1 /* $Id: time.c,v 1.42 2002/01/23 14:33:55 davem Exp $
2 * time.c: UltraSparc timer and TOD clock support.
4 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
7 * Based largely on code which is:
9 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
12 #include <linux/errno.h>
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/param.h>
17 #include <linux/string.h>
19 #include <linux/interrupt.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/init.h>
23 #include <linux/ioport.h>
24 #include <linux/mc146818rtc.h>
25 #include <linux/delay.h>
26 #include <linux/profile.h>
27 #include <linux/bcd.h>
28 #include <linux/jiffies.h>
29 #include <linux/cpufreq.h>
30 #include <linux/percpu.h>
31 #include <linux/miscdevice.h>
32 #include <linux/rtc.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/clockchips.h>
35 #include <linux/clocksource.h>
37 #include <asm/oplib.h>
38 #include <asm/mostek.h>
39 #include <asm/timer.h>
43 #include <asm/of_device.h>
44 #include <asm/starfire.h>
46 #include <asm/sections.h>
47 #include <asm/cpudata.h>
48 #include <asm/uaccess.h>
49 #include <asm/irq_regs.h>
51 DEFINE_SPINLOCK(mostek_lock
);
52 DEFINE_SPINLOCK(rtc_lock
);
53 void __iomem
*mstk48t02_regs
= NULL
;
55 unsigned long ds1287_regs
= 0UL;
56 static void __iomem
*bq4802_regs
;
59 static void __iomem
*mstk48t08_regs
;
60 static void __iomem
*mstk48t59_regs
;
62 static int set_rtc_mmss(unsigned long);
64 #define TICK_PRIV_BIT (1UL << 63)
65 #define TICKCMP_IRQ_BIT (1UL << 63)
68 unsigned long profile_pc(struct pt_regs
*regs
)
70 unsigned long pc
= instruction_pointer(regs
);
72 if (in_lock_functions(pc
))
73 return regs
->u_regs
[UREG_RETPC
];
76 EXPORT_SYMBOL(profile_pc
);
79 static void tick_disable_protection(void)
81 /* Set things up so user can access tick register for profiling
82 * purposes. Also workaround BB_ERRATA_1 by doing a dummy
83 * read back of %tick after writing it.
89 "1: rd %%tick, %%g2\n"
90 " add %%g2, 6, %%g2\n"
91 " andn %%g2, %0, %%g2\n"
92 " wrpr %%g2, 0, %%tick\n"
99 static void tick_disable_irq(void)
101 __asm__
__volatile__(
105 "1: wr %0, 0x0, %%tick_cmpr\n"
106 " rd %%tick_cmpr, %%g0"
108 : "r" (TICKCMP_IRQ_BIT
));
111 static void tick_init_tick(void)
113 tick_disable_protection();
117 static unsigned long tick_get_tick(void)
121 __asm__
__volatile__("rd %%tick, %0\n\t"
125 return ret
& ~TICK_PRIV_BIT
;
128 static int tick_add_compare(unsigned long adj
)
130 unsigned long orig_tick
, new_tick
, new_compare
;
132 __asm__
__volatile__("rd %%tick, %0"
135 orig_tick
&= ~TICKCMP_IRQ_BIT
;
137 /* Workaround for Spitfire Errata (#54 I think??), I discovered
138 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
141 * On Blackbird writes to %tick_cmpr can fail, the
142 * workaround seems to be to execute the wr instruction
143 * at the start of an I-cache line, and perform a dummy
144 * read back from %tick_cmpr right after writing to it. -DaveM
146 __asm__
__volatile__("ba,pt %%xcc, 1f\n\t"
147 " add %1, %2, %0\n\t"
150 "wr %0, 0, %%tick_cmpr\n\t"
151 "rd %%tick_cmpr, %%g0\n\t"
153 : "r" (orig_tick
), "r" (adj
));
155 __asm__
__volatile__("rd %%tick, %0"
157 new_tick
&= ~TICKCMP_IRQ_BIT
;
159 return ((long)(new_tick
- (orig_tick
+adj
))) > 0L;
162 static unsigned long tick_add_tick(unsigned long adj
)
164 unsigned long new_tick
;
166 /* Also need to handle Blackbird bug here too. */
167 __asm__
__volatile__("rd %%tick, %0\n\t"
169 "wrpr %0, 0, %%tick\n\t"
176 static struct sparc64_tick_ops tick_operations __read_mostly
= {
178 .init_tick
= tick_init_tick
,
179 .disable_irq
= tick_disable_irq
,
180 .get_tick
= tick_get_tick
