Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / arch / sparc64 / kernel / smp.c
blob48ab6924a0bc373f736e5e1bc3b539292bdd8eb4
1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997, 2007 David S. Miller (davem@davemloft.net)
4 */
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
25 #include <asm/head.h>
26 #include <asm/ptrace.h>
27 #include <asm/atomic.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30 #include <asm/cpudata.h>
31 #include <asm/hvtramp.h>
32 #include <asm/io.h>
34 #include <asm/irq.h>
35 #include <asm/irq_regs.h>
36 #include <asm/page.h>
37 #include <asm/pgtable.h>
38 #include <asm/oplib.h>
39 #include <asm/uaccess.h>
40 #include <asm/timer.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/sections.h>
44 #include <asm/prom.h>
45 #include <asm/mdesc.h>
46 #include <asm/ldc.h>
47 #include <asm/hypervisor.h>
49 int sparc64_multi_core __read_mostly;
51 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
52 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
53 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
54 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
55 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
57 EXPORT_SYMBOL(cpu_possible_map);
58 EXPORT_SYMBOL(cpu_online_map);
59 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
60 EXPORT_SYMBOL(cpu_core_map);
62 static cpumask_t smp_commenced_mask;
64 void smp_info(struct seq_file *m)
66 int i;
68 seq_printf(m, "State:\n");
69 for_each_online_cpu(i)
70 seq_printf(m, "CPU%d:\t\tonline\n", i);
73 void smp_bogo(struct seq_file *m)
75 int i;
77 for_each_online_cpu(i)
78 seq_printf(m,
79 "Cpu%dClkTck\t: %016lx\n",
80 i, cpu_data(i).clock_tick);
83 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
85 extern void setup_sparc64_timer(void);
87 static volatile unsigned long callin_flag = 0;
89 <<<<<<< HEAD:arch/sparc64/kernel/smp.c
90 void __devinit smp_callin(void)
91 =======
92 void __cpuinit smp_callin(void)
93 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:arch/sparc64/kernel/smp.c
95 int cpuid = hard_smp_processor_id();
97 __local_per_cpu_offset = __per_cpu_offset(cpuid);
99 if (tlb_type == hypervisor)
100 sun4v_ktsb_register();
102 __flush_tlb_all();
104 setup_sparc64_timer();
106 if (cheetah_pcache_forced_on)
107 cheetah_enable_pcache();
109 local_irq_enable();
111 callin_flag = 1;
112 __asm__ __volatile__("membar #Sync\n\t"
113 "flush %%g6" : : : "memory");
115 /* Clear this or we will die instantly when we
116 * schedule back to this idler...
118 current_thread_info()->new_child = 0;
120 /* Attach to the address space of init_task. */
121 atomic_inc(&init_mm.mm_count);
122 current->active_mm = &init_mm;
124 while (!cpu_isset(cpuid, smp_commenced_mask))
125 rmb();
127 spin_lock(&call_lock);
128 cpu_set(cpuid, cpu_online_map);
129 spin_unlock(&call_lock);
131 /* idle thread is expected to have preempt disabled */
132 preempt_disable();
135 void cpu_panic(void)
137 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
138 panic("SMP bolixed\n");
141 /* This tick register synchronization scheme is taken entirely from
142 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
144 * The only change I've made is to rework it so that the master
145 * initiates the synchonization instead of the slave. -DaveM
148 #define MASTER 0
149 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
151 #define NUM_ROUNDS 64 /* magic value */
152 #define NUM_ITERS 5 /* likewise */
154 static DEFINE_SPINLOCK(itc_sync_lock);
155 static unsigned long go[SLAVE + 1];
157 #define DEBUG_TICK_SYNC 0
159 static inline long get_delta (long *rt, long *master)
161 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
162 unsigned long tcenter, t0, t1, tm;
163 unsigned long i;
165 for (i = 0; i < NUM_ITERS; i++) {
166 t0 = tick_ops->get_tick();
167 go[MASTER] = 1;
168 membar_storeload();
169 while (!(tm = go[SLAVE]))
170 rmb();
171 go[SLAVE] = 0;
172 wmb();
173 t1 = tick_ops->get_tick();
175 if (t1 - t0 < best_t1 - best_t0)
176 best_t0 = t0, best_t1 = t1, best_tm = tm;
179 *rt = best_t1 - best_t0;
180 *master = best_tm - best_t0;
182 /* average best_t0 and best_t1 without overflow: */
183 tcenter = (best_t0/2 + best_t1/2);
184 if (best_t0 % 2 + best_t1 % 2 == 2)
185 tcenter++;
186 return tcenter - best_tm;
189 void smp_synchronize_tick_client(void)
191 long i, delta, adj, adjust_latency = 0, done = 0;
192 unsigned long flags, rt, master_time_stamp, bound;
193 #if DEBUG_TICK_SYNC
194 struct {
195 long rt; /* roundtrip time */
196 long master; /* master's timestamp */
197 long diff; /* difference between midpoint and master's timestamp */
198 long lat; /* estimate of itc adjustment latency */
199 } t[NUM_ROUNDS];
200 #endif
202 go[MASTER] = 1;
204 while (go[MASTER])
205 rmb();
207 local_irq_save(flags);
