Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / arch / powerpc / oprofile / cell / spu_task_sync.c
blob257b13cb18af8f67bd10e75c876a360807aaed14
1 /*
2 * Cell Broadband Engine OProfile Support
4 * (C) Copyright IBM Corporation 2006
6 * Author: Maynard Johnson <maynardj@us.ibm.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 /* The purpose of this file is to handle SPU event task switching
15 * and to record SPU context information into the OProfile
16 * event buffer.
18 * Additionally, the spu_sync_buffer function is provided as a helper
19 * for recoding actual SPU program counter samples to the event buffer.
21 #include <linux/dcookies.h>
22 #include <linux/kref.h>
23 #include <linux/mm.h>
24 #include <linux/fs.h>
25 #include <linux/module.h>
26 #include <linux/notifier.h>
27 #include <linux/numa.h>
28 #include <linux/oprofile.h>
29 #include <linux/spinlock.h>
30 #include "pr_util.h"
32 #define RELEASE_ALL 9999
34 static DEFINE_SPINLOCK(buffer_lock);
35 static DEFINE_SPINLOCK(cache_lock);
36 static int num_spu_nodes;
37 int spu_prof_num_nodes;
38 int last_guard_val[MAX_NUMNODES * 8];
40 /* Container for caching information about an active SPU task. */
41 struct cached_info {
42 struct vma_to_fileoffset_map *map;
43 struct spu *the_spu; /* needed to access pointer to local_store */
44 struct kref cache_ref;
47 static struct cached_info *spu_info[MAX_NUMNODES * 8];
49 static void destroy_cached_info(struct kref *kref)
51 struct cached_info *info;
53 info = container_of(kref, struct cached_info, cache_ref);
54 vma_map_free(info->map);
55 kfree(info);
56 module_put(THIS_MODULE);
59 /* Return the cached_info for the passed SPU number.
60 * ATTENTION: Callers are responsible for obtaining the
61 * cache_lock if needed prior to invoking this function.
63 static struct cached_info *get_cached_info(struct spu *the_spu, int spu_num)
65 struct kref *ref;
66 struct cached_info *ret_info;
68 if (spu_num >= num_spu_nodes) {
69 printk(KERN_ERR "SPU_PROF: "
70 "%s, line %d: Invalid index %d into spu info cache\n",
71 __FUNCTION__, __LINE__, spu_num);
72 ret_info = NULL;
73 goto out;
75 if (!spu_info[spu_num] && the_spu) {
76 ref = spu_get_profile_private_kref(the_spu->ctx);
77 if (ref) {
78 spu_info[spu_num] = container_of(ref, struct cached_info, cache_ref);
79 kref_get(&spu_info[spu_num]->cache_ref);
83 ret_info = spu_info[spu_num];
84 out:
85 return ret_info;
89 /* Looks for cached info for the passed spu. If not found, the
90 * cached info is created for the passed spu.
91 * Returns 0 for success; otherwise, -1 for error.
93 static int
94 prepare_cached_spu_info(struct spu *spu, unsigned long objectId)
96 unsigned long flags;
97 struct vma_to_fileoffset_map *new_map;
98 int retval = 0;
99 struct cached_info *info;
101 /* We won't bother getting cache_lock here since
102 * don't do anything with the cached_info that's returned.
104 info = get_cached_info(spu, spu->number);
106 if (info) {
107 pr_debug("Found cached SPU info.\n");
108 goto out;
111 /* Create cached_info and set spu_info[spu->number] to point to it.
112 * spu->number is a system-wide value, not a per-node value.
