Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / arch / powerpc / platforms / cell / spufs / sched.c
blobb032031546fe5be2b5b20b23554dc229eaa14fb0
1 /* sched.c - SPU scheduler.
3 * Copyright (C) IBM 2005
4 * Author: Mark Nutter <mnutter@us.ibm.com>
6 * 2006-03-31 NUMA domains added.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #undef DEBUG
25 #include <linux/module.h>
26 #include <linux/errno.h>
27 #include <linux/sched.h>
28 #include <linux/kernel.h>
29 #include <linux/mm.h>
30 #include <linux/completion.h>
31 #include <linux/vmalloc.h>
32 #include <linux/smp.h>
33 #include <linux/stddef.h>
34 #include <linux/unistd.h>
35 #include <linux/numa.h>
36 #include <linux/mutex.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/proc_fs.h>
41 #include <linux/seq_file.h>
42 #include <linux/marker.h>
44 #include <asm/io.h>
45 #include <asm/mmu_context.h>
46 #include <asm/spu.h>
47 #include <asm/spu_csa.h>
48 #include <asm/spu_priv1.h>
49 #include "spufs.h"
51 struct spu_prio_array {
52 DECLARE_BITMAP(bitmap, MAX_PRIO);
53 struct list_head runq[MAX_PRIO];
54 spinlock_t runq_lock;
55 int nr_waiting;
58 static unsigned long spu_avenrun[3];
59 static struct spu_prio_array *spu_prio;
60 static struct task_struct *spusched_task;
61 static struct timer_list spusched_timer;
62 static struct timer_list spuloadavg_timer;
65 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
67 #define NORMAL_PRIO 120
70 * Frequency of the spu scheduler tick. By default we do one SPU scheduler
71 * tick for every 10 CPU scheduler ticks.
73 #define SPUSCHED_TICK (10)
76 * These are the 'tuning knobs' of the scheduler:
78 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
79 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
81 #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
82 #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
84 #define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
85 #define SCALE_PRIO(x, prio) \
86 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
89 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
90 * [800ms ... 100ms ... 5ms]
92 * The higher a thread's priority, the bigger timeslices
93 * it gets during one round of execution. But even the lowest
94 * priority thread gets MIN_TIMESLICE worth of execution time.
96 void spu_set_timeslice(struct spu_context *ctx)
98 if (ctx->prio < NORMAL_PRIO)
99 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
100 else
101 ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
105 * Update scheduling information from the owning thread.
107 void __spu_update_sched_info(struct spu_context *ctx)
110 * assert that the context is not on the runqueue, so it is safe
111 * to change its scheduling parameters.
113 BUG_ON(!list_empty(&ctx->rq));
116 * 32-Bit assignments are atomic on powerpc, and we don't care about
117 * memory ordering here because retrieving the controlling thread is
118 * per definition racy.
120 ctx->tid = current->pid;
123 * We do our own priority calculations, so we normally want
124 * ->static_prio to start with. Unfortunately this field
125 * contains junk for threads with a realtime scheduling
126 * policy so we have to look at ->prio in this case.
128 if (rt_prio(current->prio))
129 ctx->prio = current->prio;
130 else
131 ctx->prio = current->static_prio;
132 ctx->policy = current->policy;
135 * TO DO: the context may be loaded, so we may need to activate
136 * it again on a different node. But it shouldn't hurt anything
137 * to update its parameters, because we know that the scheduler
138 * is not actively looking at this field, since it is not on the
139 * runqueue. The context will be rescheduled on the proper node
140 * if it is timesliced or preempted.
142 ctx->cpus_allowed = current->cpus_allowed;
145 void spu_update_sched_info(struct spu_context *ctx)
147 int node;
149 if (ctx->state == SPU_STATE_RUNNABLE) {
150 node = ctx->spu->node;
153 * Take list_mutex to sync with find_victim().
