Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / arch / ia64 / kernel / mca.c
blobfb5206129a656c290114eba7e23970ee5a715f91
1 /*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
5 * Copyright (C) 2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Copyright (C) 2002 Dell Inc.
9 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
11 * Copyright (C) 2002 Intel
12 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
14 * Copyright (C) 2001 Intel
15 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
17 * Copyright (C) 2000 Intel
18 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
20 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
21 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
23 * Copyright (C) 2006 FUJITSU LIMITED
24 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
26 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
27 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28 * added min save state dump, added INIT handler.
30 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
31 * Added setup of CMCI and CPEI IRQs, logging of corrected platform
32 * errors, completed code for logging of corrected & uncorrected
33 * machine check errors, and updated for conformance with Nov. 2000
34 * revision of the SAL 3.0 spec.
36 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
37 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38 * set SAL default return values, changed error record structure to
39 * linked list, added init call to sal_get_state_info_size().
41 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
42 * GUID cleanups.
44 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
45 * Added INIT backtrace support.
47 * 2003-12-08 Keith Owens <kaos@sgi.com>
48 * smp_call_function() must not be called from interrupt context
49 * (can deadlock on tasklist_lock).
50 * Use keventd to call smp_call_function().
52 * 2004-02-01 Keith Owens <kaos@sgi.com>
53 * Avoid deadlock when using printk() for MCA and INIT records.
54 * Delete all record printing code, moved to salinfo_decode in user
55 * space. Mark variables and functions static where possible.
56 * Delete dead variables and functions. Reorder to remove the need
57 * for forward declarations and to consolidate related code.
59 * 2005-08-12 Keith Owens <kaos@sgi.com>
60 * Convert MCA/INIT handlers to use per event stacks and SAL/OS
61 * state.
63 * 2005-10-07 Keith Owens <kaos@sgi.com>
64 * Add notify_die() hooks.
66 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
67 * Add printing support for MCA/INIT.
69 * 2007-04-27 Russ Anderson <rja@sgi.com>
70 * Support multiple cpus going through OS_MCA in the same event.
72 #include <linux/types.h>
73 #include <linux/init.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/irq.h>
77 #include <linux/bootmem.h>
78 #include <linux/acpi.h>
79 #include <linux/timer.h>
80 #include <linux/module.h>
81 #include <linux/kernel.h>
82 #include <linux/smp.h>
83 #include <linux/workqueue.h>
84 #include <linux/cpumask.h>
85 #include <linux/kdebug.h>
86 #include <linux/cpu.h>
88 #include <asm/delay.h>
89 #include <asm/machvec.h>
90 #include <asm/meminit.h>
91 #include <asm/page.h>
92 #include <asm/ptrace.h>
93 #include <asm/system.h>
94 #include <asm/sal.h>
95 #include <asm/mca.h>
96 #include <asm/kexec.h>
98 #include <asm/irq.h>
99 #include <asm/hw_irq.h>
101 #include "mca_drv.h"
102 #include "entry.h"
104 #if defined(IA64_MCA_DEBUG_INFO)
105 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
106 #else
107 # define IA64_MCA_DEBUG(fmt...)
108 #endif
110 /* Used by mca_asm.S */
111 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
112 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
113 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
114 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
116 unsigned long __per_cpu_mca[NR_CPUS];
118 /* In mca_asm.S */
119 extern void ia64_os_init_dispatch_monarch (void);
120 extern void ia64_os_init_dispatch_slave (void);
122 static int monarch_cpu = -1;
124 static ia64_mc_info_t ia64_mc_info;
126 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
127 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
128 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
129 #define CPE_HISTORY_LENGTH 5
130 #define CMC_HISTORY_LENGTH 5
132 #ifdef CONFIG_ACPI
133 static struct timer_list cpe_poll_timer;
134 #endif
135 static struct timer_list cmc_poll_timer;
137 * This variable tells whether we are currently in polling mode.
138 * Start with this in the wrong state so we won't play w/ timers
139 * before the system is ready.
141 static int cmc_polling_enabled = 1;
144 * Clearing this variable prevents CPE polling from getting activated
145 * in mca_late_init. Use it if your system doesn't provide a CPEI,
146 * but encounters problems retrieving CPE logs. This should only be
147 * necessary for debugging.
149 static int cpe_poll_enabled = 1;
151 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
153 static int mca_init __initdata;
156 * limited & delayed printing support for MCA/INIT handler
159 #define mprintk(fmt...) ia64_mca_printk(fmt)
161 #define MLOGBUF_SIZE (512+256*NR_CPUS)
162 #define MLOGBUF_MSGMAX 256
163 static char mlogbuf[MLOGBUF_SIZE];
164 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
165 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
166 static unsigned long mlogbuf_start;
167 static unsigned long mlogbuf_end;
168 static unsigned int mlogbuf_finished = 0;
169 static unsigned long mlogbuf_timestamp = 0;
171 static int loglevel_save = -1;
172 #define BREAK_LOGLEVEL(__console_loglevel) \
173 oops_in_progress = 1; \
174 if (loglevel_save < 0) \
175 loglevel_save = __console_loglevel; \
176 __console_loglevel = 15;
178 #define RESTORE_LOGLEVEL(__console_loglevel) \
179 if (loglevel_save >= 0) { \
180 __console_loglevel = loglevel_save; \
181 loglevel_save = -1; \
183 mlogbuf_finished = 0; \
184 oops_in_progress = 0;
187 * Push messages into buffer, print them later if not urgent.
189 void ia64_mca_printk(const char *fmt, ...)
191 va_list args;
192 int printed_len;
193 char temp_buf[MLOGBUF_MSGMAX];
194 char *p;
196 va_start(args, fmt);
197 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
198 va_end(args);
200 /* Copy the output into mlogbuf */
201 if (oops_in_progress) {
202 /* mlogbuf was abandoned, use printk directly instead. */
203 printk(temp_buf);
204 } else {
205 spin_lock(&mlogbuf_wlock);
206 for (p = temp_buf; *p; p++) {
207 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
208 if (next != mlogbuf_start) {
209 mlogbuf[mlogbuf_end] = *p;
210 mlogbuf_end = next;
211 } else {
212 /* buffer full */
213 break;
216 mlogbuf[mlogbuf_end] = '\0';
217 spin_unlock(&mlogbuf_wlock);
220 EXPORT_SYMBOL(ia64_mca_printk);
223 * Print buffered messages.
224 * NOTE: call this after returning normal context. (ex. from salinfod)
226 void ia64_mlogbuf_dump(void)
228 char temp_buf[MLOGBUF_MSGMAX];
229 char *p;
230 unsigned long index;
231 unsigned long flags;
232 unsigned int printed_len;
234 /* Get output from mlogbuf */
235 while (mlogbuf_start != mlogbuf_end) {
236 temp_buf[0] = '\0';
237 p = temp_buf;
238 printed_len = 0;
240 spin_lock_irqsave(&mlogbuf_rlock, flags);
242 index = mlogbuf_start;
243 while (index != mlogbuf_end) {
244 *p = mlogbuf[index];
245 index = (index + 1) % MLOGBUF_SIZE;
246 if (!*p)
247 break;
248 p++;
249 if (++printed_len >= MLOGBUF_MSGMAX - 1)
250 break;
252 *p = '\0';
253 if (temp_buf[0])
254 printk(temp_buf);
255 mlogbuf_start = index;
257 mlogbuf_timestamp = 0;
258 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
261 EXPORT_SYMBOL(ia64_mlogbuf_dump);
264 * Call this if system is going to down or if immediate flushing messages to
265 * console is required. (ex. recovery was failed, crash dump is going to be
266 * invoked, long-wait rendezvous etc.)