209 for (i = 0; i < NUM_ROUNDS; i++) {
210 delta = get_delta(&rt, &master_time_stamp);
211 if (delta == 0) {
212 done = 1; /* let's lock on to this... */
213 bound = rt;
216 if (!done) {
217 if (i > 0) {
218 adjust_latency += -delta;
219 adj = -delta + adjust_latency/4;
220 } else
221 adj = -delta;
223 tick_ops->add_tick(adj);
225 #if DEBUG_TICK_SYNC
226 t[i].rt = rt;
227 t[i].master = master_time_stamp;
228 t[i].diff = delta;
229 t[i].lat = adjust_latency/4;
230 #endif
233 local_irq_restore(flags);
235 #if DEBUG_TICK_SYNC
236 for (i = 0; i < NUM_ROUNDS; i++)
237 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
238 t[i].rt, t[i].master, t[i].diff, t[i].lat);
239 #endif
241 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
242 "(last diff %ld cycles, maxerr %lu cycles)\n",
243 smp_processor_id(), delta, rt);
246 static void smp_start_sync_tick_client(int cpu);
248 static void smp_synchronize_one_tick(int cpu)
250 unsigned long flags, i;
252 go[MASTER] = 0;
254 smp_start_sync_tick_client(cpu);
256 /* wait for client to be ready */
257 while (!go[MASTER])
258 rmb();
260 /* now let the client proceed into his loop */
261 go[MASTER] = 0;
262 membar_storeload();
264 spin_lock_irqsave(&itc_sync_lock, flags);
266 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
267 while (!go[MASTER])
268 rmb();
269 go[MASTER] = 0;
270 wmb();
271 go[SLAVE] = tick_ops->get_tick();
272 membar_storeload();
275 spin_unlock_irqrestore(&itc_sync_lock, flags);
278 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
279 /* XXX Put this in some common place. XXX */
280 static unsigned long kimage_addr_to_ra(void *p)
282 unsigned long val = (unsigned long) p;
284 return kern_base + (val - KERNBASE);
287 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
289 extern unsigned long sparc64_ttable_tl0;
290 extern unsigned long kern_locked_tte_data;
291 extern int bigkernel;
292 struct hvtramp_descr *hdesc;
293 unsigned long trampoline_ra;
294 struct trap_per_cpu *tb;
295 u64 tte_vaddr, tte_data;
296 unsigned long hv_err;
298 hdesc = kzalloc(sizeof(*hdesc), GFP_KERNEL);
299 if (!hdesc) {
300 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
301 "hvtramp_descr.\n");
302 return;
305 hdesc->cpu = cpu;
306 hdesc->num_mappings = (bigkernel ? 2 : 1);
308 tb = &trap_block[cpu];
309 tb->hdesc = hdesc;
311 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
312 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
314 hdesc->thread_reg = thread_reg;
316 tte_vaddr = (unsigned long) KERNBASE;
317 tte_data = kern_locked_tte_data;
319 hdesc->maps[0].vaddr = tte_vaddr;
320 hdesc->maps[0].tte = tte_data;
321 if (bigkernel) {
322 tte_vaddr += 0x400000;
323 tte_data += 0x400000;
324 hdesc->maps[1].vaddr = tte_vaddr;
325 hdesc->maps[1].tte = tte_data;
328 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
330 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
331 kimage_addr_to_ra(&sparc64_ttable_tl0),
332 __pa(hdesc));
333 if (hv_err)
334 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
335 "gives error %lu\n", hv_err);
337 #endif
339 extern unsigned long sparc64_cpu_startup;
341 /* The OBP cpu startup callback truncates the 3rd arg cookie to
342 * 32-bits (I think) so to be safe we have it read the pointer
343 * contained here so we work on >4GB machines. -DaveM
345 static struct thread_info *cpu_new_thread = NULL;
347 static int __devinit smp_boot_one_cpu(unsigned int cpu)
349 struct trap_per_cpu *tb = &trap_block[cpu];
350 unsigned long entry =
351 (unsigned long)(&sparc64_cpu_startup);
352 unsigned long cookie =
353 (unsigned long)(&cpu_new_thread);
354 struct task_struct *p;
355 int timeout, ret;
357 p = fork_idle(cpu);
358 if (IS_ERR(p))
359 return PTR_ERR(p);
360 callin_flag = 0;
361 cpu_new_thread = task_thread_info(p);
363 if (tlb_type == hypervisor) {
364 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
365 if (ldom_domaining_enabled)
366 ldom_startcpu_cpuid(cpu,
367 (unsigned long) cpu_new_thread);
368 else
369 #endif
370 prom_startcpu_cpuid(cpu, entry, cookie);
371 } else {
372 struct device_node *dp = of_find_node_by_cpuid(cpu);
374 prom_startcpu(dp->node, entry, cookie);
377 for (timeout = 0; timeout < 50000; timeout++) {
378 if (callin_flag)
379 break;
380 udelay(100);
383 if (callin_flag) {
384 ret = 0;
385 } else {
386 printk("Processor %d is stuck.\n", cpu);
387 ret = -ENODEV;
389 cpu_new_thread = NULL;
391 if (tb->hdesc) {
392 kfree(tb->hdesc);
393 tb->hdesc = NULL;
396 return ret;
399 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
401 u64 result, target;
402 int stuck, tmp;
404 if (this_is_starfire) {
405 /* map to real upaid */
406 cpu = (((cpu & 0x3c) << 1) |
407 ((cpu & 0x40) >> 4) |
408 (cpu & 0x3));
411 target = (cpu << 14) | 0x70;
412 again:
413 /* Ok, this is the real Spitfire Errata #54.