155 mutex_lock(&cbe_spu_info[node].list_mutex);
156 __spu_update_sched_info(ctx);
157 mutex_unlock(&cbe_spu_info[node].list_mutex);
158 } else {
159 __spu_update_sched_info(ctx);
163 static int __node_allowed(struct spu_context *ctx, int node)
165 if (nr_cpus_node(node)) {
166 cpumask_t mask = node_to_cpumask(node);
168 if (cpus_intersects(mask, ctx->cpus_allowed))
169 return 1;
172 return 0;
175 static int node_allowed(struct spu_context *ctx, int node)
177 int rval;
179 spin_lock(&spu_prio->runq_lock);
180 rval = __node_allowed(ctx, node);
181 spin_unlock(&spu_prio->runq_lock);
183 return rval;
186 void do_notify_spus_active(void)
188 int node;
191 * Wake up the active spu_contexts.
193 * When the awakened processes see their "notify_active" flag is set,
194 * they will call spu_switch_notify().
196 for_each_online_node(node) {
197 struct spu *spu;
199 mutex_lock(&cbe_spu_info[node].list_mutex);
200 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
201 if (spu->alloc_state != SPU_FREE) {
202 struct spu_context *ctx = spu->ctx;
203 set_bit(SPU_SCHED_NOTIFY_ACTIVE,
204 &ctx->sched_flags);
205 mb();
206 wake_up_all(&ctx->stop_wq);
209 mutex_unlock(&cbe_spu_info[node].list_mutex);
214 * spu_bind_context - bind spu context to physical spu
215 * @spu: physical spu to bind to
216 * @ctx: context to bind
218 static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
220 spu_context_trace(spu_bind_context__enter, ctx, spu);
222 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
224 if (ctx->flags & SPU_CREATE_NOSCHED)
225 atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
227 ctx->stats.slb_flt_base = spu->stats.slb_flt;
228 ctx->stats.class2_intr_base = spu->stats.class2_intr;
230 spu->ctx = ctx;
231 spu->flags = 0;
232 ctx->spu = spu;
233 ctx->ops = &spu_hw_ops;
234 spu->pid = current->pid;
235 spu->tgid = current->tgid;
236 spu_associate_mm(spu, ctx->owner);
237 spu->ibox_callback = spufs_ibox_callback;
238 spu->wbox_callback = spufs_wbox_callback;
239 spu->stop_callback = spufs_stop_callback;
240 spu->mfc_callback = spufs_mfc_callback;
241 mb();
242 spu_unmap_mappings(ctx);
243 spu_restore(&ctx->csa, spu);
244 spu->timestamp = jiffies;
245 spu_cpu_affinity_set(spu, raw_smp_processor_id());
246 spu_switch_notify(spu, ctx);
247 ctx->state = SPU_STATE_RUNNABLE;
249 <<<<<<< HEAD:arch/powerpc/platforms/cell/spufs/sched.c
250 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
251 =======
252 spuctx_switch_state(ctx, SPU_UTIL_USER);
253 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/powerpc/platforms/cell/spufs/sched.c
257 * Must be used with the list_mutex held.
259 static inline int sched_spu(struct spu *spu)
261 BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
263 return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
266 static void aff_merge_remaining_ctxs(struct spu_gang *gang)
268 struct spu_context *ctx;
270 list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
271 if (list_empty(&ctx->aff_list))
272 list_add(&ctx->aff_list, &gang->aff_list_head);
274 gang->aff_flags |= AFF_MERGED;
277 static void aff_set_offsets(struct spu_gang *gang)
279 struct spu_context *ctx;
280 int offset;
282 offset = -1;
283 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
284 aff_list) {
285 if (&ctx->aff_list == &gang->aff_list_head)
286 break;
287 ctx->aff_offset = offset--;
290 offset = 0;
291 list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
292 if (&ctx->aff_list == &gang->aff_list_head)
293 break;
294 ctx->aff_offset = offset++;
297 gang->aff_flags |= AFF_OFFSETS_SET;
300 static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
301 int group_size, int lowest_offset)
303 struct spu *spu;
304 int node, n;
307 * TODO: A better algorithm could be used to find a good spu to be
308 * used as reference location for the ctxs chain.