267 * NOTE: this should be called from monarch.
269 static void ia64_mlogbuf_finish(int wait)
271 BREAK_LOGLEVEL(console_loglevel);
273 spin_lock_init(&mlogbuf_rlock);
274 ia64_mlogbuf_dump();
275 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
276 "MCA/INIT might be dodgy or fail.\n");
278 if (!wait)
279 return;
281 /* wait for console */
282 printk("Delaying for 5 seconds...\n");
283 udelay(5*1000000);
285 mlogbuf_finished = 1;
289 * Print buffered messages from INIT context.
291 static void ia64_mlogbuf_dump_from_init(void)
293 if (mlogbuf_finished)
294 return;
296 if (mlogbuf_timestamp && (mlogbuf_timestamp + 30*HZ > jiffies)) {
297 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
298 " and the system seems to be messed up.\n");
299 ia64_mlogbuf_finish(0);
300 return;
303 if (!spin_trylock(&mlogbuf_rlock)) {
304 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
305 "Generated messages other than stack dump will be "
306 "buffered to mlogbuf and will be printed later.\n");
307 printk(KERN_ERR "INIT: If messages would not printed after "
308 "this INIT, wait 30sec and assert INIT again.\n");
309 if (!mlogbuf_timestamp)
310 mlogbuf_timestamp = jiffies;
311 return;
313 spin_unlock(&mlogbuf_rlock);
314 ia64_mlogbuf_dump();
317 static void inline
318 ia64_mca_spin(const char *func)
320 if (monarch_cpu == smp_processor_id())
321 ia64_mlogbuf_finish(0);
322 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
323 while (1)
324 cpu_relax();
327 * IA64_MCA log support
329 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
330 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
332 typedef struct ia64_state_log_s
334 spinlock_t isl_lock;
335 int isl_index;
336 unsigned long isl_count;
337 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
338 } ia64_state_log_t;
340 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
342 #define IA64_LOG_ALLOCATE(it, size) \
343 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
344 (ia64_err_rec_t *)alloc_bootmem(size); \
345 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
346 (ia64_err_rec_t *)alloc_bootmem(size);}
347 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
348 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
349 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
350 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
351 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
352 #define IA64_LOG_INDEX_INC(it) \
353 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
354 ia64_state_log[it].isl_count++;}
355 #define IA64_LOG_INDEX_DEC(it) \
356 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
357 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
358 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
359 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
362 * ia64_log_init
363 * Reset the OS ia64 log buffer
364 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
365 * Outputs : None
367 static void __init
368 ia64_log_init(int sal_info_type)
370 u64 max_size = 0;
372 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
373 IA64_LOG_LOCK_INIT(sal_info_type);
375 // SAL will tell us the maximum size of any error record of this type
376 max_size = ia64_sal_get_state_info_size(sal_info_type);
377 if (!max_size)
378 /* alloc_bootmem() doesn't like zero-sized allocations! */
379 return;
381 // set up OS data structures to hold error info
382 IA64_LOG_ALLOCATE(sal_info_type, max_size);
383 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
384 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
388 * ia64_log_get
390 * Get the current MCA log from SAL and copy it into the OS log buffer.
392 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
393 * irq_safe whether you can use printk at this point
394 * Outputs : size (total record length)
395 * *buffer (ptr to error record)
398 static u64
399 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
401 sal_log_record_header_t *log_buffer;
402 u64 total_len = 0;
403 unsigned long s;
405 IA64_LOG_LOCK(sal_info_type);
407 /* Get the process state information */
408 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
410 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
412 if (total_len) {
413 IA64_LOG_INDEX_INC(sal_info_type);
414 IA64_LOG_UNLOCK(sal_info_type);
415 if (irq_safe) {
416 <<<<<<< HEAD:arch/ia64/kernel/mca.c
417 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
418 "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
419 =======
420 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
421 __func__, sal_info_type, total_len);
422 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
424 *buffer = (u8 *) log_buffer;
425 return total_len;
426 } else {
427 IA64_LOG_UNLOCK(sal_info_type);
428 return 0;
433 * ia64_mca_log_sal_error_record
435 * This function retrieves a specified error record type from SAL
436 * and wakes up any processes waiting for error records.
438 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
439 * FIXME: remove MCA and irq_safe.
441 static void
442 ia64_mca_log_sal_error_record(int sal_info_type)
444 u8 *buffer;
445 sal_log_record_header_t *rh;
446 u64 size;
447 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
448 #ifdef IA64_MCA_DEBUG_INFO
449 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
450 #endif
452 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
453 if (!size)
454 return;
456 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
458 if (irq_safe)
459 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
460 smp_processor_id(),
461 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
463 /* Clear logs from corrected errors in case there's no user-level logger */
464 rh = (sal_log_record_header_t *)buffer;
465 if (rh->severity == sal_log_severity_corrected)
466 ia64_sal_clear_state_info(sal_info_type);
470 * search_mca_table
471 * See if the MCA surfaced in an instruction range
472 * that has been tagged as recoverable.
474 * Inputs
475 * first First address range to check
476 * last Last address range to check
477 * ip Instruction pointer, address we are looking for
479 * Return value:
480 * 1 on Success (in the table)/ 0 on Failure (not in the table)
483 search_mca_table (const struct mca_table_entry *first,
484 const struct mca_table_entry *last,
485 unsigned long ip)
487 const struct mca_table_entry *curr;
488 u64 curr_start, curr_end;
490 curr = first;
491 while (curr <= last) {
492 curr_start = (u64) &curr->start_addr + curr->start_addr;
493 curr_end = (u64) &curr->end_addr + curr->end_addr;
495 if ((ip >= curr_start) && (ip <= curr_end)) {
496 return 1;
498 curr++;
500 return 0;
503 /* Given an address, look for it in the mca tables. */
504 int mca_recover_range(unsigned long addr)
506 extern struct mca_table_entry __start___mca_table[];
507 extern struct mca_table_entry __stop___mca_table[];
509 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
511 EXPORT_SYMBOL_GPL(mca_recover_range);
513 #ifdef CONFIG_ACPI
515 int cpe_vector = -1;
516 int ia64_cpe_irq = -1;
518 static irqreturn_t
519 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
521 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
522 static int index;
523 static DEFINE_SPINLOCK(cpe_history_lock);
525 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
526 <<<<<<< HEAD:arch/ia64/kernel/mca.c
527 __FUNCTION__, cpe_irq, smp_processor_id());
528 =======
529 __func__, cpe_irq, smp_processor_id());
530 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
532 /* SAL spec states this should run w/ interrupts enabled */
533 local_irq_enable();
535 spin_lock(&cpe_history_lock);
536 if (!cpe_poll_enabled && cpe_vector >= 0) {
538 int i, count = 1; /* we know 1 happened now */
539 unsigned long now = jiffies;
541 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
542 if (now - cpe_history[i] <= HZ)
543 count++;
546 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
547 if (count >= CPE_HISTORY_LENGTH) {
549 cpe_poll_enabled = 1;
550 spin_unlock(&cpe_history_lock);
551 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
554 * Corrected errors will still be corrected, but
555 * make sure there's a log somewhere that indicates
556 * something is generating more than we can handle.
558 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
560 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
562 /* lock already released, get out now */
563 goto out;
564 } else {
565 cpe_history[index++] = now;
566 if (index == CPE_HISTORY_LENGTH)
567 index = 0;
570 spin_unlock(&cpe_history_lock);
571 out:
572 /* Get the CPE error record and log it */
573 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
575 return IRQ_HANDLED;
578 #endif /* CONFIG_ACPI */
580 #ifdef CONFIG_ACPI
582 * ia64_mca_register_cpev
584 * Register the corrected platform error vector with SAL.
