1797 boot->hdr.loadflags |= KEEP_SEGMENTS;
1799 /* We tell the kernel to initialize the Guest: this returns the open
1800 * /dev/lguest file descriptor. */
1801 lguest_fd = tell_kernel(pgdir, start);
1803 /* We fork off a child process, which wakes the Launcher whenever one
1804 * of the input file descriptors needs attention. Otherwise we would
1805 * run the Guest until it tries to output something. */
1806 waker_fd = setup_waker(lguest_fd);
1808 /* Finally, run the Guest. This doesn't return. */
1809 run_guest(lguest_fd);
1811 /*:*/
1813 /*M:999
1814 * Mastery is done: you now know everything I do.
1816 * But surely you have seen code, features and bugs in your wanderings which
1817 * you now yearn to attack? That is the real game, and I look forward to you
1818 * patching and forking lguest into the Your-Name-Here-visor.
1820 * Farewell, and good coding!
1821 * Rusty Russell.