310 node = cpu_to_node(raw_smp_processor_id());
311 for (n = 0; n < MAX_NUMNODES; n++, node++) {
312 node = (node < MAX_NUMNODES) ? node : 0;
313 if (!node_allowed(ctx, node))
314 continue;
315 mutex_lock(&cbe_spu_info[node].list_mutex);
316 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
317 if ((!mem_aff || spu->has_mem_affinity) &&
318 sched_spu(spu)) {
319 mutex_unlock(&cbe_spu_info[node].list_mutex);
320 return spu;
323 mutex_unlock(&cbe_spu_info[node].list_mutex);
325 return NULL;
328 static void aff_set_ref_point_location(struct spu_gang *gang)
330 int mem_aff, gs, lowest_offset;
331 struct spu_context *ctx;
332 struct spu *tmp;
334 mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
335 lowest_offset = 0;
336 gs = 0;
338 list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
339 gs++;
341 list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
342 aff_list) {
343 if (&ctx->aff_list == &gang->aff_list_head)
344 break;
345 lowest_offset = ctx->aff_offset;
348 gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
349 lowest_offset);
352 static struct spu *ctx_location(struct spu *ref, int offset, int node)
354 struct spu *spu;
356 spu = NULL;
357 if (offset >= 0) {
358 list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
359 BUG_ON(spu->node != node);
360 if (offset == 0)
361 break;
362 if (sched_spu(spu))
363 offset--;
365 } else {
366 list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
367 BUG_ON(spu->node != node);
368 if (offset == 0)
369 break;
370 if (sched_spu(spu))
371 offset++;
375 return spu;
379 * affinity_check is called each time a context is going to be scheduled.
380 * It returns the spu ptr on which the context must run.
382 static int has_affinity(struct spu_context *ctx)
384 struct spu_gang *gang = ctx->gang;
386 if (list_empty(&ctx->aff_list))
387 return 0;
389 if (!gang->aff_ref_spu) {
390 if (!(gang->aff_flags & AFF_MERGED))
391 aff_merge_remaining_ctxs(gang);
392 if (!(gang->aff_flags & AFF_OFFSETS_SET))
393 aff_set_offsets(gang);
394 aff_set_ref_point_location(gang);
397 return gang->aff_ref_spu != NULL;
401 * spu_unbind_context - unbind spu context from physical spu
402 * @spu: physical spu to unbind from
403 * @ctx: context to unbind
405 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
407 spu_context_trace(spu_unbind_context__enter, ctx, spu);
409 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
411 if (spu->ctx->flags & SPU_CREATE_NOSCHED)
412 atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
414 if (ctx->gang){
415 mutex_lock(&ctx->gang->aff_mutex);
416 if (has_affinity(ctx)) {
417 if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
418 ctx->gang->aff_ref_spu = NULL;
420 mutex_unlock(&ctx->gang->aff_mutex);
423 spu_switch_notify(spu, NULL);
424 spu_unmap_mappings(ctx);
425 spu_save(&ctx->csa, spu);
426 spu->timestamp = jiffies;
427 ctx->state = SPU_STATE_SAVED;
428 spu->ibox_callback = NULL;
429 spu->wbox_callback = NULL;
430 spu->stop_callback = NULL;
431 spu->mfc_callback = NULL;
432 spu_associate_mm(spu, NULL);
433 spu->pid = 0;
434 spu->tgid = 0;
435 ctx->ops = &spu_backing_ops;
436 spu->flags = 0;
437 spu->ctx = NULL;
439 ctx->stats.slb_flt +=
440 (spu->stats.slb_flt - ctx->stats.slb_flt_base);
441 ctx->stats.class2_intr +=
442 (spu->stats.class2_intr - ctx->stats.class2_intr_base);
444 /* This maps the underlying spu state to idle */
445 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
446 ctx->spu = NULL;
450 * spu_add_to_rq - add a context to the runqueue
451 * @ctx: context to add
453 static void __spu_add_to_rq(struct spu_context *ctx)
456 * Unfortunately this code path can be called from multiple threads
457 * on behalf of a single context due to the way the problem state
458 * mmap support works.