586 * Inputs
587 * cpev Corrected Platform Error Vector number
589 * Outputs
590 * None
592 void
593 ia64_mca_register_cpev (int cpev)
595 /* Register the CPE interrupt vector with SAL */
596 struct ia64_sal_retval isrv;
598 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
599 if (isrv.status) {
600 printk(KERN_ERR "Failed to register Corrected Platform "
601 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
602 return;
605 IA64_MCA_DEBUG("%s: corrected platform error "
606 <<<<<<< HEAD:arch/ia64/kernel/mca.c
607 "vector %#x registered\n", __FUNCTION__, cpev);
608 =======
609 "vector %#x registered\n", __func__, cpev);
610 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
612 #endif /* CONFIG_ACPI */
615 * ia64_mca_cmc_vector_setup
617 * Setup the corrected machine check vector register in the processor.
618 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
619 * This function is invoked on a per-processor basis.
621 * Inputs
622 * None
624 * Outputs
625 * None
627 void __cpuinit
628 ia64_mca_cmc_vector_setup (void)
630 cmcv_reg_t cmcv;
632 cmcv.cmcv_regval = 0;
633 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
634 cmcv.cmcv_vector = IA64_CMC_VECTOR;
635 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
637 <<<<<<< HEAD:arch/ia64/kernel/mca.c
638 IA64_MCA_DEBUG("%s: CPU %d corrected "
639 "machine check vector %#x registered.\n",
640 __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
641 =======
642 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
643 __func__, smp_processor_id(), IA64_CMC_VECTOR);
644 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
646 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
647 <<<<<<< HEAD:arch/ia64/kernel/mca.c
648 __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
649 =======
650 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
651 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
655 * ia64_mca_cmc_vector_disable
657 * Mask the corrected machine check vector register in the processor.
658 * This function is invoked on a per-processor basis.
660 * Inputs
661 * dummy(unused)
663 * Outputs
664 * None
666 static void
667 ia64_mca_cmc_vector_disable (void *dummy)
669 cmcv_reg_t cmcv;
671 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
673 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
674 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
676 <<<<<<< HEAD:arch/ia64/kernel/mca.c
677 IA64_MCA_DEBUG("%s: CPU %d corrected "
678 "machine check vector %#x disabled.\n",
679 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
680 =======
681 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
682 __func__, smp_processor_id(), cmcv.cmcv_vector);
683 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
687 * ia64_mca_cmc_vector_enable
689 * Unmask the corrected machine check vector register in the processor.
690 * This function is invoked on a per-processor basis.
692 * Inputs
693 * dummy(unused)
695 * Outputs
696 * None
698 static void
699 ia64_mca_cmc_vector_enable (void *dummy)
701 cmcv_reg_t cmcv;
703 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
705 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
706 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
708 <<<<<<< HEAD:arch/ia64/kernel/mca.c
709 IA64_MCA_DEBUG("%s: CPU %d corrected "
710 "machine check vector %#x enabled.\n",
711 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
712 =======
713 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
714 __func__, smp_processor_id(), cmcv.cmcv_vector);
715 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
719 * ia64_mca_cmc_vector_disable_keventd
721 * Called via keventd (smp_call_function() is not safe in interrupt context) to
722 * disable the cmc interrupt vector.
724 static void
725 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
727 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
731 * ia64_mca_cmc_vector_enable_keventd
733 * Called via keventd (smp_call_function() is not safe in interrupt context) to
734 * enable the cmc interrupt vector.
736 static void
737 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
739 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
743 * ia64_mca_wakeup
745 * Send an inter-cpu interrupt to wake-up a particular cpu.
747 * Inputs : cpuid
748 * Outputs : None
750 static void
751 ia64_mca_wakeup(int cpu)
753 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
757 * ia64_mca_wakeup_all
759 * Wakeup all the slave cpus which have rendez'ed previously.
761 * Inputs : None
762 * Outputs : None
764 static void
765 ia64_mca_wakeup_all(void)
767 int cpu;
769 /* Clear the Rendez checkin flag for all cpus */
770 for_each_online_cpu(cpu) {
771 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
772 ia64_mca_wakeup(cpu);
778 * ia64_mca_rendez_interrupt_handler
780 * This is handler used to put slave processors into spinloop
781 * while the monarch processor does the mca handling and later
782 * wake each slave up once the monarch is done. The state
783 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
784 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
785 * the cpu has come out of OS rendezvous.
787 * Inputs : None
788 * Outputs : None
790 static irqreturn_t
791 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
793 unsigned long flags;
794 int cpu = smp_processor_id();
795 struct ia64_mca_notify_die nd =
796 { .sos = NULL, .monarch_cpu = &monarch_cpu };
798 /* Mask all interrupts */
799 local_irq_save(flags);
800 if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", get_irq_regs(),
801 (long)&nd, 0, 0) == NOTIFY_STOP)
802 <<<<<<< HEAD:arch/ia64/kernel/mca.c
803 ia64_mca_spin(__FUNCTION__);
804 =======
805 ia64_mca_spin(__func__);
806 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
808 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
809 /* Register with the SAL monarch that the slave has
810 * reached SAL
812 ia64_sal_mc_rendez();
814 if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", get_irq_regs(),
815 (long)&nd, 0, 0) == NOTIFY_STOP)
816 <<<<<<< HEAD:arch/ia64/kernel/mca.c
817 ia64_mca_spin(__FUNCTION__);
818 =======
819 ia64_mca_spin(__func__);
820 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
822 /* Wait for the monarch cpu to exit. */
823 while (monarch_cpu != -1)
824 cpu_relax(); /* spin until monarch leaves */
826 if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", get_irq_regs(),
827 (long)&nd, 0, 0) == NOTIFY_STOP)
828 <<<<<<< HEAD:arch/ia64/kernel/mca.c
829 ia64_mca_spin(__FUNCTION__);
830 =======
831 ia64_mca_spin(__func__);
832 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
834 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
835 /* Enable all interrupts */
836 local_irq_restore(flags);
837 return IRQ_HANDLED;
841 * ia64_mca_wakeup_int_handler
843 * The interrupt handler for processing the inter-cpu interrupt to the
844 * slave cpu which was spinning in the rendez loop.
845 * Since this spinning is done by turning off the interrupts and
846 * polling on the wakeup-interrupt bit in the IRR, there is
847 * nothing useful to be done in the handler.
849 * Inputs : wakeup_irq (Wakeup-interrupt bit)
850 * arg (Interrupt handler specific argument)
851 * Outputs : None
854 static irqreturn_t
855 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
857 return IRQ_HANDLED;
860 /* Function pointer for extra MCA recovery */
861 int (*ia64_mca_ucmc_extension)
862 (void*,struct ia64_sal_os_state*)
863 = NULL;
866 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
868 if (ia64_mca_ucmc_extension)
869 return 1;
871 ia64_mca_ucmc_extension = fn;
872 return 0;
875 void
876 ia64_unreg_MCA_extension(void)
878 if (ia64_mca_ucmc_extension)
879 ia64_mca_ucmc_extension = NULL;
882 EXPORT_SYMBOL(ia64_reg_MCA_extension);
883 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
886 static inline void
887 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
889 u64 fslot, tslot, nat;
890 *tr = *fr;
891 fslot = ((unsigned long)fr >> 3) & 63;
892 tslot = ((unsigned long)tr >> 3) & 63;
893 *tnat &= ~(1UL << tslot);
894 nat = (fnat >> fslot) & 1;
895 *tnat |= (nat << tslot);
898 /* Change the comm field on the MCA/INT task to include the pid that
899 * was interrupted, it makes for easier debugging. If that pid was 0
900 * (swapper or nested MCA/INIT) then use the start of the previous comm
901 * field suffixed with its cpu.
