4 * Copyright IBM Corp. 2006
5 * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
8 #include <linux/bootmem.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15 #include <asm/setup.h>
16 #include <asm/tlbflush.h>
18 static DEFINE_MUTEX(vmem_mutex
);
20 struct memory_segment
{
21 struct list_head list
;
26 static LIST_HEAD(mem_segs
);
28 void __meminit
memmap_init(unsigned long size
, int nid
, unsigned long zone
,
29 unsigned long start_pfn
)
31 struct page
*start
, *end
;
32 struct page
*map_start
, *map_end
;
35 start
= pfn_to_page(start_pfn
);
38 for (i
= 0; i
< MEMORY_CHUNKS
&& memory_chunk
[i
].size
> 0; i
++) {
39 unsigned long cstart
, cend
;
41 cstart
= PFN_DOWN(memory_chunk
[i
].addr
);
42 cend
= cstart
+ PFN_DOWN(memory_chunk
[i
].size
);
44 map_start
= mem_map
+ cstart
;
45 map_end
= mem_map
+ cend
;
47 if (map_start
< start
)
52 map_start
-= ((unsigned long) map_start
& (PAGE_SIZE
- 1))
53 / sizeof(struct page
);
54 map_end
+= ((PFN_ALIGN((unsigned long) map_end
)
55 - (unsigned long) map_end
)
56 / sizeof(struct page
));
58 if (map_start
< map_end
)
59 memmap_init_zone((unsigned long)(map_end
- map_start
),
60 nid
, zone
, page_to_pfn(map_start
),
65 static void __ref
*vmem_alloc_pages(unsigned int order
)
67 if (slab_is_available())
68 return (void *)__get_free_pages(GFP_KERNEL
, order
);
69 return alloc_bootmem_pages((1 << order
) * PAGE_SIZE
);
72 static inline pud_t
*vmem_pud_alloc(void)
77 pud
= vmem_alloc_pages(2);
80 pud_val(*pud
) = _REGION3_ENTRY_EMPTY
;
81 memcpy(pud
+ 1, pud
, (PTRS_PER_PUD
- 1)*sizeof(pud_t
));
86 static inline pmd_t
*vmem_pmd_alloc(void)
91 pmd
= vmem_alloc_pages(2);
94 clear_table((unsigned long *) pmd
, _SEGMENT_ENTRY_EMPTY
, PAGE_SIZE
*4);
99 static pte_t __init_refok
*vmem_pte_alloc(void)
103 if (slab_is_available())
104 pte
= (pte_t
*) page_table_alloc(&init_mm
);
106 pte
= alloc_bootmem(PTRS_PER_PTE
* sizeof(pte_t
));
109 clear_table((unsigned long *) pte
, _PAGE_TYPE_EMPTY
,
110 PTRS_PER_PTE
* sizeof(pte_t
));
115 * Add a physical memory range to the 1:1 mapping.
117 static int vmem_add_range(unsigned long start
, unsigned long size
)
119 unsigned long address
;
127 for (address
= start
; address
< start
+ size
; address
+= PAGE_SIZE
) {
128 pg_dir
= pgd_offset_k(address
);
129 if (pgd_none(*pg_dir
)) {
130 pu_dir
= vmem_pud_alloc();
133 pgd_populate_kernel(&init_mm
, pg_dir
, pu_dir
);
136 pu_dir
= pud_offset(pg_dir
, address
);
137 if (pud_none(*pu_dir
)) {
138 pm_dir
= vmem_pmd_alloc();
141 pud_populate_kernel(&init_mm
, pu_dir
, pm_dir
);
144 pm_dir
= pmd_offset(pu_dir
, address
);
145 if (pmd_none(*pm_dir
)) {
146 pt_dir
= vmem_pte_alloc();
149 pmd_populate_kernel(&init_mm
, pm_dir
, pt_dir
);
152 pt_dir
= pte_offset_kernel(pm_dir
, address
);
153 pte
= pfn_pte(address
>> PAGE_SHIFT
, PAGE_KERNEL
);
158 flush_tlb_kernel_range(start
, start
+ size
);
163 * Remove a physical memory range from the 1:1 mapping.
164 * Currently only invalidates page table entries.
166 static void vmem_remove_range(unsigned long start
, unsigned long size
)
168 unsigned long address
;
175 pte_val(pte
) = _PAGE_TYPE_EMPTY
;
176 for (address
= start
; address
< start
+ size
; address
+= PAGE_SIZE
) {
177 pg_dir
= pgd_offset_k(address
);
178 pu_dir
= pud_offset(pg_dir
, address
);
179 if (pud_none(*pu_dir
))
181 pm_dir
= pmd_offset(pu_dir
, address
);
182 if (pmd_none(*pm_dir
))
184 pt_dir
= pte_offset_kernel(pm_dir
, address
);
187 flush_tlb_kernel_range(start
, start
+ size
);
191 * Add a backed mem_map array to the virtual mem_map array.