460 * Fortunately we need to wake up all these threads at the same time
461 * and can simply skip the runqueue addition for every but the first
462 * thread getting into this codepath.
464 * It's still quite hacky, and long-term we should proxy all other
465 * threads through the owner thread so that spu_run is in control
466 * of all the scheduling activity for a given context.
468 if (list_empty(&ctx->rq)) {
469 list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
470 set_bit(ctx->prio, spu_prio->bitmap);
471 if (!spu_prio->nr_waiting++)
472 __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
476 static void spu_add_to_rq(struct spu_context *ctx)
478 spin_lock(&spu_prio->runq_lock);
479 __spu_add_to_rq(ctx);
480 spin_unlock(&spu_prio->runq_lock);
483 static void __spu_del_from_rq(struct spu_context *ctx)
485 int prio = ctx->prio;
487 if (!list_empty(&ctx->rq)) {
488 if (!--spu_prio->nr_waiting)
489 del_timer(&spusched_timer);
490 list_del_init(&ctx->rq);
492 if (list_empty(&spu_prio->runq[prio]))
493 clear_bit(prio, spu_prio->bitmap);
497 void spu_del_from_rq(struct spu_context *ctx)
499 spin_lock(&spu_prio->runq_lock);
500 __spu_del_from_rq(ctx);
501 spin_unlock(&spu_prio->runq_lock);
504 static void spu_prio_wait(struct spu_context *ctx)
506 DEFINE_WAIT(wait);
509 * The caller must explicitly wait for a context to be loaded
510 * if the nosched flag is set. If NOSCHED is not set, the caller
511 * queues the context and waits for an spu event or error.
513 BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
515 spin_lock(&spu_prio->runq_lock);
516 prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
517 if (!signal_pending(current)) {
518 __spu_add_to_rq(ctx);
519 spin_unlock(&spu_prio->runq_lock);
520 mutex_unlock(&ctx->state_mutex);
521 schedule();
522 mutex_lock(&ctx->state_mutex);
523 spin_lock(&spu_prio->runq_lock);
524 __spu_del_from_rq(ctx);
526 spin_unlock(&spu_prio->runq_lock);
527 __set_current_state(TASK_RUNNING);
528 remove_wait_queue(&ctx->stop_wq, &wait);
531 static struct spu *spu_get_idle(struct spu_context *ctx)
533 struct spu *spu, *aff_ref_spu;
534 int node, n;
536 spu_context_nospu_trace(spu_get_idle__enter, ctx);
538 if (ctx->gang) {
539 mutex_lock(&ctx->gang->aff_mutex);
540 if (has_affinity(ctx)) {
541 aff_ref_spu = ctx->gang->aff_ref_spu;
542 atomic_inc(&ctx->gang->aff_sched_count);
543 mutex_unlock(&ctx->gang->aff_mutex);
544 node = aff_ref_spu->node;
546 mutex_lock(&cbe_spu_info[node].list_mutex);
547 spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
548 if (spu && spu->alloc_state == SPU_FREE)
549 goto found;
550 mutex_unlock(&cbe_spu_info[node].list_mutex);
552 mutex_lock(&ctx->gang->aff_mutex);
553 if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
554 ctx->gang->aff_ref_spu = NULL;
555 mutex_unlock(&ctx->gang->aff_mutex);
556 goto not_found;
558 mutex_unlock(&ctx->gang->aff_mutex);
560 node = cpu_to_node(raw_smp_processor_id());
561 for (n = 0; n < MAX_NUMNODES; n++, node++) {
562 node = (node < MAX_NUMNODES) ? node : 0;
563 if (!node_allowed(ctx, node))
564 continue;
566 mutex_lock(&cbe_spu_info[node].list_mutex);
567 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
568 if (spu->alloc_state == SPU_FREE)
569 goto found;
571 mutex_unlock(&cbe_spu_info[node].list_mutex);
574 not_found:
575 spu_context_nospu_trace(spu_get_idle__not_found, ctx);
576 return NULL;
578 found:
579 spu->alloc_state = SPU_USED;
580 mutex_unlock(&cbe_spu_info[node].list_mutex);
581 spu_context_trace(spu_get_idle__found, ctx, spu);
582 spu_init_channels(spu);
583 return spu;
587 * find_victim - find a lower priority context to preempt
588 * @ctx: canidate context for running
590 * Returns the freed physical spu to run the new context on.