904 static void
905 ia64_mca_modify_comm(const struct task_struct *previous_current)
907 char *p, comm[sizeof(current->comm)];
908 if (previous_current->pid)
909 snprintf(comm, sizeof(comm), "%s %d",
910 current->comm, previous_current->pid);
911 else {
912 int l;
913 if ((p = strchr(previous_current->comm, ' ')))
914 l = p - previous_current->comm;
915 else
916 l = strlen(previous_current->comm);
917 snprintf(comm, sizeof(comm), "%s %*s %d",
918 current->comm, l, previous_current->comm,
919 task_thread_info(previous_current)->cpu);
921 memcpy(current->comm, comm, sizeof(current->comm));
924 /* On entry to this routine, we are running on the per cpu stack, see
925 * mca_asm.h. The original stack has not been touched by this event. Some of
926 * the original stack's registers will be in the RBS on this stack. This stack
927 * also contains a partial pt_regs and switch_stack, the rest of the data is in
928 * PAL minstate.
930 * The first thing to do is modify the original stack to look like a blocked
931 * task so we can run backtrace on the original task. Also mark the per cpu
932 * stack as current to ensure that we use the correct task state, it also means
933 * that we can do backtrace on the MCA/INIT handler code itself.
936 static struct task_struct *
937 ia64_mca_modify_original_stack(struct pt_regs *regs,
938 const struct switch_stack *sw,
939 struct ia64_sal_os_state *sos,
940 const char *type)
942 char *p;
943 ia64_va va;
944 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
945 const pal_min_state_area_t *ms = sos->pal_min_state;
946 struct task_struct *previous_current;
947 struct pt_regs *old_regs;
948 struct switch_stack *old_sw;
949 unsigned size = sizeof(struct pt_regs) +
950 sizeof(struct switch_stack) + 16;
951 u64 *old_bspstore, *old_bsp;
952 u64 *new_bspstore, *new_bsp;
953 u64 old_unat, old_rnat, new_rnat, nat;
954 u64 slots, loadrs = regs->loadrs;
955 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
956 u64 ar_bspstore = regs->ar_bspstore;
957 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
958 const u64 *bank;
959 const char *msg;
960 int cpu = smp_processor_id();
962 previous_current = curr_task(cpu);
963 set_curr_task(cpu, current);
964 if ((p = strchr(current->comm, ' ')))
965 *p = '\0';
967 /* Best effort attempt to cope with MCA/INIT delivered while in
968 * physical mode.
970 regs->cr_ipsr = ms->pmsa_ipsr;
971 if (ia64_psr(regs)->dt == 0) {
972 va.l = r12;
973 if (va.f.reg == 0) {
974 va.f.reg = 7;
975 r12 = va.l;
977 va.l = r13;
978 if (va.f.reg == 0) {
979 va.f.reg = 7;
980 r13 = va.l;
983 if (ia64_psr(regs)->rt == 0) {
984 va.l = ar_bspstore;
985 if (va.f.reg == 0) {
986 va.f.reg = 7;
987 ar_bspstore = va.l;
989 va.l = ar_bsp;
990 if (va.f.reg == 0) {
991 va.f.reg = 7;
992 ar_bsp = va.l;
996 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
997 * have been copied to the old stack, the old stack may fail the
998 * validation tests below. So ia64_old_stack() must restore the dirty
999 * registers from the new stack. The old and new bspstore probably
1000 * have different alignments, so loadrs calculated on the old bsp
1001 * cannot be used to restore from the new bsp. Calculate a suitable
1002 * loadrs for the new stack and save it in the new pt_regs, where
1003 * ia64_old_stack() can get it.
1005 old_bspstore = (u64 *)ar_bspstore;
1006 old_bsp = (u64 *)ar_bsp;
1007 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1008 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
1009 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1010 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1012 /* Verify the previous stack state before we change it */
1013 if (user_mode(regs)) {
1014 msg = "occurred in user space";
1015 /* previous_current is guaranteed to be valid when the task was
1016 * in user space, so ...
1018 ia64_mca_modify_comm(previous_current);
1019 goto no_mod;
1022 if (r13 != sos->prev_IA64_KR_CURRENT) {
1023 msg = "inconsistent previous current and r13";
1024 goto no_mod;
1027 if (!mca_recover_range(ms->pmsa_iip)) {
1028 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1029 msg = "inconsistent r12 and r13";
1030 goto no_mod;
1032 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1033 msg = "inconsistent ar.bspstore and r13";
1034 goto no_mod;
1036 va.p = old_bspstore;
1037 if (va.f.reg < 5) {
1038 msg = "old_bspstore is in the wrong region";
1039 goto no_mod;
1041 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1042 msg = "inconsistent ar.bsp and r13";
1043 goto no_mod;
1045 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1046 if (ar_bspstore + size > r12) {
1047 msg = "no room for blocked state";
1048 goto no_mod;
1052 ia64_mca_modify_comm(previous_current);
1054 /* Make the original task look blocked. First stack a struct pt_regs,
1055 * describing the state at the time of interrupt. mca_asm.S built a
1056 * partial pt_regs, copy it and fill in the blanks using minstate.
1058 p = (char *)r12 - sizeof(*regs);
1059 old_regs = (struct pt_regs *)p;
1060 memcpy(old_regs, regs, sizeof(*regs));
1061 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1062 * pmsa_{xip,xpsr,xfs}
1064 if (ia64_psr(regs)->ic) {
1065 old_regs->cr_iip = ms->pmsa_iip;
1066 old_regs->cr_ipsr = ms->pmsa_ipsr;
1067 old_regs->cr_ifs = ms->pmsa_ifs;
1068 } else {
1069 old_regs->cr_iip = ms->pmsa_xip;
1070 old_regs->cr_ipsr = ms->pmsa_xpsr;
1071 old_regs->cr_ifs = ms->pmsa_xfs;
1073 old_regs->pr = ms->pmsa_pr;
1074 old_regs->b0 = ms->pmsa_br0;
1075 old_regs->loadrs = loadrs;
1076 old_regs->ar_rsc = ms->pmsa_rsc;
1077 old_unat = old_regs->ar_unat;
1078 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1079 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1080 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1081 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1082 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1083 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1084 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1085 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1086 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1087 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1088 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1089 if (ia64_psr(old_regs)->bn)
1090 bank = ms->pmsa_bank1_gr;
1091 else
1092 bank = ms->pmsa_bank0_gr;
1093 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1094 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1095 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1096 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1097 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1098 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1099 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1100 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1101 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1102 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1103 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1104 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1105 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1106 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1107 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1108 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1110 /* Next stack a struct switch_stack. mca_asm.S built a partial
1111 * switch_stack, copy it and fill in the blanks using pt_regs and
1112 * minstate.
1114 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1115 * ar.pfs is set to 0.
1117 * unwind.c::unw_unwind() does special processing for interrupt frames.
1118 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1119 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1120 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1121 * switch_stack on the original stack so it will unwind correctly when
1122 * unwind.c reads pt_regs.
1124 * thread.ksp is updated to point to the synthesized switch_stack.
1126 p -= sizeof(struct switch_stack);
1127 old_sw = (struct switch_stack *)p;
1128 memcpy(old_sw, sw, sizeof(*sw));
1129 old_sw->caller_unat = old_unat;
1130 old_sw->ar_fpsr = old_regs->ar_fpsr;
1131 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1132 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1133 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1134 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1135 old_sw->b0 = (u64)ia64_leave_kernel;
1136 old_sw->b1 = ms->pmsa_br1;
1137 old_sw->ar_pfs = 0;
1138 old_sw->ar_unat = old_unat;
1139 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1140 previous_current->thread.ksp = (u64)p - 16;
1142 /* Finally copy the original stack's registers back to its RBS.