114 info = kzalloc(sizeof(struct cached_info), GFP_KERNEL);
115 if (!info) {
116 printk(KERN_ERR "SPU_PROF: "
117 "%s, line %d: create vma_map failed\n",
118 __FUNCTION__, __LINE__);
119 retval = -ENOMEM;
120 goto err_alloc;
122 new_map = create_vma_map(spu, objectId);
123 if (!new_map) {
124 printk(KERN_ERR "SPU_PROF: "
125 "%s, line %d: create vma_map failed\n",
126 __FUNCTION__, __LINE__);
127 retval = -ENOMEM;
128 goto err_alloc;
131 pr_debug("Created vma_map\n");
132 info->map = new_map;
133 info->the_spu = spu;
134 kref_init(&info->cache_ref);
135 spin_lock_irqsave(&cache_lock, flags);
136 spu_info[spu->number] = info;
137 /* Increment count before passing off ref to SPUFS. */
138 kref_get(&info->cache_ref);
140 /* We increment the module refcount here since SPUFS is
141 * responsible for the final destruction of the cached_info,
142 * and it must be able to access the destroy_cached_info()
143 * function defined in the OProfile module. We decrement
144 * the module refcount in destroy_cached_info.
146 try_module_get(THIS_MODULE);
147 spu_set_profile_private_kref(spu->ctx, &info->cache_ref,
148 destroy_cached_info);
149 spin_unlock_irqrestore(&cache_lock, flags);
150 goto out;
152 err_alloc:
153 kfree(info);
154 out:
155 return retval;
159 * NOTE: The caller is responsible for locking the
160 * cache_lock prior to calling this function.
162 static int release_cached_info(int spu_index)
164 int index, end;
166 if (spu_index == RELEASE_ALL) {
167 end = num_spu_nodes;
168 index = 0;
169 } else {
170 if (spu_index >= num_spu_nodes) {
171 printk(KERN_ERR "SPU_PROF: "
172 "%s, line %d: "
173 "Invalid index %d into spu info cache\n",
174 __FUNCTION__, __LINE__, spu_index);
175 goto out;
177 end = spu_index + 1;
178 index = spu_index;
180 for (; index < end; index++) {
181 if (spu_info[index]) {
182 kref_put(&spu_info[index]->cache_ref,
183 destroy_cached_info);
184 spu_info[index] = NULL;
188 out:
189 return 0;
192 /* The source code for fast_get_dcookie was "borrowed"
193 * from drivers/oprofile/buffer_sync.c.
196 /* Optimisation. We can manage without taking the dcookie sem
197 * because we cannot reach this code without at least one
198 * dcookie user still being registered (namely, the reader
199 * of the event buffer).
201 static inline unsigned long fast_get_dcookie(struct path *path)
203 unsigned long cookie;
205 if (path->dentry->d_cookie)
206 return (unsigned long)path->dentry;
207 get_dcookie(path, &cookie);
208 return cookie;
211 /* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
212 * which corresponds loosely to "application name". Also, determine
213 * the offset for the SPU ELF object. If computed offset is
214 * non-zero, it implies an embedded SPU object; otherwise, it's a
215 * separate SPU binary, in which case we retrieve it's dcookie.
216 * For the embedded case, we must determine if SPU ELF is embedded
217 * in the executable application or another file (i.e., shared lib).
218 * If embedded in a shared lib, we must get the dcookie and return
219 * that to the caller.
