2 * Copyright (C) 2000, 2001, 2002, 2003 Broadcom Corporation
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/linkage.h>
21 #include <linux/interrupt.h>
22 #include <linux/spinlock.h>
23 #include <linux/smp.h>
25 #include <linux/slab.h>
26 #include <linux/kernel_stat.h>
28 #include <asm/errno.h>
29 #include <asm/signal.h>
30 #include <asm/system.h>
34 #include <asm/sibyte/sb1250_regs.h>
35 #include <asm/sibyte/sb1250_int.h>
36 #include <asm/sibyte/sb1250_uart.h>
37 #include <asm/sibyte/sb1250_scd.h>
38 #include <asm/sibyte/sb1250.h>
41 * These are the routines that handle all the low level interrupt stuff.
42 * Actions handled here are: initialization of the interrupt map, requesting of
43 * interrupt lines by handlers, dispatching if interrupts to handlers, probing
48 static void end_sb1250_irq(unsigned int irq
);
49 static void enable_sb1250_irq(unsigned int irq
);
50 static void disable_sb1250_irq(unsigned int irq
);
51 static void ack_sb1250_irq(unsigned int irq
);
53 static void sb1250_set_affinity(unsigned int irq
, cpumask_t mask
);
56 #ifdef CONFIG_SIBYTE_HAS_LDT
57 extern unsigned long ldt_eoi_space
;
63 /* Default to UART1 */
65 #ifdef CONFIG_SERIAL_SB1250_DUART
66 extern char sb1250_duart_present
[];
70 static struct irq_chip sb1250_irq_type
= {
72 .ack
= ack_sb1250_irq
,
73 .mask
= disable_sb1250_irq
,
74 .mask_ack
= ack_sb1250_irq
,
75 .unmask
= enable_sb1250_irq
,
76 .end
= end_sb1250_irq
,
78 .set_affinity
= sb1250_set_affinity
82 /* Store the CPU id (not the logical number) */
83 int sb1250_irq_owner
[SB1250_NR_IRQS
];
85 DEFINE_SPINLOCK(sb1250_imr_lock
);
87 void sb1250_mask_irq(int cpu
, int irq
)
92 spin_lock_irqsave(&sb1250_imr_lock
, flags
);
93 cur_ints
= ____raw_readq(IOADDR(A_IMR_MAPPER(cpu
) +
94 R_IMR_INTERRUPT_MASK
));
95 cur_ints
|= (((u64
) 1) << irq
);
96 ____raw_writeq(cur_ints
, IOADDR(A_IMR_MAPPER(cpu
) +
97 R_IMR_INTERRUPT_MASK
));
98 spin_unlock_irqrestore(&sb1250_imr_lock
, flags
);
101 void sb1250_unmask_irq(int cpu
, int irq
)
106 spin_lock_irqsave(&sb1250_imr_lock
, flags
);
107 cur_ints
= ____raw_readq(IOADDR(A_IMR_MAPPER(cpu
) +
108 R_IMR_INTERRUPT_MASK
));
109 cur_ints
&= ~(((u64
) 1) << irq
);
110 ____raw_writeq(cur_ints
, IOADDR(A_IMR_MAPPER(cpu
) +
111 R_IMR_INTERRUPT_MASK
));
112 spin_unlock_irqrestore(&sb1250_imr_lock
, flags
);
116 static void sb1250_set_affinity(unsigned int irq
, cpumask_t mask
)
118 int i
= 0, old_cpu
, cpu
, int_on
;
120 struct irq_desc
*desc
= irq_desc
+ irq
;
125 if (cpus_weight(mask
) > 1) {
126 printk("attempted to set irq affinity for irq %d to multiple CPUs\n", irq
);
130 /* Convert logical CPU to physical CPU */
131 cpu
= cpu_logical_map(i
);
133 /* Protect against other affinity changers and IMR manipulation */
134 spin_lock_irqsave(&desc
->lock
, flags
);
135 spin_lock(&sb1250_imr_lock
);
137 /* Swizzle each CPU's IMR (but leave the IP selection alone) */
138 old_cpu
= sb1250_irq_owner
[irq
];
139 cur_ints
= ____raw_readq(IOADDR(A_IMR_MAPPER(old_cpu
) +
140 R_IMR_INTERRUPT_MASK
));
141 int_on
= !(cur_ints
& (((u64
) 1) << irq
));
143 /* If it was on, mask it */
144 cur_ints
|= (((u64
) 1) << irq
);
145 ____raw_writeq(cur_ints
, IOADDR(A_IMR_MAPPER(old_cpu
) +
146 R_IMR_INTERRUPT_MASK
));
148 sb1250_irq_owner
[irq
] = cpu
;
150 /* unmask for the new CPU */
151 cur_ints
= ____raw_readq(IOADDR(A_IMR_MAPPER(cpu
) +
152 R_IMR_INTERRUPT_MASK
));
153 cur_ints
&= ~(((u64
) 1) << irq
);
154 ____raw_writeq(cur_ints
, IOADDR(A_IMR_MAPPER(cpu
) +
155 R_IMR_INTERRUPT_MASK
));
157 spin_unlock(&sb1250_imr_lock
);
158 spin_unlock_irqrestore(&desc
->lock
, flags
);
162 /*****************************************************************************/
164 static void disable_sb1250_irq(unsigned int irq
)
166 sb1250_mask_irq(sb1250_irq_owner
[irq
], irq
);
169 static void enable_sb1250_irq(unsigned int irq