1143 * Registers from ar.bspstore through ar.bsp at the time of the event
1144 * are in the current RBS, copy them back to the original stack. The
1145 * copy must be done register by register because the original bspstore
1146 * and the current one have different alignments, so the saved RNAT
1147 * data occurs at different places.
1149 * mca_asm does cover, so the old_bsp already includes all registers at
1150 * the time of MCA/INIT. It also does flushrs, so all registers before
1151 * this function have been written to backing store on the MCA/INIT
1152 * stack.
1154 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1155 old_rnat = regs->ar_rnat;
1156 while (slots--) {
1157 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1158 new_rnat = ia64_get_rnat(new_bspstore++);
1160 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1161 *old_bspstore++ = old_rnat;
1162 old_rnat = 0;
1164 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1165 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1166 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1167 *old_bspstore++ = *new_bspstore++;
1169 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1170 old_sw->ar_rnat = old_rnat;
1172 sos->prev_task = previous_current;
1173 return previous_current;
1175 no_mod:
1176 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1177 smp_processor_id(), type, msg);
1178 return previous_current;
1181 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1182 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1183 * not entered rendezvous yet then wait a bit. The assumption is that any
1184 * slave that has not rendezvoused after a reasonable time is never going to do
1185 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1186 * interrupt, as well as cpus that receive the INIT slave event.
1189 static void
1190 ia64_wait_for_slaves(int monarch, const char *type)
1192 int c, i , wait;
1195 * wait 5 seconds total for slaves (arbitrary)
1197 for (i = 0; i < 5000; i++) {
1198 wait = 0;
1199 for_each_online_cpu(c) {
1200 if (c == monarch)
1201 continue;
1202 if (ia64_mc_info.imi_rendez_checkin[c]
1203 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1204 udelay(1000); /* short wait */
1205 wait = 1;
1206 break;
1209 if (!wait)
1210 goto all_in;
1214 * Maybe slave(s) dead. Print buffered messages immediately.
1216 ia64_mlogbuf_finish(0);
1217 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1218 for_each_online_cpu(c) {
1219 if (c == monarch)
1220 continue;
1221 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1222 mprintk(" %d", c);
1224 mprintk("\n");
1225 return;
1227 all_in:
1228 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1229 return;
1233 * ia64_mca_handler
1235 * This is uncorrectable machine check handler called from OS_MCA
1236 * dispatch code which is in turn called from SAL_CHECK().
1237 * This is the place where the core of OS MCA handling is done.
1238 * Right now the logs are extracted and displayed in a well-defined
1239 * format. This handler code is supposed to be run only on the
1240 * monarch processor. Once the monarch is done with MCA handling
1241 * further MCA logging is enabled by clearing logs.
1242 * Monarch also has the duty of sending wakeup-IPIs to pull the
1243 * slave processors out of rendezvous spinloop.
1245 * If multiple processors call into OS_MCA, the first will become
1246 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1247 * bitmask. After the first monarch has processed its MCA, it
1248 * will wake up the next cpu in the mca_cpu bitmask and then go
1249 * into the rendezvous loop. When all processors have serviced
1250 * their MCA, the last monarch frees up the rest of the processors.
1252 void
1253 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1254 struct ia64_sal_os_state *sos)
1256 int recover, cpu = smp_processor_id();
1257 struct task_struct *previous_current;
1258 struct ia64_mca_notify_die nd =
1259 { .sos = sos, .monarch_cpu = &monarch_cpu };
1260 static atomic_t mca_count;
1261 static cpumask_t mca_cpu;
1263 if (atomic_add_return(1, &mca_count) == 1) {
1264 monarch_cpu = cpu;
1265 sos->monarch = 1;
1266 } else {
1267 cpu_set(cpu, mca_cpu);
1268 sos->monarch = 0;
1270 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1271 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1273 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1275 if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
1276 == NOTIFY_STOP)
1277 <<<<<<< HEAD:arch/ia64/kernel/mca.c
1278 ia64_mca_spin(__FUNCTION__);
1279 =======
1280 ia64_mca_spin(__func__);
1281 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
1283 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1284 if (sos->monarch) {
1285 ia64_wait_for_slaves(cpu, "MCA");
1287 /* Wakeup all the processors which are spinning in the
1288 * rendezvous loop. They will leave SAL, then spin in the OS
1289 * with interrupts disabled until this monarch cpu leaves the
1290 * MCA handler. That gets control back to the OS so we can
1291 * backtrace the other cpus, backtrace when spinning in SAL
1292 * does not work.
1294 ia64_mca_wakeup_all();
1295 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
1296 == NOTIFY_STOP)
1297 <<<<<<< HEAD:arch/ia64/kernel/mca.c
1298 ia64_mca_spin(__FUNCTION__);
1299 =======
1300 ia64_mca_spin(__func__);
1301 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
1302 } else {
1303 while (cpu_isset(cpu, mca_cpu))
1304 cpu_relax(); /* spin until monarch wakes us */
1307 /* Get the MCA error record and log it */
1308 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1310 /* MCA error recovery */
1311 recover = (ia64_mca_ucmc_extension
1312 && ia64_mca_ucmc_extension(
1313 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1314 sos));
1316 if (recover) {
1317 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1318 rh->severity = sal_log_severity_corrected;
1319 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1320 sos->os_status = IA64_MCA_CORRECTED;
1321 } else {
1322 /* Dump buffered message to console */
1323 ia64_mlogbuf_finish(1);
1324 #ifdef CONFIG_KEXEC
1325 atomic_set(&kdump_in_progress, 1);
1326 monarch_cpu = -1;
1327 #endif
1329 if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
1330 == NOTIFY_STOP)
1331 <<<<<<< HEAD:arch/ia64/kernel/mca.c
1332 ia64_mca_spin(__FUNCTION__);
1333 =======
1334 ia64_mca_spin(__func__);
1335 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
1338 if (atomic_dec_return(&mca_count) > 0) {
1339 int i;
1341 /* wake up the next monarch cpu,
1342 * and put this cpu in the rendez loop.
1344 for_each_online_cpu(i) {
1345 if (cpu_isset(i, mca_cpu)) {
1346 monarch_cpu = i;
1347 cpu_clear(i, mca_cpu); /* wake next cpu */
1348 while (monarch_cpu != -1)
1349 cpu_relax(); /* spin until last cpu leaves */
1350 set_curr_task(cpu, previous_current);
1351 ia64_mc_info.imi_rendez_checkin[cpu]
1352 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1353 return;
1357 set_curr_task(cpu, previous_current);
1358 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1359 monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1362 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1363 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1366 * ia64_mca_cmc_int_handler
1368 * This is corrected machine check interrupt handler.
1369 * Right now the logs are extracted and displayed in a well-defined
1370 * format.
1372 * Inputs
1373 * interrupt number
1374 * client data arg ptr
1376 * Outputs
1377 * None
1379 static irqreturn_t
1380 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1382 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1383 static int index;
1384 static DEFINE_SPINLOCK(cmc_history_lock);
1386 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1387 <<<<<<< HEAD:arch/ia64/kernel/mca.c
1388 __FUNCTION__, cmc_irq, smp_processor_id());
1389 =======
1390 __func__, cmc_irq, smp_processor_id());
1391 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
1393 /* SAL spec states this should run w/ interrupts enabled */
1394 local_irq_enable();
1396 spin_lock(&cmc_history_lock);
1397 if (!cmc_polling_enabled) {
1398 int i, count = 1; /* we know 1 happened now */
1399 unsigned long now = jiffies;
1401 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1402 if (now - cmc_history[i] <= HZ)
1403 count++;
1406 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1407 if (count >= CMC_HISTORY_LENGTH) {
1409 cmc_polling_enabled = 1;
1410 spin_unlock(&cmc_history_lock);
1411 /* If we're being hit with CMC interrupts, we won't
1412 * ever execute the schedule_work() below. Need to
1413 * disable CMC interrupts on this processor now.