414 * One must read back from a UDB internal register
415 * after writes to the UDB interrupt dispatch, but
416 * before the membar Sync for that write.
417 * So we use the high UDB control register (ASI 0x7f,
418 * ADDR 0x20) for the dummy read. -DaveM
420 tmp = 0x40;
421 __asm__ __volatile__(
422 "wrpr %1, %2, %%pstate\n\t"
423 "stxa %4, [%0] %3\n\t"
424 "stxa %5, [%0+%8] %3\n\t"
425 "add %0, %8, %0\n\t"
426 "stxa %6, [%0+%8] %3\n\t"
427 "membar #Sync\n\t"
428 "stxa %%g0, [%7] %3\n\t"
429 "membar #Sync\n\t"
430 "mov 0x20, %%g1\n\t"
431 "ldxa [%%g1] 0x7f, %%g0\n\t"
432 "membar #Sync"
433 : "=r" (tmp)
434 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
435 "r" (data0), "r" (data1), "r" (data2), "r" (target),
436 "r" (0x10), "0" (tmp)
437 : "g1");
439 /* NOTE: PSTATE_IE is still clear. */
440 stuck = 100000;
441 do {
442 __asm__ __volatile__("ldxa [%%g0] %1, %0"
443 : "=r" (result)
444 : "i" (ASI_INTR_DISPATCH_STAT));
445 if (result == 0) {
446 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
447 : : "r" (pstate));
448 return;
450 stuck -= 1;
451 if (stuck == 0)
452 break;
453 } while (result & 0x1);
454 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
455 : : "r" (pstate));
456 if (stuck == 0) {
457 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
458 smp_processor_id(), result);
459 } else {
460 udelay(2);
461 goto again;
465 static inline void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
467 u64 pstate;
468 int i;
470 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
471 for_each_cpu_mask(i, mask)
472 spitfire_xcall_helper(data0, data1, data2, pstate, i);
475 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
476 * packet, but we have no use for that. However we do take advantage of
477 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
479 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
481 u64 pstate, ver, busy_mask;
482 int nack_busy_id, is_jbus, need_more;
484 if (cpus_empty(mask))
485 return;
487 /* Unfortunately, someone at Sun had the brilliant idea to make the
488 * busy/nack fields hard-coded by ITID number for this Ultra-III
489 * derivative processor.
491 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
492 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
493 (ver >> 32) == __SERRANO_ID);
495 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
497 retry:
498 need_more = 0;
499 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
500 : : "r" (pstate), "i" (PSTATE_IE));
502 /* Setup the dispatch data registers. */
503 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
504 "stxa %1, [%4] %6\n\t"
505 "stxa %2, [%5] %6\n\t"
506 "membar #Sync\n\t"
507 : /* no outputs */
508 : "r" (data0), "r" (data1), "r" (data2),
509 "r" (0x40), "r" (0x50), "r" (0x60),
510 "i" (ASI_INTR_W));
512 nack_busy_id = 0;
513 busy_mask = 0;
515 int i;
517 for_each_cpu_mask(i, mask) {
518 u64 target = (i << 14) | 0x70;
520 if (is_jbus) {
521 busy_mask |= (0x1UL << (i * 2));
522 } else {
523 target |= (nack_busy_id << 24);
524 busy_mask |= (0x1UL <<
525 (nack_busy_id * 2));
527 __asm__ __volatile__(
528 "stxa %%g0, [%0] %1\n\t"
529 "membar #Sync\n\t"
530 : /* no outputs */
531 : "r" (target), "i" (ASI_INTR_W));
532 nack_busy_id++;
533 if (nack_busy_id == 32) {
534 need_more = 1;
535 break;
540 /* Now, poll for completion. */
542 u64 dispatch_stat, nack_mask;
543 long stuck;
545 stuck = 100000 * nack_busy_id;
546 nack_mask = busy_mask << 1;
547 do {
548 __asm__ __volatile__("ldxa [%%g0] %1, %0"
549 : "=r" (dispatch_stat)
550 : "i" (ASI_INTR_DISPATCH_STAT));
551 if (!(dispatch_stat & (busy_mask | nack_mask))) {
552 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
553 : : "r" (pstate));
554 if (unlikely(need_more)) {
555 int i, cnt = 0;
556 for_each_cpu_mask(i, mask) {
557 cpu_clear(i, mask);
558 cnt++;
559 if (cnt == 32)
560 break;
562 goto retry;
564 return;
566 if (!--stuck)
567 break;
568 } while (dispatch_stat & busy_mask);
570 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
571 : : "r" (pstate));
573 if (dispatch_stat & busy_mask) {
574 /* Busy bits will not clear, continue instead
575 * of freezing up on this cpu.