221 static unsigned long
222 get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp,
223 unsigned long *spu_bin_dcookie,
224 unsigned long spu_ref)
226 unsigned long app_cookie = 0;
227 unsigned int my_offset = 0;
228 struct file *app = NULL;
229 struct vm_area_struct *vma;
230 struct mm_struct *mm = spu->mm;
232 if (!mm)
233 goto out;
235 down_read(&mm->mmap_sem);
237 for (vma = mm->mmap; vma; vma = vma->vm_next) {
238 if (!vma->vm_file)
239 continue;
240 if (!(vma->vm_flags & VM_EXECUTABLE))
241 continue;
242 app_cookie = fast_get_dcookie(&vma->vm_file->f_path);
243 pr_debug("got dcookie for %s\n",
244 vma->vm_file->f_dentry->d_name.name);
245 app = vma->vm_file;
246 break;
249 for (vma = mm->mmap; vma; vma = vma->vm_next) {
250 if (vma->vm_start > spu_ref || vma->vm_end <= spu_ref)
251 continue;
252 my_offset = spu_ref - vma->vm_start;
253 if (!vma->vm_file)
254 goto fail_no_image_cookie;
256 pr_debug("Found spu ELF at %X(object-id:%lx) for file %s\n",
257 my_offset, spu_ref,
258 vma->vm_file->f_dentry->d_name.name);
259 *offsetp = my_offset;
260 break;
263 *spu_bin_dcookie = fast_get_dcookie(&vma->vm_file->f_path);
264 pr_debug("got dcookie for %s\n", vma->vm_file->f_dentry->d_name.name);
266 up_read(&mm->mmap_sem);
268 out:
269 return app_cookie;
271 fail_no_image_cookie:
272 up_read(&mm->mmap_sem);
274 printk(KERN_ERR "SPU_PROF: "
275 "%s, line %d: Cannot find dcookie for SPU binary\n",
276 __FUNCTION__, __LINE__);
277 goto out;
282 /* This function finds or creates cached context information for the
283 * passed SPU and records SPU context information into the OProfile
284 * event buffer.
286 static int process_context_switch(struct spu *spu, unsigned long objectId)
288 unsigned long flags;
289 int retval;
290 unsigned int offset = 0;
291 unsigned long spu_cookie = 0, app_dcookie;
293 retval = prepare_cached_spu_info(spu, objectId);
294 if (retval)
295 goto out;
297 /* Get dcookie first because a mutex_lock is taken in that
298 * code path, so interrupts must not be disabled.
300 app_dcookie = get_exec_dcookie_and_offset(spu, &offset, &spu_cookie, objectId);
301 if (!app_dcookie || !spu_cookie) {
302 retval = -ENOENT;
303 goto out;
306 /* Record context info in event buffer */
307 spin_lock_irqsave(&buffer_lock, flags);
308 add_event_entry(ESCAPE_CODE);
309 add_event_entry(SPU_CTX_SWITCH_CODE);
310 add_event_entry(spu->number);
311 add_event_entry(spu->pid);
312 add_event_entry(spu->tgid);
313 add_event_entry(app_dcookie);
314 add_event_entry(spu_cookie);
315 add_event_entry(offset);
316 spin_unlock_irqrestore(&buffer_lock, flags);
317 smp_wmb(); /* insure spu event buffer updates are written */
318 /* don't want entries intermingled... */
319 out:
320 return retval;
324 * This function is invoked on either a bind_context or unbind_context.
325 * If called for an unbind_context, the val arg is 0; otherwise,
326 * it is the object-id value for the spu context.
327 * The data arg is of type 'struct spu *'.
329 static int spu_active_notify(struct notifier_block *self, unsigned long val,
330 void *data)
332 int retval;
333 unsigned long flags;
334 struct spu *the_spu = data;
336 pr_debug("SPU event notification arrived\n");
337 if (!val) {
338 spin_lock_irqsave(&cache_lock, flags);
339 retval = release_cached_info(the_spu->number);
340 spin_unlock_irqrestore(&cache_lock, flags);
341 } else {
342 retval = process_context_switch(the_spu, val);
344 return retval;
347 static struct notifier_block spu_active = {
348 .notifier_call = spu_active_notify,
351 static int number_of_online_nodes(void)
353 u32 cpu; u32 tmp;
354 int nodes = 0;
355 for_each_online_cpu(cpu) {
356 tmp = cbe_cpu_to_node(cpu) + 1;
357 if (tmp > nodes)
358 nodes++;
360 return nodes;
363 /* The main purpose of this function is to synchronize
364 * OProfile with SPUFS by registering to be notified of
365 * SPU task switches.