)
171 sb1250_unmask_irq(sb1250_irq_owner
[irq
], irq
);
175 static void ack_sb1250_irq(unsigned int irq
)
177 #ifdef CONFIG_SIBYTE_HAS_LDT
181 * If the interrupt was an HT interrupt, now is the time to
182 * clear it. NOTE: we assume the HT bridge was set up to
183 * deliver the interrupts to all CPUs (which makes affinity
184 * changing easier for us)
186 pending
= __raw_readq(IOADDR(A_IMR_REGISTER(sb1250_irq_owner
[irq
],
187 R_IMR_LDT_INTERRUPT
)));
188 pending
&= ((u64
)1 << (irq
));
191 for (i
=0; i
<NR_CPUS
; i
++) {
194 cpu
= cpu_logical_map(i
);
199 * Clear for all CPUs so an affinity switch
200 * doesn't find an old status
202 __raw_writeq(pending
,
203 IOADDR(A_IMR_REGISTER(cpu
,
204 R_IMR_LDT_INTERRUPT_CLR
)));
208 * Generate EOI. For Pass 1 parts, EOI is a nop. For
209 * Pass 2, the LDT world may be edge-triggered, but
210 * this EOI shouldn't hurt. If they are
211 * level-sensitive, the EOI is required.
213 *(uint32_t *)(ldt_eoi_space
+(irq
<<16)+(7<<2)) = 0;
216 sb1250_mask_irq(sb1250_irq_owner
[irq
], irq
);
220 static void end_sb1250_irq(unsigned int irq
)
222 if (!(irq_desc
[irq
].status
& (IRQ_DISABLED
| IRQ_INPROGRESS
))) {
223 sb1250_unmask_irq(sb1250_irq_owner
[irq
], irq
);
228 void __init
init_sb1250_irqs(void)
232 for (i
= 0; i
< SB1250_NR_IRQS
; i
++) {
233 set_irq_chip(i
, &sb1250_irq_type
);
234 sb1250_irq_owner
[i
] = 0;
240 * arch_init_irq is called early in the boot sequence from init/main.c via
241 * init_IRQ. It is responsible for setting up the interrupt mapper and
242 * installing the handler that will be responsible for dispatching interrupts
243 * to the "right" place.
246 * For now, map all interrupts to IP[2]. We could save
247 * some cycles by parceling out system interrupts to different
248 * IP lines, but keep it simple for bringup. We'll also direct
249 * all interrupts to a single CPU; we should probably route
250 * PCI and LDT to one cpu and everything else to the other
251 * to balance the load a bit.
253 * On the second cpu, everything is set to IP5, which is
254 * ignored, EXCEPT the mailbox interrupt. That one is
255 * set to IP[2] so it is handled. This is needed so we
256 * can do cross-cpu function calls, as requred by SMP
259 #define IMR_IP2_VAL K_INT_MAP_I0
260 #define IMR_IP3_VAL K_INT_MAP_I1
261 #define IMR_IP4_VAL K_INT_MAP_I2
262 #define IMR_IP5_VAL K_INT_MAP_I3
263 #define IMR_IP6_VAL K_INT_MAP_I4
265 void __init
arch_init_irq(void)
270 unsigned int imask
= STATUSF_IP4
| STATUSF_IP3
| STATUSF_IP2
|
271 STATUSF_IP1
| STATUSF_IP0
;
273 /* Default everything to IP2 */
274 for (i
= 0; i
< SB1250_NR_IRQS
; i
++) { /* was I0 */
275 __raw_writeq(IMR_IP2_VAL
,
276 IOADDR(A_IMR_REGISTER(0,
277 R_IMR_INTERRUPT_MAP_BASE
) +
279 __raw_writeq(IMR_IP2_VAL
,
280 IOADDR(A_IMR_REGISTER(1,
281 R_IMR_INTERRUPT_MAP_BASE
) +
288 * Map the high 16 bits of the mailbox registers to IP[3], for
292 __raw_writeq(IMR_IP3_VAL
,
293 IOADDR(A_IMR_REGISTER(0, R_IMR_INTERRUPT_MAP_BASE
) +
294 (K_INT_MBOX_0
<< 3)));
295 __raw_writeq(IMR_IP3_VAL
,
296 IOADDR(A_IMR_REGISTER(1, R_IMR_INTERRUPT_MAP_BASE
) +
297 (K_INT_MBOX_0
<< 3)));
299 /* Clear the mailboxes. The firmware may leave them dirty */
300 __raw_writeq(0xffffffffffffffffULL
,
301 IOADDR(A_IMR_REGISTER(0, R_IMR_MAILBOX_CLR_CPU
)));
302 __raw_writeq(0xffffffffffffffffULL
,
303 IOADDR(A_IMR_REGISTER(1, R_IMR_MAILBOX_CLR_CPU
)));
305 /* Mask everything except the mailbox registers for both cpus */
306 tmp
= ~((u64
) 0) ^ (((u64
) 1) << K_INT_MBOX_0
);
307 __raw_writeq(tmp
, IOADDR(A_IMR_REGISTER(0, R_IMR_INTERRUPT_MASK
)));
308 __raw_writeq(tmp
, IOADDR(A_IMR_REGISTER(1, R_IMR_INTERRUPT_MASK
)));
311 * Note that the timer interrupts are also mapped, but this is
312 * done in sb1250_time_init(). Also, the profiling driver
313 * does its own management of IP7.