1415 ia64_mca_cmc_vector_disable(NULL);
1416 schedule_work(&cmc_disable_work);
1419 * Corrected errors will still be corrected, but
1420 * make sure there's a log somewhere that indicates
1421 * something is generating more than we can handle.
1423 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1425 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1427 /* lock already released, get out now */
1428 goto out;
1429 } else {
1430 cmc_history[index++] = now;
1431 if (index == CMC_HISTORY_LENGTH)
1432 index = 0;
1435 spin_unlock(&cmc_history_lock);
1436 out:
1437 /* Get the CMC error record and log it */
1438 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1440 return IRQ_HANDLED;
1444 * ia64_mca_cmc_int_caller
1446 * Triggered by sw interrupt from CMC polling routine. Calls
1447 * real interrupt handler and either triggers a sw interrupt
1448 * on the next cpu or does cleanup at the end.
1450 * Inputs
1451 * interrupt number
1452 * client data arg ptr
1453 * Outputs
1454 * handled
1456 static irqreturn_t
1457 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1459 static int start_count = -1;
1460 unsigned int cpuid;
1462 cpuid = smp_processor_id();
1464 /* If first cpu, update count */
1465 if (start_count == -1)
1466 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1468 ia64_mca_cmc_int_handler(cmc_irq, arg);
1470 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1472 if (cpuid < NR_CPUS) {
1473 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1474 } else {
1475 /* If no log record, switch out of polling mode */
1476 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1478 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1479 schedule_work(&cmc_enable_work);
1480 cmc_polling_enabled = 0;
1482 } else {
1484 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1487 start_count = -1;
1490 return IRQ_HANDLED;
1494 * ia64_mca_cmc_poll
1496 * Poll for Corrected Machine Checks (CMCs)
1498 * Inputs : dummy(unused)
1499 * Outputs : None
1502 static void
1503 ia64_mca_cmc_poll (unsigned long dummy)
1505 /* Trigger a CMC interrupt cascade */
1506 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1510 * ia64_mca_cpe_int_caller
1512 * Triggered by sw interrupt from CPE polling routine. Calls
1513 * real interrupt handler and either triggers a sw interrupt
1514 * on the next cpu or does cleanup at the end.
1516 * Inputs
1517 * interrupt number
1518 * client data arg ptr
1519 * Outputs
1520 * handled
1522 #ifdef CONFIG_ACPI
1524 static irqreturn_t
1525 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1527 static int start_count = -1;
1528 static int poll_time = MIN_CPE_POLL_INTERVAL;
1529 unsigned int cpuid;
1531 cpuid = smp_processor_id();
1533 /* If first cpu, update count */
1534 if (start_count == -1)
1535 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1537 ia64_mca_cpe_int_handler(cpe_irq, arg);
1539 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1541 if (cpuid < NR_CPUS) {
1542 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1543 } else {
1545 * If a log was recorded, increase our polling frequency,
1546 * otherwise, backoff or return to interrupt mode.
1548 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1549 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1550 } else if (cpe_vector < 0) {
1551 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1552 } else {
1553 poll_time = MIN_CPE_POLL_INTERVAL;
1555 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1556 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1557 cpe_poll_enabled = 0;
1560 if (cpe_poll_enabled)
1561 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1562 start_count = -1;
1565 return IRQ_HANDLED;
1569 * ia64_mca_cpe_poll
1571 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1572 * on first cpu, from there it will trickle through all the cpus.
1574 * Inputs : dummy(unused)
1575 * Outputs : None
1578 static void
1579 ia64_mca_cpe_poll (unsigned long dummy)
1581 /* Trigger a CPE interrupt cascade */
1582 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1585 #endif /* CONFIG_ACPI */
1587 static int
1588 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1590 int c;
1591 struct task_struct *g, *t;
1592 if (val != DIE_INIT_MONARCH_PROCESS)
1593 return NOTIFY_DONE;
1594 #ifdef CONFIG_KEXEC
1595 if (atomic_read(&kdump_in_progress))
1596 return NOTIFY_DONE;
1597 #endif
1600 * FIXME: mlogbuf will brim over with INIT stack dumps.
1601 * To enable show_stack from INIT, we use oops_in_progress which should
1602 * be used in real oops. This would cause something wrong after INIT.
1604 BREAK_LOGLEVEL(console_loglevel);
1605 ia64_mlogbuf_dump_from_init();
1607 printk(KERN_ERR "Processes interrupted by INIT -");
1608 for_each_online_cpu(c) {
1609 struct ia64_sal_os_state *s;
1610 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1611 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1612 g = s->prev_task;
1613 if (g) {
1614 if (g->pid)
1615 printk(" %d", g->pid);
1616 else
1617 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1620 printk("\n\n");
1621 if (read_trylock(&tasklist_lock)) {
1622 do_each_thread (g, t) {
1623 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1624 show_stack(t, NULL);
1625 } while_each_thread (g, t);
1626 read_unlock(&tasklist_lock);
1628 /* FIXME: This will not restore zapped printk locks. */
1629 RESTORE_LOGLEVEL(console_loglevel);
1630 return NOTIFY_DONE;
1634 * C portion of the OS INIT handler
1636 * Called from ia64_os_init_dispatch
1638 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1639 * this event. This code is used for both monarch and slave INIT events, see
1640 * sos->monarch.
1642 * All INIT events switch to the INIT stack and change the previous process to
1643 * blocked status. If one of the INIT events is the monarch then we are
1644 * probably processing the nmi button/command. Use the monarch cpu to dump all
1645 * the processes. The slave INIT events all spin until the monarch cpu
1646 * returns. We can also get INIT slave events for MCA, in which case the MCA
1647 * process is the monarch.
1650 void
1651 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1652 struct ia64_sal_os_state *sos)
1654 static atomic_t slaves;
1655 static atomic_t monarchs;
1656 struct task_struct *previous_current;
1657 int cpu = smp_processor_id();
1658 struct ia64_mca_notify_die nd =
1659 { .sos = sos, .monarch_cpu = &monarch_cpu };
1661 (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1663 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1664 sos->proc_state_param, cpu, sos->monarch);
1665 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1667 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1668 sos->os_status = IA64_INIT_RESUME;
1670 /* FIXME: Workaround for broken proms that drive all INIT events as
1671 * slaves. The last slave that enters is promoted to be a monarch.
1672 * Remove this code in September 2006, that gives platforms a year to
1673 * fix their proms and get their customers updated.
1675 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1676 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1677 <<<<<<< HEAD:arch/ia64/kernel/mca.c
1678 __FUNCTION__, cpu);
1679 =======
1680 __func__, cpu);
1681 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
1682 atomic_dec(&slaves);
1683 sos->monarch = 1;
1686 /* FIXME: Workaround for broken proms that drive all INIT events as
1687 * monarchs. Second and subsequent monarchs are demoted to slaves.
1688 * Remove this code in September 2006, that gives platforms a year to
1689 * fix their proms and get their customers updated.