,
181 .add_tick
= tick_add_tick
,
182 .add_compare
= tick_add_compare
,
183 .softint_mask
= 1UL << 0,
186 struct sparc64_tick_ops
*tick_ops __read_mostly
= &tick_operations
;
188 static void stick_disable_irq(void)
190 __asm__
__volatile__(
191 "wr %0, 0x0, %%asr25"
193 : "r" (TICKCMP_IRQ_BIT
));
196 static void stick_init_tick(void)
198 /* Writes to the %tick and %stick register are not
199 * allowed on sun4v. The Hypervisor controls that
202 if (tlb_type
!= hypervisor
) {
203 tick_disable_protection();
206 /* Let the user get at STICK too. */
207 __asm__
__volatile__(
208 " rd %%asr24, %%g2\n"
209 " andn %%g2, %0, %%g2\n"
210 " wr %%g2, 0, %%asr24"
212 : "r" (TICK_PRIV_BIT
)
219 static unsigned long stick_get_tick(void)
223 __asm__
__volatile__("rd %%asr24, %0"
226 return ret
& ~TICK_PRIV_BIT
;
229 static unsigned long stick_add_tick(unsigned long adj
)
231 unsigned long new_tick
;
233 __asm__
__volatile__("rd %%asr24, %0\n\t"
235 "wr %0, 0, %%asr24\n\t"
242 static int stick_add_compare(unsigned long adj
)
244 unsigned long orig_tick
, new_tick
;
246 __asm__
__volatile__("rd %%asr24, %0"
248 orig_tick
&= ~TICKCMP_IRQ_BIT
;
250 __asm__
__volatile__("wr %0, 0, %%asr25"
252 : "r" (orig_tick
+ adj
));
254 __asm__
__volatile__("rd %%asr24, %0"
256 new_tick
&= ~TICKCMP_IRQ_BIT
;
258 return ((long)(new_tick
- (orig_tick
+adj
))) > 0L;
261 static struct sparc64_tick_ops stick_operations __read_mostly
= {
263 .init_tick
= stick_init_tick
,
264 .disable_irq
= stick_disable_irq
,
265 .get_tick
= stick_get_tick
,
266 .add_tick
= stick_add_tick
,
267 .add_compare
= stick_add_compare
,
268 .softint_mask
= 1UL << 16,
271 /* On Hummingbird the STICK/STICK_CMPR register is implemented
272 * in I/O space. There are two 64-bit registers each, the
273 * first holds the low 32-bits of the value and the second holds
276 * Since STICK is constantly updating, we have to access it carefully.
278 * The sequence we use to read is:
281 * 3) read high again, if it rolled re-read both low and high again.
283 * Writing STICK safely is also tricky:
284 * 1) write low to zero
288 #define HBIRD_STICKCMP_ADDR 0x1fe0000f060UL
289 #define HBIRD_STICK_ADDR 0x1fe0000f070UL
291 static unsigned long __hbird_read_stick(void)
293 unsigned long ret
, tmp1
, tmp2
, tmp3
;
294 unsigned long addr
= HBIRD_STICK_ADDR
+8;
296 __asm__
__volatile__("ldxa [%1] %5, %2\n"
298 "sub %1, 0x8, %1\n\t"
299 "ldxa [%1] %5, %3\n\t"
300 "add %1, 0x8, %1\n\t"
301 "ldxa [%1] %5, %4\n\t"
303 "bne,a,pn %%xcc, 1b\n\t"
305 "sllx %4, 32, %4\n\t"
307 : "=&r" (ret
), "=&r" (addr
),
308 "=&r" (tmp1
), "=&r" (tmp2
), "=&r" (tmp3
)
309 : "i" (ASI_PHYS_BYPASS_EC_E
), "1" (addr
));
314 static void __hbird_write_stick(unsigned long val
)
316 unsigned long low
= (val
& 0xffffffffUL
);
317 unsigned long high
= (val
>> 32UL);
318 unsigned long addr
= HBIRD_STICK_ADDR
;
320 __asm__
__volatile__("stxa %%g0, [%0] %4\n\t"
321 "add %0, 0x8, %0\n\t"
322 "stxa %3, [%0] %4\n\t"
323 "sub %0, 0x8, %0\n\t"
326 : "0" (addr
), "r" (low
), "r" (high
),
327 "i" (ASI_PHYS_BYPASS_EC_E
));
330 static void __hbird_write_compare(unsigned long val
)
332 unsigned long low
= (val
& 0xffffffffUL
);
333 unsigned long high
= (val
>> 32UL);
334 unsigned long addr
= HBIRD_STICKCMP_ADDR
+ 0x8UL
;
336 __asm__
__volatile__("stxa %3, [%0] %4\n\t"
337 "sub %0, 0x8, %0\n\t"
340 : "0" (addr
), "r" (low
), "r" (high
),
341 "i" (ASI_PHYS_BYPASS_EC_E
));
344 static void hbtick_disable_irq(void)
346 __hbird_write_compare(TICKCMP_IRQ_BIT
);
349 static void hbtick_init_tick(void)
351 tick_disable_protection();
353 /* XXX This seems to be necessary to 'jumpstart' Hummingbird