193 static int vmem_add_mem_map(unsigned long start
, unsigned long size
)
195 unsigned long address
, start_addr
, end_addr
;
196 struct page
*map_start
, *map_end
;
204 map_start
= VMEM_MAP
+ PFN_DOWN(start
);
205 map_end
= VMEM_MAP
+ PFN_DOWN(start
+ size
);
207 start_addr
= (unsigned long) map_start
& PAGE_MASK
;
208 end_addr
= PFN_ALIGN((unsigned long) map_end
);
210 for (address
= start_addr
; address
< end_addr
; address
+= PAGE_SIZE
) {
211 pg_dir
= pgd_offset_k(address
);
212 if (pgd_none(*pg_dir
)) {
213 pu_dir
= vmem_pud_alloc();
216 pgd_populate_kernel(&init_mm
, pg_dir
, pu_dir
);
219 pu_dir
= pud_offset(pg_dir
, address
);
220 if (pud_none(*pu_dir
)) {
221 pm_dir
= vmem_pmd_alloc();
224 pud_populate_kernel(&init_mm
, pu_dir
, pm_dir
);
227 pm_dir
= pmd_offset(pu_dir
, address
);
228 if (pmd_none(*pm_dir
)) {
229 pt_dir
= vmem_pte_alloc();
232 pmd_populate_kernel(&init_mm
, pm_dir
, pt_dir
);
235 pt_dir
= pte_offset_kernel(pm_dir
, address
);
236 if (pte_none(*pt_dir
)) {
237 unsigned long new_page
;
239 new_page
=__pa(vmem_alloc_pages(0));
242 pte
= pfn_pte(new_page
>> PAGE_SHIFT
, PAGE_KERNEL
);
248 flush_tlb_kernel_range(start_addr
, end_addr
);
252 static int vmem_add_mem(unsigned long start
, unsigned long size
)
256 ret
= vmem_add_mem_map(start
, size
);
259 return vmem_add_range(start
, size
);
263 * Add memory segment to the segment list if it doesn't overlap with
264 * an already present segment.
266 static int insert_memory_segment(struct memory_segment
*seg
)
268 struct memory_segment
*tmp
;
270 if (seg
->start
+ seg
->size
>= VMEM_MAX_PHYS
||
271 seg
->start
+ seg
->size
< seg
->start
)
274 list_for_each_entry(tmp
, &mem_segs
, list
) {
275 if (seg
->start
>= tmp
->start
+ tmp
->size
)
277 if (seg
->start
+ seg
->size
<= tmp
->start
)
281 list_add(&seg
->list
, &mem_segs
);
286 * Remove memory segment from the segment list.
288 static void remove_memory_segment(struct memory_segment
*seg
)
290 list_del(&seg
->list
);
293 static void __remove_shared_memory(struct memory_segment
*seg
)
295 remove_memory_segment(seg
);
296 vmem_remove_range(seg
->start
, seg
->size
);
299 int remove_shared_memory(unsigned long start
, unsigned long size
)
301 struct memory_segment
*seg
;
304 mutex_lock(&vmem_mutex
);
307 list_for_each_entry(seg
, &mem_segs
, list
) {
308 if (seg
->start
== start
&& seg
->size
== size
)
312 if (seg
->start
!= start
|| seg
->size
!= size
)
316 __remove_shared_memory(seg
);
319 mutex_unlock(&vmem_mutex
);
323 int add_shared_memory(unsigned long start
, unsigned long size
)
325 struct memory_segment
*seg
;
327 unsigned long pfn
, num_pfn
, end_pfn
;
330 mutex_lock(&vmem_mutex
);
332 seg
= kzalloc(sizeof(*seg
), GFP_KERNEL
);
338 ret
= insert_memory_segment(seg
);
342 ret
= vmem_add_mem(start
, size
);
346 pfn
= PFN_DOWN(start
);
347 num_pfn
= PFN_DOWN(size
);
348 end_pfn
= pfn
+ num_pfn
;
350 page
= pfn_to_page(pfn
);
351 memset(page
, 0, num_pfn
* sizeof(struct page
));
353 for (; pfn
< end_pfn
; pfn
++) {
354 page
= pfn_to_page(pfn
);
355 init_page_count(page
);
356 reset_page_mapcount(page
);
357 SetPageReserved(page
);
358 INIT_LIST_HEAD(&page
->lru
);
363 __remove_shared_memory(seg
);
367 mutex_unlock(&vmem_mutex
);
372 * map whole physical memory to virtual memory (identity mapping)
373 * we reserve enough space in the vmalloc area for vmemmap to hotplug
374 * additional memory segments.
376 void __init
vmem_map_init(void)
380 INIT_LIST_HEAD(&init_mm
.context
.crst_list
);
381 INIT_LIST_HEAD(&init_mm
.context
.pgtable_list
);
382 init_mm
.context
.noexec
= 0;
383 NODE_DATA(0)->node_mem_map
= VMEM_MAP
;
384 for (i
= 0; i
< MEMORY_CHUNKS
&& memory_chunk
[i
].size
> 0; i
++)
385 vmem_add_mem(memory_chunk
[i
].addr
, memory_chunk
[i
].size
);
389 * Convert memory chunk array to a memory segment list so there is a single
390 * list that contains both r/w memory and shared memory segments.
392 static int __init
vmem_convert_memory_chunk(void)
394 struct memory_segment
*seg
;
397 mutex_lock(&vmem_mutex
);
398 for (i
= 0; i
< MEMORY_CHUNKS
; i
++) {
399 if (!memory_chunk
[i
].size
)
401 seg
= kzalloc(sizeof(*seg
), GFP_KERNEL
);
403 panic("Out of memory...\n");
404 seg
->start
= memory_chunk
[i
].addr
;
405 seg
->size
= memory_chunk
[i
].size
;
406 insert_memory_segment(seg
);
408 mutex_unlock(&vmem_mutex
);
412 core_initcall(vmem_convert_memory_chunk
);