1691 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1692 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1693 <<<<<<< HEAD:arch/ia64/kernel/mca.c
1694 __FUNCTION__, cpu);
1695 =======
1696 __func__, cpu);
1697 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
1698 atomic_dec(&monarchs);
1699 sos->monarch = 0;
1702 if (!sos->monarch) {
1703 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1704 while (monarch_cpu == -1)
1705 cpu_relax(); /* spin until monarch enters */
1706 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
1707 == NOTIFY_STOP)
1708 <<<<<<< HEAD:arch/ia64/kernel/mca.c
1709 ia64_mca_spin(__FUNCTION__);
1710 =======
1711 ia64_mca_spin(__func__);
1712 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
1713 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1714 == NOTIFY_STOP)
1715 <<<<<<< HEAD:arch/ia64/kernel/mca.c
1716 ia64_mca_spin(__FUNCTION__);
1717 =======
1718 ia64_mca_spin(__func__);
1719 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
1720 while (monarch_cpu != -1)
1721 cpu_relax(); /* spin until monarch leaves */
1722 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1723 == NOTIFY_STOP)
1724 <<<<<<< HEAD:arch/ia64/kernel/mca.c
1725 ia64_mca_spin(__FUNCTION__);
1726 =======
1727 ia64_mca_spin(__func__);
1728 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
1729 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1730 set_curr_task(cpu, previous_current);
1731 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1732 atomic_dec(&slaves);
1733 return;
1736 monarch_cpu = cpu;
1737 if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
1738 == NOTIFY_STOP)
1739 <<<<<<< HEAD:arch/ia64/kernel/mca.c
1740 ia64_mca_spin(__FUNCTION__);
1741 =======
1742 ia64_mca_spin(__func__);
1743 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
1746 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1747 * generated via the BMC's command-line interface, but since the console is on the
1748 * same serial line, the user will need some time to switch out of the BMC before
1749 * the dump begins.
1751 mprintk("Delaying for 5 seconds...\n");
1752 udelay(5*1000000);
1753 ia64_wait_for_slaves(cpu, "INIT");
1754 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1755 * to default_monarch_init_process() above and just print all the
1756 * tasks.
1758 if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1759 == NOTIFY_STOP)
1760 <<<<<<< HEAD:arch/ia64/kernel/mca.c
1761 ia64_mca_spin(__FUNCTION__);
1762 =======
1763 ia64_mca_spin(__func__);
1764 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
1765 if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1766 == NOTIFY_STOP)
1767 <<<<<<< HEAD:arch/ia64/kernel/mca.c
1768 ia64_mca_spin(__FUNCTION__);
1769 =======
1770 ia64_mca_spin(__func__);
1771 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
1772 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1773 atomic_dec(&monarchs);
1774 set_curr_task(cpu, previous_current);
1775 monarch_cpu = -1;
1776 return;
1779 static int __init
1780 ia64_mca_disable_cpe_polling(char *str)
1782 cpe_poll_enabled = 0;
1783 return 1;
1786 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1788 static struct irqaction cmci_irqaction = {
1789 .handler = ia64_mca_cmc_int_handler,
1790 .flags = IRQF_DISABLED,
1791 .name = "cmc_hndlr"
1794 static struct irqaction cmcp_irqaction = {
1795 .handler = ia64_mca_cmc_int_caller,
1796 .flags = IRQF_DISABLED,
1797 .name = "cmc_poll"
1800 static struct irqaction mca_rdzv_irqaction = {
1801 .handler = ia64_mca_rendez_int_handler,
1802 .flags = IRQF_DISABLED,
1803 .name = "mca_rdzv"
1806 static struct irqaction mca_wkup_irqaction = {
1807 .handler = ia64_mca_wakeup_int_handler,
1808 .flags = IRQF_DISABLED,
1809 .name = "mca_wkup"
1812 #ifdef CONFIG_ACPI
1813 static struct irqaction mca_cpe_irqaction = {
1814 .handler = ia64_mca_cpe_int_handler,
1815 .flags = IRQF_DISABLED,
1816 .name = "cpe_hndlr"
1819 static struct irqaction mca_cpep_irqaction = {
1820 .handler = ia64_mca_cpe_int_caller,
1821 .flags = IRQF_DISABLED,
1822 .name = "cpe_poll"
1824 #endif /* CONFIG_ACPI */
1826 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1827 * these stacks can never sleep, they cannot return from the kernel to user
1828 * space, they do not appear in a normal ps listing. So there is no need to
1829 * format most of the fields.
1832 static void __cpuinit
1833 format_mca_init_stack(void *mca_data, unsigned long offset,
1834 const char *type, int cpu)
1836 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1837 struct thread_info *ti;
1838 memset(p, 0, KERNEL_STACK_SIZE);
1839 ti = task_thread_info(p);
1840 ti->flags = _TIF_MCA_INIT;
1841 ti->preempt_count = 1;
1842 ti->task = p;
1843 ti->cpu = cpu;
1844 p->stack = ti;
1845 p->state = TASK_UNINTERRUPTIBLE;
1846 cpu_set(cpu, p->cpus_allowed);
1847 INIT_LIST_HEAD(&p->tasks);
1848 p->parent = p->real_parent = p->group_leader = p;
1849 INIT_LIST_HEAD(&p->children);
1850 INIT_LIST_HEAD(&p->sibling);
1851 strncpy(p->comm, type, sizeof(p->comm)-1);
1854 /* Caller prevents this from being called after init */
1855 static void * __init_refok mca_bootmem(void)
1857 return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1858 KERNEL_STACK_SIZE, 0);
1861 /* Do per-CPU MCA-related initialization. */
1862 void __cpuinit
1863 ia64_mca_cpu_init(void *cpu_data)
1865 void *pal_vaddr;
1866 void *data;
1867 long sz = sizeof(struct ia64_mca_cpu);
1868 int cpu = smp_processor_id();
1869 static int first_time = 1;
1872 * Structure will already be allocated if cpu has been online,
1873 * then offlined.
1875 if (__per_cpu_mca[cpu]) {
1876 data = __va(__per_cpu_mca[cpu]);
1877 } else {
1878 if (first_time) {
1879 data = mca_bootmem();
1880 first_time = 0;
1881 } else
1882 data = page_address(alloc_pages_node(numa_node_id(),
1883 GFP_KERNEL, get_order(sz)));
1884 if (!data)
1885 panic("Could not allocate MCA memory for cpu %d\n",
1886 cpu);
1888 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1889 "MCA", cpu);
1890 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1891 "INIT", cpu);
1892 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[cpu] = __pa(data);
1895 * Stash away a copy of the PTE needed to map the per-CPU page.
1896 * We may need it during MCA recovery.
1898 __get_cpu_var(ia64_mca_per_cpu_pte) =
1899 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1902 * Also, stash away a copy of the PAL address and the PTE
1903 * needed to map it.
1905 pal_vaddr = efi_get_pal_addr();
1906 if (!pal_vaddr)
1907 return;
1908 __get_cpu_var(ia64_mca_pal_base) =
1909 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1910 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1911 PAGE_KERNEL));
1914 static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy)
1916 unsigned long flags;
1918 local_irq_save(flags);
1919 if (!cmc_polling_enabled)
1920 ia64_mca_cmc_vector_enable(NULL);
1921 local_irq_restore(flags);
1924 static int __cpuinit mca_cpu_callback(struct notifier_block *nfb,
1925 unsigned long action,
1926 void *hcpu)
1928 int hotcpu = (unsigned long) hcpu;
1930 switch (action) {
1931 case CPU_ONLINE:
1932 case CPU_ONLINE_FROZEN:
1933 smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
1934 NULL, 1, 0);
1935 break;
1937 return NOTIFY_OK;
1940 static struct notifier_block mca_cpu_notifier __cpuinitdata = {
1941 .notifier_call = mca_cpu_callback
1945 * ia64_mca_init
1947 * Do all the system level mca specific initialization.