577 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
578 smp_processor_id(), dispatch_stat);
579 } else {
580 int i, this_busy_nack = 0;
582 /* Delay some random time with interrupts enabled
583 * to prevent deadlock.
585 udelay(2 * nack_busy_id);
587 /* Clear out the mask bits for cpus which did not
588 * NACK us.
590 for_each_cpu_mask(i, mask) {
591 u64 check_mask;
593 if (is_jbus)
594 check_mask = (0x2UL << (2*i));
595 else
596 check_mask = (0x2UL <<
597 this_busy_nack);
598 if ((dispatch_stat & check_mask) == 0)
599 cpu_clear(i, mask);
600 this_busy_nack += 2;
601 if (this_busy_nack == 64)
602 break;
605 goto retry;
610 /* Multi-cpu list version. */
611 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
613 struct trap_per_cpu *tb;
614 u16 *cpu_list;
615 u64 *mondo;
616 cpumask_t error_mask;
617 unsigned long flags, status;
618 int cnt, retries, this_cpu, prev_sent, i;
620 if (cpus_empty(mask))
621 return;
623 /* We have to do this whole thing with interrupts fully disabled.
624 * Otherwise if we send an xcall from interrupt context it will
625 * corrupt both our mondo block and cpu list state.
627 * One consequence of this is that we cannot use timeout mechanisms
628 * that depend upon interrupts being delivered locally. So, for
629 * example, we cannot sample jiffies and expect it to advance.
631 * Fortunately, udelay() uses %stick/%tick so we can use that.
633 local_irq_save(flags);
635 this_cpu = smp_processor_id();
636 tb = &trap_block[this_cpu];
638 mondo = __va(tb->cpu_mondo_block_pa);
639 mondo[0] = data0;
640 mondo[1] = data1;
641 mondo[2] = data2;
642 wmb();
644 cpu_list = __va(tb->cpu_list_pa);
646 /* Setup the initial cpu list. */
647 cnt = 0;
648 for_each_cpu_mask(i, mask)
649 cpu_list[cnt++] = i;
651 cpus_clear(error_mask);
652 retries = 0;
653 prev_sent = 0;
654 do {
655 int forward_progress, n_sent;
657 status = sun4v_cpu_mondo_send(cnt,
658 tb->cpu_list_pa,
659 tb->cpu_mondo_block_pa);
661 /* HV_EOK means all cpus received the xcall, we're done. */
662 if (likely(status == HV_EOK))
663 break;
665 /* First, see if we made any forward progress.
667 * The hypervisor indicates successful sends by setting
668 * cpu list entries to the value 0xffff.
670 n_sent = 0;
671 for (i = 0; i < cnt; i++) {
672 if (likely(cpu_list[i] == 0xffff))
673 n_sent++;
676 forward_progress = 0;
677 if (n_sent > prev_sent)
678 forward_progress = 1;
680 prev_sent = n_sent;
682 /* If we get a HV_ECPUERROR, then one or more of the cpus
683 * in the list are in error state. Use the cpu_state()
684 * hypervisor call to find out which cpus are in error state.
686 if (unlikely(status == HV_ECPUERROR)) {
687 for (i = 0; i < cnt; i++) {
688 long err;
689 u16 cpu;
691 cpu = cpu_list[i];
692 if (cpu == 0xffff)
693 continue;
695 err = sun4v_cpu_state(cpu);
696 if (err >= 0 &&
697 err == HV_CPU_STATE_ERROR) {
698 cpu_list[i] = 0xffff;
699 cpu_set(cpu, error_mask);
702 } else if (unlikely(status != HV_EWOULDBLOCK))
703 goto fatal_mondo_error;
705 /* Don't bother rewriting the CPU list, just leave the
706 * 0xffff and non-0xffff entries in there and the
707 * hypervisor will do the right thing.
709 * Only advance timeout state if we didn't make any
710 * forward progress.
712 if (unlikely(!forward_progress)) {
713 if (unlikely(++retries > 10000))
714 goto fatal_mondo_timeout;
716 /* Delay a little bit to let other cpus catch up
717 * on their cpu mondo queue work.