317 imask
|= STATUSF_IP6
;
319 /* Enable necessary IPs, disable the rest */
320 change_c0_status(ST0_IM
, imask
);
324 kgdb_irq
= K_INT_UART_0
+ kgdb_port
;
326 #ifdef CONFIG_SERIAL_SB1250_DUART
327 sb1250_duart_present
[kgdb_port
] = 0;
329 /* Setup uart 1 settings, mapper */
330 __raw_writeq(M_DUART_IMR_BRK
,
331 IOADDR(A_DUART_IMRREG(kgdb_port
)));
333 __raw_writeq(IMR_IP6_VAL
,
334 IOADDR(A_IMR_REGISTER(0,
335 R_IMR_INTERRUPT_MAP_BASE
) +
337 sb1250_unmask_irq(0, kgdb_irq
);
344 #include <linux/delay.h>
346 #define duart_out(reg, val) csr_out32(val, IOADDR(A_DUART_CHANREG(kgdb_port, reg)))
347 #define duart_in(reg) csr_in32(IOADDR(A_DUART_CHANREG(kgdb_port, reg)))
349 static void sb1250_kgdb_interrupt(void)
352 * Clear break-change status (allow some time for the remote
353 * host to stop the break, since we would see another
354 * interrupt on the end-of-break too)
356 kstat_this_cpu
.irqs
[kgdb_irq
]++;
358 duart_out(R_DUART_CMD
, V_DUART_MISC_CMD_RESET_BREAK_INT
|
359 M_DUART_RX_EN
| M_DUART_TX_EN
);
360 set_async_breakpoint(&get_irq_regs()->cp0_epc
);
363 #endif /* CONFIG_KGDB */
365 extern void sb1250_mailbox_interrupt(void);
367 static inline void dispatch_ip2(void)
369 unsigned int cpu
= smp_processor_id();
370 unsigned long long mask
;
373 * Default...we've hit an IP[2] interrupt, which means we've got to
374 * check the 1250 interrupt registers to figure out what to do. Need
375 * to detect which CPU we're on, now that smp_affinity is supported.
377 mask
= __raw_readq(IOADDR(A_IMR_REGISTER(cpu
,
378 R_IMR_INTERRUPT_STATUS_BASE
)));
380 do_IRQ(fls64(mask
) - 1);
383 asmlinkage
void plat_irq_dispatch(void)
385 unsigned int cpu
= smp_processor_id();
386 unsigned int pending
;
389 * What a pain. We have to be really careful saving the upper 32 bits
390 * of any * register across function calls if we don't want them
391 * trashed--since were running in -o32, the calling routing never saves
392 * the full 64 bits of a register across a function call. Being the
393 * interrupt handler, we're guaranteed that interrupts are disabled
394 * during this code so we don't have to worry about random interrupts
395 * blasting the high 32 bits.
398 pending
= read_c0_cause() & read_c0_status() & ST0_IM
;
400 if (pending
& CAUSEF_IP7
) /* CPU performance counter interrupt */
401 do_IRQ(MIPS_CPU_IRQ_BASE
+ 7);
402 else if (pending
& CAUSEF_IP4
)
403 do_IRQ(K_INT_TIMER_0
+ cpu
); /* sb1250_timer_interrupt() */
406 else if (pending
& CAUSEF_IP3
)
407 sb1250_mailbox_interrupt();
411 else if (pending
& CAUSEF_IP6
) /* KGDB (uart 1) */
412 sb1250_kgdb_interrupt();
415 else if (pending
& CAUSEF_IP2
)
418 spurious_interrupt();