592 static struct spu *find_victim(struct spu_context *ctx)
594 struct spu_context *victim = NULL;
595 struct spu *spu;
596 int node, n;
598 spu_context_nospu_trace(spu_find_vitim__enter, ctx);
601 * Look for a possible preemption candidate on the local node first.
602 * If there is no candidate look at the other nodes. This isn't
603 * exactly fair, but so far the whole spu scheduler tries to keep
604 * a strong node affinity. We might want to fine-tune this in
605 * the future.
607 restart:
608 node = cpu_to_node(raw_smp_processor_id());
609 for (n = 0; n < MAX_NUMNODES; n++, node++) {
610 node = (node < MAX_NUMNODES) ? node : 0;
611 if (!node_allowed(ctx, node))
612 continue;
614 mutex_lock(&cbe_spu_info[node].list_mutex);
615 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
616 struct spu_context *tmp = spu->ctx;
618 if (tmp && tmp->prio > ctx->prio &&
619 !(tmp->flags & SPU_CREATE_NOSCHED) &&
620 (!victim || tmp->prio > victim->prio))
621 victim = spu->ctx;
623 mutex_unlock(&cbe_spu_info[node].list_mutex);
625 if (victim) {
627 * This nests ctx->state_mutex, but we always lock
628 * higher priority contexts before lower priority
629 * ones, so this is safe until we introduce
630 * priority inheritance schemes.
632 * XXX if the highest priority context is locked,
633 * this can loop a long time. Might be better to
634 * look at another context or give up after X retries.
636 if (!mutex_trylock(&victim->state_mutex)) {
637 victim = NULL;
638 goto restart;
641 spu = victim->spu;
642 if (!spu || victim->prio <= ctx->prio) {
644 * This race can happen because we've dropped
645 * the active list mutex. Not a problem, just
646 * restart the search.
648 mutex_unlock(&victim->state_mutex);
649 victim = NULL;
650 goto restart;
653 spu_context_trace(__spu_deactivate__unload, ctx, spu);
655 mutex_lock(&cbe_spu_info[node].list_mutex);
656 cbe_spu_info[node].nr_active--;
657 spu_unbind_context(spu, victim);
658 mutex_unlock(&cbe_spu_info[node].list_mutex);
660 victim->stats.invol_ctx_switch++;
661 spu->stats.invol_ctx_switch++;
662 spu_add_to_rq(victim);
664 mutex_unlock(&victim->state_mutex);
666 return spu;
670 return NULL;
673 static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
675 int node = spu->node;
676 int success = 0;
678 spu_set_timeslice(ctx);
680 mutex_lock(&cbe_spu_info[node].list_mutex);
681 if (spu->ctx == NULL) {
682 spu_bind_context(spu, ctx);
683 cbe_spu_info[node].nr_active++;
684 spu->alloc_state = SPU_USED;
685 success = 1;
687 mutex_unlock(&cbe_spu_info[node].list_mutex);
689 if (success)
690 wake_up_all(&ctx->run_wq);
691 else
692 spu_add_to_rq(ctx);
695 static void spu_schedule(struct spu *spu, struct spu_context *ctx)
697 /* not a candidate for interruptible because it's called either
698 from the scheduler thread or from spu_deactivate */
699 mutex_lock(&ctx->state_mutex);
700 __spu_schedule(spu, ctx);
701 spu_release(ctx);
704 static void spu_unschedule(struct spu *spu, struct spu_context *ctx)
706 int node = spu->node;
708 mutex_lock(&cbe_spu_info[node].list_mutex);
709 cbe_spu_info[node].nr_active--;
710 spu->alloc_state = SPU_FREE;
711 spu_unbind_context(spu, ctx);
712 ctx->stats.invol_ctx_switch++;
713 spu->stats.invol_ctx_switch++;
714 mutex_unlock(&cbe_spu_info[node].list_mutex);
718 * spu_activate - find a free spu for a context and execute it
719 * @ctx: spu context to schedule
720 * @flags: flags (currently ignored)
722 * Tries to find a free spu to run @ctx. If no free spu is available
723 * add the context to the runqueue so it gets woken up once an spu
724 * is available.