719 udelay(2 * cnt);
721 } while (1);
723 local_irq_restore(flags);
725 if (unlikely(!cpus_empty(error_mask)))
726 goto fatal_mondo_cpu_error;
728 return;
730 fatal_mondo_cpu_error:
731 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
732 "were in error state\n",
733 this_cpu);
734 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
735 for_each_cpu_mask(i, error_mask)
736 printk("%d ", i);
737 printk("]\n");
738 return;
740 fatal_mondo_timeout:
741 local_irq_restore(flags);
742 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
743 " progress after %d retries.\n",
744 this_cpu, retries);
745 goto dump_cpu_list_and_out;
747 fatal_mondo_error:
748 local_irq_restore(flags);
749 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
750 this_cpu, status);
751 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
752 "mondo_block_pa(%lx)\n",
753 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
755 dump_cpu_list_and_out:
756 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
757 for (i = 0; i < cnt; i++)
758 printk("%u ", cpu_list[i]);
759 printk("]\n");
762 /* Send cross call to all processors mentioned in MASK
763 * except self.
765 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
767 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
768 int this_cpu = get_cpu();
770 cpus_and(mask, mask, cpu_online_map);
771 cpu_clear(this_cpu, mask);
773 if (tlb_type == spitfire)
774 spitfire_xcall_deliver(data0, data1, data2, mask);
775 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
776 cheetah_xcall_deliver(data0, data1, data2, mask);
777 else
778 hypervisor_xcall_deliver(data0, data1, data2, mask);
779 /* NOTE: Caller runs local copy on master. */
781 put_cpu();
784 extern unsigned long xcall_sync_tick;
786 static void smp_start_sync_tick_client(int cpu)
788 cpumask_t mask = cpumask_of_cpu(cpu);
790 smp_cross_call_masked(&xcall_sync_tick,
791 0, 0, 0, mask);
794 /* Send cross call to all processors except self. */
795 #define smp_cross_call(func, ctx, data1, data2) \
796 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
798 struct call_data_struct {
799 void (*func) (void *info);
800 void *info;
801 atomic_t finished;
802 int wait;
805 static struct call_data_struct *call_data;
807 extern unsigned long xcall_call_function;
810 * smp_call_function(): Run a function on all other CPUs.
811 * @func: The function to run. This must be fast and non-blocking.
812 * @info: An arbitrary pointer to pass to the function.
813 * @nonatomic: currently unused.
814 * @wait: If true, wait (atomically) until function has completed on other CPUs.
816 * Returns 0 on success, else a negative status code. Does not return until
817 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
819 * You must not call this function with disabled interrupts or from a
820 * hardware interrupt handler or from a bottom half handler.
822 static int smp_call_function_mask(void (*func)(void *info), void *info,
823 int nonatomic, int wait, cpumask_t mask)
825 struct call_data_struct data;
826 int cpus;
828 /* Can deadlock when called with interrupts disabled */
829 WARN_ON(irqs_disabled());
831 data.func = func;
832 data.info = info;
833 atomic_set(&data.finished, 0);
834 data.wait = wait;
836 spin_lock(&call_lock);
838 cpu_clear(smp_processor_id(), mask);
839 cpus = cpus_weight(mask);
840 if (!cpus)
841 goto out_unlock;
843 call_data = &data;
844 mb();
846 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
848 /* Wait for response */
849 while (atomic_read(&data.finished) != cpus)
850 cpu_relax();
852 out_unlock:
853 spin_unlock(&call_lock);
855 return 0;
858 int smp_call_function(void (*func)(void *info), void *info,
859 int nonatomic, int wait)
861 return smp_call_function_mask(func, info, nonatomic, wait,
862 cpu_online_map);
865 void smp_call_function_client(int irq, struct pt_regs *regs)
867 void (*func) (void *info) = call_data->func;
868 void *info = call_data->info;
870 clear_softint(1 << irq);
871 if (call_data->wait) {
872 /* let initiator proceed only after completion */
873 func(info);
874 atomic_inc(&call_data->finished);
875 } else {
876 /* let initiator proceed after getting data */
877 atomic_inc(&call_data->finished);
878 func(info);
882 static void tsb_sync(void *info)
884 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
885 struct mm_struct *mm = info;
887 /* It is not valid to test "currrent->active_mm == mm" here.
889 * The value of "current" is not changed atomically with
890 * switch_mm(). But that's OK, we just need to check the
891 * current cpu's trap block PGD physical address.