1949 * 1. Register spinloop and wakeup request interrupt vectors
1951 * 2. Register OS_MCA handler entry point
1953 * 3. Register OS_INIT handler entry point
1955 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1957 * Note that this initialization is done very early before some kernel
1958 * services are available.
1960 * Inputs : None
1962 * Outputs : None
1964 void __init
1965 ia64_mca_init(void)
1967 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1968 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1969 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1970 int i;
1971 s64 rc;
1972 struct ia64_sal_retval isrv;
1973 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1974 static struct notifier_block default_init_monarch_nb = {
1975 .notifier_call = default_monarch_init_process,
1976 .priority = 0/* we need to notified last */
1979 <<<<<<< HEAD:arch/ia64/kernel/mca.c
1980 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1981 =======
1982 IA64_MCA_DEBUG("%s: begin\n", __func__);
1983 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
1985 /* Clear the Rendez checkin flag for all cpus */
1986 for(i = 0 ; i < NR_CPUS; i++)
1987 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1990 * Register the rendezvous spinloop and wakeup mechanism with SAL
1993 /* Register the rendezvous interrupt vector with SAL */
1994 while (1) {
1995 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1996 SAL_MC_PARAM_MECHANISM_INT,
1997 IA64_MCA_RENDEZ_VECTOR,
1998 timeout,
1999 SAL_MC_PARAM_RZ_ALWAYS);
2000 rc = isrv.status;
2001 if (rc == 0)
2002 break;
2003 if (rc == -2) {
2004 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
2005 "%ld to %ld milliseconds\n", timeout, isrv.v0);
2006 timeout = isrv.v0;
2007 (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
2008 continue;
2010 printk(KERN_ERR "Failed to register rendezvous interrupt "
2011 "with SAL (status %ld)\n", rc);
2012 return;
2015 /* Register the wakeup interrupt vector with SAL */
2016 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
2017 SAL_MC_PARAM_MECHANISM_INT,
2018 IA64_MCA_WAKEUP_VECTOR,
2019 0, 0);
2020 rc = isrv.status;
2021 if (rc) {
2022 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
2023 "(status %ld)\n", rc);
2024 return;
2027 <<<<<<< HEAD:arch/ia64/kernel/mca.c
2028 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
2029 =======
2030 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
2031 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
2033 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
2035 * XXX - disable SAL checksum by setting size to 0; should be
2036 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
2038 ia64_mc_info.imi_mca_handler_size = 0;
2040 /* Register the os mca handler with SAL */
2041 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
2042 ia64_mc_info.imi_mca_handler,
2043 ia64_tpa(mca_hldlr_ptr->gp),
2044 ia64_mc_info.imi_mca_handler_size,
2045 0, 0, 0)))
2047 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
2048 "(status %ld)\n", rc);
2049 return;
2052 <<<<<<< HEAD:arch/ia64/kernel/mca.c
2053 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
2054 =======
2055 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
2056 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
2057 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
2060 * XXX - disable SAL checksum by setting size to 0, should be
2061 * size of the actual init handler in mca_asm.S.
2063 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
2064 ia64_mc_info.imi_monarch_init_handler_size = 0;
2065 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
2066 ia64_mc_info.imi_slave_init_handler_size = 0;
2068 <<<<<<< HEAD:arch/ia64/kernel/mca.c
2069 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
2070 =======
2071 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2072 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
2073 ia64_mc_info.imi_monarch_init_handler);
2075 /* Register the os init handler with SAL */
2076 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2077 ia64_mc_info.imi_monarch_init_handler,
2078 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2079 ia64_mc_info.imi_monarch_init_handler_size,
2080 ia64_mc_info.imi_slave_init_handler,
2081 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2082 ia64_mc_info.imi_slave_init_handler_size)))
2084 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2085 "(status %ld)\n", rc);
2086 return;
2088 if (register_die_notifier(&default_init_monarch_nb)) {
2089 printk(KERN_ERR "Failed to register default monarch INIT process\n");
2090 return;
2093 <<<<<<< HEAD:arch/ia64/kernel/mca.c
2094 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
2095 =======
2096 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2097 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
2100 * Configure the CMCI/P vector and handler. Interrupts for CMC are
2101 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2103 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2104 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2105 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
2107 /* Setup the MCA rendezvous interrupt vector */
2108 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2110 /* Setup the MCA wakeup interrupt vector */
2111 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2113 #ifdef CONFIG_ACPI
2114 /* Setup the CPEI/P handler */
2115 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2116 #endif
2118 /* Initialize the areas set aside by the OS to buffer the
2119 * platform/processor error states for MCA/INIT/CMC
2120 * handling.
2122 ia64_log_init(SAL_INFO_TYPE_MCA);
2123 ia64_log_init(SAL_INFO_TYPE_INIT);
2124 ia64_log_init(SAL_INFO_TYPE_CMC);
2125 ia64_log_init(SAL_INFO_TYPE_CPE);
2127 mca_init = 1;
2128 printk(KERN_INFO "MCA related initialization done\n");
2132 * ia64_mca_late_init
2134 * Opportunity to setup things that require initialization later
2135 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2136 * platform doesn't support an interrupt driven mechanism.
2138 * Inputs : None
2139 * Outputs : Status
2141 static int __init
2142 ia64_mca_late_init(void)
2144 if (!mca_init)
2145 return 0;
2147 register_hotcpu_notifier(&mca_cpu_notifier);
2149 /* Setup the CMCI/P vector and handler */
2150 init_timer(&cmc_poll_timer);
2151 cmc_poll_timer.function = ia64_mca_cmc_poll;
2153 /* Unmask/enable the vector */
2154 cmc_polling_enabled = 0;
2155 schedule_work(&cmc_enable_work);
2157 <<<<<<< HEAD:arch/ia64/kernel/mca.c
2158 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
2159 =======
2160 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2161 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
2163 #ifdef CONFIG_ACPI
2164 /* Setup the CPEI/P vector and handler */
2165 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2166 init_timer(&cpe_poll_timer);
2167 cpe_poll_timer.function = ia64_mca_cpe_poll;
2170 irq_desc_t *desc;
2171 unsigned int irq;
2173 if (cpe_vector >= 0) {
2174 /* If platform supports CPEI, enable the irq. */
2175 irq = local_vector_to_irq(cpe_vector);
2176 if (irq > 0) {
2177 cpe_poll_enabled = 0;
2178 desc = irq_desc + irq;
2179 desc->status |= IRQ_PER_CPU;
2180 setup_irq(irq, &mca_cpe_irqaction);
2181 ia64_cpe_irq = irq;
2182 ia64_mca_register_cpev(cpe_vector);
2183 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2184 <<<<<<< HEAD:arch/ia64/kernel/mca.c
2185 __FUNCTION__);
2186 =======
2187 __func__);
2188 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
2189 return 0;
2191 printk(KERN_ERR "%s: Failed to find irq for CPE "
2192 "interrupt handler, vector %d\n",
2193 <<<<<<< HEAD:arch/ia64/kernel/mca.c
2194 __FUNCTION__, cpe_vector);
2195 =======
2196 __func__, cpe_vector);
2197 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
2199 /* If platform doesn't support CPEI, get the timer going. */
2200 if (cpe_poll_enabled) {
2201 ia64_mca_cpe_poll(0UL);
2202 <<<<<<< HEAD:arch/ia64/kernel/mca.c
2203 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
2204 =======
2205 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2206 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/ia64/kernel/mca.c
2209 #endif
2211 return 0;
2214 device_initcall(ia64_mca_late_init);