726 int spu_activate(struct spu_context *ctx, unsigned long flags)
728 struct spu *spu;
731 * If there are multiple threads waiting for a single context
732 * only one actually binds the context while the others will
733 * only be able to acquire the state_mutex once the context
734 * already is in runnable state.
736 if (ctx->spu)
737 return 0;
739 spu_activate_top:
740 if (signal_pending(current))
741 return -ERESTARTSYS;
743 spu = spu_get_idle(ctx);
745 * If this is a realtime thread we try to get it running by
746 * preempting a lower priority thread.
748 if (!spu && rt_prio(ctx->prio))
749 spu = find_victim(ctx);
750 if (spu) {
751 unsigned long runcntl;
753 runcntl = ctx->ops->runcntl_read(ctx);
754 __spu_schedule(spu, ctx);
755 if (runcntl & SPU_RUNCNTL_RUNNABLE)
756 spuctx_switch_state(ctx, SPU_UTIL_USER);
758 return 0;
761 if (ctx->flags & SPU_CREATE_NOSCHED) {
762 spu_prio_wait(ctx);
763 goto spu_activate_top;
766 spu_add_to_rq(ctx);
768 return 0;
772 * grab_runnable_context - try to find a runnable context
774 * Remove the highest priority context on the runqueue and return it
775 * to the caller. Returns %NULL if no runnable context was found.
777 static struct spu_context *grab_runnable_context(int prio, int node)
779 struct spu_context *ctx;
780 int best;
782 spin_lock(&spu_prio->runq_lock);
783 best = find_first_bit(spu_prio->bitmap, prio);
784 while (best < prio) {
785 struct list_head *rq = &spu_prio->runq[best];
787 list_for_each_entry(ctx, rq, rq) {
788 /* XXX(hch): check for affinity here aswell */
789 if (__node_allowed(ctx, node)) {
790 __spu_del_from_rq(ctx);
791 goto found;
794 best++;
796 ctx = NULL;
797 found:
798 spin_unlock(&spu_prio->runq_lock);
799 return ctx;
802 static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
804 struct spu *spu = ctx->spu;
805 struct spu_context *new = NULL;
807 if (spu) {
808 new = grab_runnable_context(max_prio, spu->node);
809 if (new || force) {
810 spu_unschedule(spu, ctx);
811 if (new) {
812 if (new->flags & SPU_CREATE_NOSCHED)
813 wake_up(&new->stop_wq);
814 else {
815 spu_release(ctx);
816 spu_schedule(spu, new);
817 /* this one can't easily be made
818 interruptible */
819 mutex_lock(&ctx->state_mutex);
825 return new != NULL;
829 * spu_deactivate - unbind a context from it's physical spu
830 * @ctx: spu context to unbind
832 * Unbind @ctx from the physical spu it is running on and schedule
833 * the highest priority context to run on the freed physical spu.
835 void spu_deactivate(struct spu_context *ctx)
837 spu_context_nospu_trace(spu_deactivate__enter, ctx);
838 __spu_deactivate(ctx, 1, MAX_PRIO);
842 * spu_yield - yield a physical spu if others are waiting
843 * @ctx: spu context to yield
845 * Check if there is a higher priority context waiting and if yes
846 * unbind @ctx from the physical spu and schedule the highest
847 * priority context to run on the freed physical spu instead.