893 if (tp->pgd_paddr == __pa(mm->pgd))
894 tsb_context_switch(mm);
897 void smp_tsb_sync(struct mm_struct *mm)
899 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
902 extern unsigned long xcall_flush_tlb_mm;
903 extern unsigned long xcall_flush_tlb_pending;
904 extern unsigned long xcall_flush_tlb_kernel_range;
905 extern unsigned long xcall_report_regs;
906 extern unsigned long xcall_receive_signal;
907 extern unsigned long xcall_new_mmu_context_version;
909 #ifdef DCACHE_ALIASING_POSSIBLE
910 extern unsigned long xcall_flush_dcache_page_cheetah;
911 #endif
912 extern unsigned long xcall_flush_dcache_page_spitfire;
914 #ifdef CONFIG_DEBUG_DCFLUSH
915 extern atomic_t dcpage_flushes;
916 extern atomic_t dcpage_flushes_xcall;
917 #endif
919 static inline void __local_flush_dcache_page(struct page *page)
921 #ifdef DCACHE_ALIASING_POSSIBLE
922 __flush_dcache_page(page_address(page),
923 ((tlb_type == spitfire) &&
924 page_mapping(page) != NULL));
925 #else
926 if (page_mapping(page) != NULL &&
927 tlb_type == spitfire)
928 __flush_icache_page(__pa(page_address(page)));
929 #endif
932 void smp_flush_dcache_page_impl(struct page *page, int cpu)
934 cpumask_t mask = cpumask_of_cpu(cpu);
935 int this_cpu;
937 if (tlb_type == hypervisor)
938 return;
940 #ifdef CONFIG_DEBUG_DCFLUSH
941 atomic_inc(&dcpage_flushes);
942 #endif
944 this_cpu = get_cpu();
946 if (cpu == this_cpu) {
947 __local_flush_dcache_page(page);
948 } else if (cpu_online(cpu)) {
949 void *pg_addr = page_address(page);
950 u64 data0;
952 if (tlb_type == spitfire) {
953 data0 =
954 ((u64)&xcall_flush_dcache_page_spitfire);
955 if (page_mapping(page) != NULL)
956 data0 |= ((u64)1 << 32);
957 spitfire_xcall_deliver(data0,
958 __pa(pg_addr),
959 (u64) pg_addr,
960 mask);
961 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
962 #ifdef DCACHE_ALIASING_POSSIBLE
963 data0 =
964 ((u64)&xcall_flush_dcache_page_cheetah);
965 cheetah_xcall_deliver(data0,
966 __pa(pg_addr),
967 0, mask);
968 #endif
970 #ifdef CONFIG_DEBUG_DCFLUSH
971 atomic_inc(&dcpage_flushes_xcall);
972 #endif
975 put_cpu();
978 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
980 void *pg_addr = page_address(page);
981 cpumask_t mask = cpu_online_map;
982 u64 data0;
983 int this_cpu;
985 if (tlb_type == hypervisor)
986 return;
988 this_cpu = get_cpu();
990 cpu_clear(this_cpu, mask);
992 #ifdef CONFIG_DEBUG_DCFLUSH
993 atomic_inc(&dcpage_flushes);
994 #endif
995 if (cpus_empty(mask))
996 goto flush_self;
997 if (tlb_type == spitfire) {
998 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
999 if (page_mapping(page) != NULL)
1000 data0 |= ((u64)1 << 32);
1001 spitfire_xcall_deliver(data0,
1002 __pa(pg_addr),
1003 (u64) pg_addr,
1004 mask);
1005 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1006 #ifdef DCACHE_ALIASING_POSSIBLE
1007 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1008 cheetah_xcall_deliver(data0,
1009 __pa(pg_addr),
1010 0, mask);
1011 #endif
1013 #ifdef CONFIG_DEBUG_DCFLUSH
1014 atomic_inc(&dcpage_flushes_xcall);
1015 #endif
1016 flush_self:
1017 __local_flush_dcache_page(page);
1019 put_cpu();
1022 static void __smp_receive_signal_mask(cpumask_t mask)
1024 smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
1027 void smp_receive_signal(int cpu)
1029 cpumask_t mask = cpumask_of_cpu(cpu);
1031 if (cpu_online(cpu))
1032 __smp_receive_signal_mask(mask);
1035 void smp_receive_signal_client(int irq, struct pt_regs *regs)
1037 clear_softint(1 << irq);
1040 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1042 struct mm_struct *mm;
1043 unsigned long flags;
1045 clear_softint(1 << irq);
1047 /* See if we need to allocate a new TLB context because
1048 * the version of the one we are using is now out of date.
1050 mm = current->active_mm;
1051 if (unlikely(!mm || (mm == &init_mm)))
1052 return;
1054 spin_lock_irqsave(&mm->context.lock, flags);
1056 if (unlikely(!CTX_VALID(mm->context)))
1057 get_new_mmu_context(mm);
1059 spin_unlock_irqrestore(&mm->context.lock, flags);
1061 load_secondary_context(mm);
1062 __flush_tlb_mm(CTX_HWBITS(mm->context),
1063 SECONDARY_CONTEXT);
1066 void smp_new_mmu_context_version(void)
1068 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1071 void smp_report_regs(void)
1073 smp_cross_call(&xcall_report_regs, 0, 0, 0);
1076 /* We know that the window frames of the user have been flushed
1077 * to the stack before we get here because all callers of us
1078 * are flush_tlb_*() routines, and these run after flush_cache_*()
1079 * which performs the flushw.
1081 * The SMP TLB coherency scheme we use works as follows:
1083 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1084 * space has (potentially) executed on, this is the heuristic
1085 * we use to avoid doing cross calls.
1087 * Also, for flushing from kswapd and also for clones, we
1088 * use cpu_vm_mask as the list of cpus to make run the TLB.
1090 * 2) TLB context numbers are shared globally across all processors
1091 * in the system, this allows us to play several games to avoid
1092 * cross calls.