367 * NOTE: When profiling SPUs, we must ensure that only
368 * spu_sync_start is invoked and not the generic sync_start
369 * in drivers/oprofile/oprof.c. A return value of
370 * SKIP_GENERIC_SYNC or SYNC_START_ERROR will
371 * accomplish this.
373 int spu_sync_start(void)
375 int k;
376 int ret = SKIP_GENERIC_SYNC;
377 int register_ret;
378 unsigned long flags = 0;
380 spu_prof_num_nodes = number_of_online_nodes();
381 num_spu_nodes = spu_prof_num_nodes * 8;
383 spin_lock_irqsave(&buffer_lock, flags);
384 add_event_entry(ESCAPE_CODE);
385 add_event_entry(SPU_PROFILING_CODE);
386 add_event_entry(num_spu_nodes);
387 spin_unlock_irqrestore(&buffer_lock, flags);
389 /* Register for SPU events */
390 register_ret = spu_switch_event_register(&spu_active);
391 if (register_ret) {
392 ret = SYNC_START_ERROR;
393 goto out;
396 for (k = 0; k < (MAX_NUMNODES * 8); k++)
397 last_guard_val[k] = 0;
398 pr_debug("spu_sync_start -- running.\n");
399 out:
400 return ret;
403 /* Record SPU program counter samples to the oprofile event buffer. */
404 void spu_sync_buffer(int spu_num, unsigned int *samples,
405 int num_samples)
407 unsigned long long file_offset;
408 unsigned long flags;
409 int i;
410 struct vma_to_fileoffset_map *map;
411 struct spu *the_spu;
412 unsigned long long spu_num_ll = spu_num;
413 unsigned long long spu_num_shifted = spu_num_ll << 32;
414 struct cached_info *c_info;
416 /* We need to obtain the cache_lock here because it's
417 * possible that after getting the cached_info, the SPU job
418 * corresponding to this cached_info may end, thus resulting
419 * in the destruction of the cached_info.
421 spin_lock_irqsave(&cache_lock, flags);
422 c_info = get_cached_info(NULL, spu_num);
423 if (!c_info) {
424 /* This legitimately happens when the SPU task ends before all
425 * samples are recorded.
426 * No big deal -- so we just drop a few samples.
428 pr_debug("SPU_PROF: No cached SPU contex "
429 "for SPU #%d. Dropping samples.\n", spu_num);
430 goto out;
433 map = c_info->map;
434 the_spu = c_info->the_spu;
435 spin_lock(&buffer_lock);
436 for (i = 0; i < num_samples; i++) {
437 unsigned int sample = *(samples+i);
438 int grd_val = 0;
439 file_offset = 0;
440 if (sample == 0)
441 continue;
442 file_offset = vma_map_lookup( map, sample, the_spu, &grd_val);
444 /* If overlays are used by this SPU application, the guard
445 * value is non-zero, indicating which overlay section is in
446 * use. We need to discard samples taken during the time
447 * period which an overlay occurs (i.e., guard value changes).
449 if (grd_val && grd_val != last_guard_val[spu_num]) {
450 last_guard_val[spu_num] = grd_val;
451 /* Drop the rest of the samples. */
452 break;
455 add_event_entry(file_offset | spu_num_shifted);
457 spin_unlock(&buffer_lock);
458 out:
459 spin_unlock_irqrestore(&cache_lock, flags);
463 int spu_sync_stop(void)
465 unsigned long flags = 0;
466 int ret = spu_switch_event_unregister(&spu_active);
467 if (ret) {
468 printk(KERN_ERR "SPU_PROF: "
469 "%s, line %d: spu_switch_event_unregister returned %d\n",
470 __FUNCTION__, __LINE__, ret);
471 goto out;
474 spin_lock_irqsave(&cache_lock, flags);
475 ret = release_cached_info(RELEASE_ALL);
476 spin_unlock_irqrestore(&cache_lock, flags);
477 out:
478 pr_debug("spu_sync_stop -- done.\n");
479 return ret;