849 void spu_yield(struct spu_context *ctx)
851 spu_context_nospu_trace(spu_yield__enter, ctx);
852 if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
853 mutex_lock(&ctx->state_mutex);
854 __spu_deactivate(ctx, 0, MAX_PRIO);
855 mutex_unlock(&ctx->state_mutex);
859 static noinline void spusched_tick(struct spu_context *ctx)
861 struct spu_context *new = NULL;
862 struct spu *spu = NULL;
863 <<<<<<< HEAD:arch/powerpc/platforms/cell/spufs/sched.c
864 u32 status;
865 =======
866 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/powerpc/platforms/cell/spufs/sched.c
868 if (spu_acquire(ctx))
869 BUG(); /* a kernel thread never has signals pending */
871 if (ctx->state != SPU_STATE_RUNNABLE)
872 goto out;
873 <<<<<<< HEAD:arch/powerpc/platforms/cell/spufs/sched.c
874 if (spu_stopped(ctx, &status))
875 goto out;
876 =======
877 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/powerpc/platforms/cell/spufs/sched.c
878 if (ctx->flags & SPU_CREATE_NOSCHED)
879 goto out;
880 if (ctx->policy == SCHED_FIFO)
881 goto out;
883 <<<<<<< HEAD:arch/powerpc/platforms/cell/spufs/sched.c
884 if (--ctx->time_slice)
885 =======
886 if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
887 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/powerpc/platforms/cell/spufs/sched.c
888 goto out;
890 spu = ctx->spu;
892 spu_context_trace(spusched_tick__preempt, ctx, spu);
894 new = grab_runnable_context(ctx->prio + 1, spu->node);
895 if (new) {
896 spu_unschedule(spu, ctx);
897 <<<<<<< HEAD:arch/powerpc/platforms/cell/spufs/sched.c
898 spu_add_to_rq(ctx);
899 =======
900 if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
901 spu_add_to_rq(ctx);
902 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/powerpc/platforms/cell/spufs/sched.c
903 } else {
904 spu_context_nospu_trace(spusched_tick__newslice, ctx);
905 ctx->time_slice++;
907 out:
908 spu_release(ctx);
910 if (new)
911 spu_schedule(spu, new);
915 * count_active_contexts - count nr of active tasks
917 * Return the number of tasks currently running or waiting to run.
919 * Note that we don't take runq_lock / list_mutex here. Reading
920 * a single 32bit value is atomic on powerpc, and we don't care
921 * about memory ordering issues here.
923 static unsigned long count_active_contexts(void)
925 int nr_active = 0, node;
927 for (node = 0; node < MAX_NUMNODES; node++)
928 nr_active += cbe_spu_info[node].nr_active;
929 nr_active += spu_prio->nr_waiting;
931 return nr_active;
935 * spu_calc_load - update the avenrun load estimates.
937 * No locking against reading these values from userspace, as for
938 * the CPU loadavg code.
940 static void spu_calc_load(void)
942 unsigned long active_tasks; /* fixed-point */
944 active_tasks = count_active_contexts() * FIXED_1;
945 CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
946 CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
947 CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
950 static void spusched_wake(unsigned long data)
952 mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
953 wake_up_process(spusched_task);
956 static void spuloadavg_wake(unsigned long data)
958 mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
959 spu_calc_load();
962 static int spusched_thread(void *unused)
964 struct spu *spu;
965 int node;
967 while (!kthread_should_stop()) {
968 set_current_state(TASK_INTERRUPTIBLE);
969 schedule();
970 for (node = 0; node < MAX_NUMNODES; node++) {
971 struct mutex *mtx = &cbe_spu_info[node].list_mutex;
973 mutex_lock(mtx);
974 list_for_each_entry(spu, &cbe_spu_info[node].spus,
975 cbe_list) {
976 struct spu_context *ctx = spu->ctx;
978 if (ctx) {
979 mutex_unlock(mtx);
980 spusched_tick(ctx);
981 mutex_lock(mtx);
984 mutex_unlock(mtx);
988 return 0;
991 void spuctx_switch_state(struct spu_context *ctx,
992 enum spu_utilization_state new_state)
994 unsigned long long curtime;
995 signed long long delta;
996 struct timespec ts;
997 struct spu *spu;
998 enum spu_utilization_state old_state;
1000 ktime_get_ts(&ts);
1001 curtime = timespec_to_ns(&ts);
1002 delta = curtime - ctx->stats.tstamp;
1004 WARN_ON(!mutex_is_locked(&ctx->state_mutex));
1005 WARN_ON(delta < 0);
1007 spu = ctx->spu;
1008 old_state = ctx->stats.util_state;
1009 ctx->stats.util_state = new_state;
1010 ctx->stats.tstamp = curtime;
1013 * Update the physical SPU utilization statistics.