1094 * One invariant is that when a cpu switches to a process, and
1095 * that processes tsk->active_mm->cpu_vm_mask does not have the
1096 * current cpu's bit set, that tlb context is flushed locally.
1098 * If the address space is non-shared (ie. mm->count == 1) we avoid
1099 * cross calls when we want to flush the currently running process's
1100 * tlb state. This is done by clearing all cpu bits except the current
1101 * processor's in current->active_mm->cpu_vm_mask and performing the
1102 * flush locally only. This will force any subsequent cpus which run
1103 * this task to flush the context from the local tlb if the process
1104 * migrates to another cpu (again).
1106 * 3) For shared address spaces (threads) and swapping we bite the
1107 * bullet for most cases and perform the cross call (but only to
1108 * the cpus listed in cpu_vm_mask).
1110 * The performance gain from "optimizing" away the cross call for threads is
1111 * questionable (in theory the big win for threads is the massive sharing of
1112 * address space state across processors).
1115 /* This currently is only used by the hugetlb arch pre-fault
1116 * hook on UltraSPARC-III+ and later when changing the pagesize
1117 * bits of the context register for an address space.
1119 void smp_flush_tlb_mm(struct mm_struct *mm)
1121 u32 ctx = CTX_HWBITS(mm->context);
1122 int cpu = get_cpu();
1124 if (atomic_read(&mm->mm_users) == 1) {
1125 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1126 goto local_flush_and_out;
1129 smp_cross_call_masked(&xcall_flush_tlb_mm,
1130 ctx, 0, 0,
1131 mm->cpu_vm_mask);
1133 local_flush_and_out:
1134 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1136 put_cpu();
1139 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1141 u32 ctx = CTX_HWBITS(mm->context);
1142 int cpu = get_cpu();
1144 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1145 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1146 else
1147 smp_cross_call_masked(&xcall_flush_tlb_pending,
1148 ctx, nr, (unsigned long) vaddrs,
1149 mm->cpu_vm_mask);
1151 __flush_tlb_pending(ctx, nr, vaddrs);
1153 put_cpu();
1156 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1158 start &= PAGE_MASK;
1159 end = PAGE_ALIGN(end);
1160 if (start != end) {
1161 smp_cross_call(&xcall_flush_tlb_kernel_range,
1162 0, start, end);
1164 __flush_tlb_kernel_range(start, end);
1168 /* CPU capture. */
1169 /* #define CAPTURE_DEBUG */
1170 extern unsigned long xcall_capture;
1172 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1173 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1174 static unsigned long penguins_are_doing_time;
1176 void smp_capture(void)
1178 int result = atomic_add_ret(1, &smp_capture_depth);
1180 if (result == 1) {
1181 int ncpus = num_online_cpus();
1183 #ifdef CAPTURE_DEBUG
1184 printk("CPU[%d]: Sending penguins to jail...",
1185 smp_processor_id());
1186 #endif
1187 penguins_are_doing_time = 1;
1188 membar_storestore_loadstore();
1189 atomic_inc(&smp_capture_registry);
1190 smp_cross_call(&xcall_capture, 0, 0, 0);
1191 while (atomic_read(&smp_capture_registry) != ncpus)
1192 rmb();
1193 #ifdef CAPTURE_DEBUG
1194 printk("done\n");
1195 #endif
1199 void smp_release(void)
1201 if (atomic_dec_and_test(&smp_capture_depth)) {
1202 #ifdef CAPTURE_DEBUG
1203 printk("CPU[%d]: Giving pardon to "
1204 "imprisoned penguins\n",
1205 smp_processor_id());
1206 #endif
1207 penguins_are_doing_time = 0;
1208 membar_storeload_storestore();
1209 atomic_dec(&smp_capture_registry);
1213 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1214 * can service tlb flush xcalls...
1216 extern void prom_world(int);
1218 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1220 clear_softint(1 << irq);
1222 preempt_disable();
1224 __asm__ __volatile__("flushw");
1225 prom_world(1);
1226 atomic_inc(&smp_capture_registry);
1227 membar_storeload_storestore();
1228 while (penguins_are_doing_time)
1229 rmb();
1230 atomic_dec(&smp_capture_registry);
1231 prom_world(0);
1233 preempt_enable();
1236 /* /proc/profile writes can call this, don't __init it please. */
1237 int setup_profiling_timer(unsigned int multiplier)
1239 return -EINVAL;
1242 void __init smp_prepare_cpus(unsigned int max_cpus)
1246 void __devinit smp_prepare_boot_cpu(void)
1250 void __devinit smp_fill_in_sib_core_maps(void)
1252 unsigned int i;
1254 for_each_present_cpu(i) {
1255 unsigned int j;
1257 cpus_clear(cpu_core_map[i]);
1258 if (cpu_data(i).core_id == 0) {
1259 cpu_set(i, cpu_core_map[i]);
1260 continue;
1263 for_each_present_cpu(j) {
1264 if (cpu_data(i).core_id ==
1265 cpu_data(j).core_id)
1266 cpu_set(j, cpu_core_map[i]);
1270 for_each_present_cpu(i) {
1271 unsigned int j;
1273 cpus_clear(per_cpu(cpu_sibling_map, i));
1274 if (cpu_data(i).proc_id == -1) {
1275 cpu_set(i, per_cpu(cpu_sibling_map, i));
1276 continue;
1279 for_each_present_cpu(j) {
1280 if (cpu_data(i).proc_id ==
1281 cpu_data(j).proc_id)
1282 cpu_set(j, per_cpu(cpu_sibling_map, i));
1287 int __cpuinit __cpu_up(unsigned int cpu)
1289 int ret = smp_boot_one_cpu(cpu);
1291 if (!ret) {
1292 cpu_set(cpu, smp_commenced_mask);
1293 while (!cpu_isset(cpu, cpu_online_map))
1294 mb();
1295 if (!cpu_isset(cpu, cpu_online_map)) {
1296 ret = -ENODEV;
1297 } else {
1298 /* On SUN4V, writes to %tick and %stick are
1299 * not allowed.
1301 if (tlb_type != hypervisor)
1302 smp_synchronize_one_tick(cpu);
1305 return ret;
1308 #ifdef CONFIG_HOTPLUG_CPU
1309 void cpu_play_dead(void)
1311 int cpu = smp_processor_id();
1312 unsigned long pstate;
1314 idle_task_exit();
1316 if (tlb_type == hypervisor) {
1317 struct trap_per_cpu *tb = &trap_block[cpu];
1319 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1320 tb->cpu_mondo_pa, 0);
1321 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1322 tb->dev_mondo_pa, 0);
1323 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1324 tb->resum_mondo_pa, 0);
1325 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1326 tb->nonresum_mondo_pa, 0);
1329 cpu_clear(cpu, smp_commenced_mask);
1330 membar_safe("#Sync");
1332 local_irq_disable();
1334 __asm__ __volatile__(
1335 "rdpr %%pstate, %0\n\t"
1336 "wrpr %0, %1, %%pstate"
1337 : "=r" (pstate)
1338 : "i" (PSTATE_IE));
1340 while (1)
1341 barrier();
1344 int __cpu_disable(void)
1346 int cpu = smp_processor_id();
1347 cpuinfo_sparc *c;
1348 int i;
1350 for_each_cpu_mask(i, cpu_core_map[cpu])
1351 cpu_clear(cpu, cpu_core_map[i]);
1352 cpus_clear(cpu_core_map[cpu]);
1354 for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1355 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1356 cpus_clear(per_cpu(cpu_sibling_map, cpu));
1358 c = &cpu_data(cpu);
1360 c->core_id = 0;
1361 c->proc_id = -1;
1363 spin_lock(&call_lock);
1364 cpu_clear(cpu, cpu_online_map);
1365 spin_unlock(&call_lock);
1367 smp_wmb();
1369 /* Make sure no interrupts point to this cpu. */
1370 fixup_irqs();
1372 local_irq_enable();
1373 mdelay(1);
1374 local_irq_disable();
1376 return 0;
1379 void __cpu_die(unsigned int cpu)
1381 int i;
1383 for (i = 0; i < 100; i++) {
1384 smp_rmb();
1385 if (!cpu_isset(cpu, smp_commenced_mask))
1386 break;
1387 msleep(100);
1389 if (cpu_isset(cpu, smp_commenced_mask)) {
1390 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1391 } else {
1392 #if defined(CONFIG_SUN_LDOMS)
1393 unsigned long hv_err;
1394 int limit = 100;
1396 do {
1397 hv_err = sun4v_cpu_stop(cpu);
1398 if (hv_err == HV_EOK) {
1399 cpu_clear(cpu, cpu_present_map);
1400 break;
1402 } while (--limit > 0);
1403 if (limit <= 0) {
1404 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1405 hv_err);
1407 #endif
1410 #endif
1412 void __init smp_cpus_done(unsigned int max_cpus)
1416 void smp_send_reschedule(int cpu)
1418 smp_receive_signal(cpu);
1421 /* This is a nop because we capture all other cpus
1422 * anyways when making the PROM active.
1424 void smp_send_stop(void)
1428 unsigned long __per_cpu_base __read_mostly;
1429 unsigned long __per_cpu_shift __read_mostly;
1431 EXPORT_SYMBOL(__per_cpu_base);
1432 EXPORT_SYMBOL(__per_cpu_shift);
1434 void __init real_setup_per_cpu_areas(void)
1436 unsigned long goal, size, i;
1437 char *ptr;
1439 /* Copy section for each CPU (we discard the original) */
1440 goal = PERCPU_ENOUGH_ROOM;
1442 __per_cpu_shift = PAGE_SHIFT;
1443 for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1444 __per_cpu_shift++;
1446 ptr = alloc_bootmem_pages(size * NR_CPUS);
1448 __per_cpu_base = ptr - __per_cpu_start;
1450 for (i = 0; i < NR_CPUS; i++, ptr += size)
1451 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1453 /* Setup %g5 for the boot cpu. */
1454 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());