1015 if (spu) {
1016 ctx->stats.times[old_state] += delta;
1017 spu->stats.times[old_state] += delta;
1018 spu->stats.util_state = new_state;
1019 spu->stats.tstamp = curtime;
1023 #define LOAD_INT(x) ((x) >> FSHIFT)
1024 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
1026 static int show_spu_loadavg(struct seq_file *s, void *private)
1028 int a, b, c;
1030 a = spu_avenrun[0] + (FIXED_1/200);
1031 b = spu_avenrun[1] + (FIXED_1/200);
1032 c = spu_avenrun[2] + (FIXED_1/200);
1035 * Note that last_pid doesn't really make much sense for the
1036 * SPU loadavg (it even seems very odd on the CPU side...),
1037 * but we include it here to have a 100% compatible interface.
1039 seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
1040 LOAD_INT(a), LOAD_FRAC(a),
1041 LOAD_INT(b), LOAD_FRAC(b),
1042 LOAD_INT(c), LOAD_FRAC(c),
1043 count_active_contexts(),
1044 atomic_read(&nr_spu_contexts),
1045 current->nsproxy->pid_ns->last_pid);
1046 return 0;
1049 static int spu_loadavg_open(struct inode *inode, struct file *file)
1051 return single_open(file, show_spu_loadavg, NULL);
1054 static const struct file_operations spu_loadavg_fops = {
1055 .open = spu_loadavg_open,
1056 .read = seq_read,
1057 .llseek = seq_lseek,
1058 .release = single_release,
1061 int __init spu_sched_init(void)
1063 struct proc_dir_entry *entry;
1064 int err = -ENOMEM, i;
1066 spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1067 if (!spu_prio)
1068 goto out;
1070 for (i = 0; i < MAX_PRIO; i++) {
1071 INIT_LIST_HEAD(&spu_prio->runq[i]);
1072 __clear_bit(i, spu_prio->bitmap);
1074 spin_lock_init(&spu_prio->runq_lock);
1076 setup_timer(&spusched_timer, spusched_wake, 0);
1077 setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
1079 spusched_task = kthread_run(spusched_thread, NULL, "spusched");
1080 if (IS_ERR(spusched_task)) {
1081 err = PTR_ERR(spusched_task);
1082 goto out_free_spu_prio;
1085 mod_timer(&spuloadavg_timer, 0);
1087 entry = create_proc_entry("spu_loadavg", 0, NULL);
1088 if (!entry)
1089 goto out_stop_kthread;
1090 entry->proc_fops = &spu_loadavg_fops;
1092 pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
1093 SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1094 return 0;
1096 out_stop_kthread:
1097 kthread_stop(spusched_task);
1098 out_free_spu_prio:
1099 kfree(spu_prio);
1100 out:
1101 return err;
1104 void spu_sched_exit(void)
1106 struct spu *spu;
1107 int node;
1109 remove_proc_entry("spu_loadavg", NULL);
1111 del_timer_sync(&spusched_timer);
1112 del_timer_sync(&spuloadavg_timer);
1113 kthread_stop(spusched_task);
1115 for (node = 0; node < MAX_NUMNODES; node++) {
1116 mutex_lock(&cbe_spu_info[node].list_mutex);
1117 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
1118 if (spu->alloc_state != SPU_FREE)
1119 spu->alloc_state = SPU_FREE;
1120 mutex_unlock(&cbe_spu_info[node].list_mutex);
1122 kfree(spu_prio);