354 * XXX into actually sending STICK interrupts. I think because
355 * XXX of how we store %tick_cmpr in head.S this somehow resets the
356 * XXX {TICK + STICK} interrupt mux. -DaveM
358 __hbird_write_stick(__hbird_read_stick());
360 hbtick_disable_irq();
363 static unsigned long hbtick_get_tick(void)
365 return __hbird_read_stick() & ~TICK_PRIV_BIT
;
368 static unsigned long hbtick_add_tick(unsigned long adj
)
372 val
= __hbird_read_stick() + adj
;
373 __hbird_write_stick(val
);
378 static int hbtick_add_compare(unsigned long adj
)
380 unsigned long val
= __hbird_read_stick();
383 val
&= ~TICKCMP_IRQ_BIT
;
385 __hbird_write_compare(val
);
387 val2
= __hbird_read_stick() & ~TICKCMP_IRQ_BIT
;
389 return ((long)(val2
- val
)) > 0L;
392 static struct sparc64_tick_ops hbtick_operations __read_mostly
= {
394 .init_tick
= hbtick_init_tick
,
395 .disable_irq
= hbtick_disable_irq
,
396 .get_tick
= hbtick_get_tick
,
397 .add_tick
= hbtick_add_tick
,
398 .add_compare
= hbtick_add_compare
,
399 .softint_mask
= 1UL << 0,
402 static unsigned long timer_ticks_per_nsec_quotient __read_mostly
;
404 int update_persistent_clock(struct timespec now
)
406 return set_rtc_mmss(now
.tv_sec
);
409 /* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */
410 static void __init
kick_start_clock(void)
412 void __iomem
*regs
= mstk48t02_regs
;
416 prom_printf("CLOCK: Clock was stopped. Kick start ");
418 spin_lock_irq(&mostek_lock
);
420 /* Turn on the kick start bit to start the oscillator. */
421 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
422 tmp
|= MSTK_CREG_WRITE
;
423 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
424 tmp
= mostek_read(regs
+ MOSTEK_SEC
);
426 mostek_write(regs
+ MOSTEK_SEC
, tmp
);
427 tmp
= mostek_read(regs
+ MOSTEK_HOUR
);
428 tmp
|= MSTK_KICK_START
;
429 mostek_write(regs
+ MOSTEK_HOUR
, tmp
);
430 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
431 tmp
&= ~MSTK_CREG_WRITE
;
432 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
434 spin_unlock_irq(&mostek_lock
);
436 /* Delay to allow the clock oscillator to start. */
437 sec
= MSTK_REG_SEC(regs
);
438 for (i
= 0; i
< 3; i
++) {
439 while (sec
== MSTK_REG_SEC(regs
))
440 for (count
= 0; count
< 100000; count
++)
443 sec
= MSTK_REG_SEC(regs
);
447 spin_lock_irq(&mostek_lock
);
449 /* Turn off kick start and set a "valid" time and date. */
450 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
451 tmp
|= MSTK_CREG_WRITE
;
452 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
453 tmp
= mostek_read(regs
+ MOSTEK_HOUR
);
454 tmp
&= ~MSTK_KICK_START
;
455 mostek_write(regs
+ MOSTEK_HOUR
, tmp
);
456 MSTK_SET_REG_SEC(regs
,0);
457 MSTK_SET_REG_MIN(regs
,0);
458 MSTK_SET_REG_HOUR(regs
,0);
459 MSTK_SET_REG_DOW(regs
,5);
460 MSTK_SET_REG_DOM(regs
,1);
461 MSTK_SET_REG_MONTH(regs
,8);
462 MSTK_SET_REG_YEAR(regs
,1996 - MSTK_YEAR_ZERO
);
463 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
464 tmp
&= ~MSTK_CREG_WRITE
;
465 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
467 spin_unlock_irq(&mostek_lock
);
469 /* Ensure the kick start bit is off. If it isn't, turn it off. */
470 while (mostek_read(regs
+ MOSTEK_HOUR
) & MSTK_KICK_START
) {
471 prom_printf("CLOCK: Kick start still on!\n");
473 spin_lock_irq(&mostek_lock
);
475 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
476 tmp
|= MSTK_CREG_WRITE
;
477 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
479 tmp
= mostek_read(regs
+ MOSTEK_HOUR
);
480 tmp
&= ~MSTK_KICK_START
;
481 mostek_write(regs
+ MOSTEK_HOUR
, tmp
);
483 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
484 tmp
&= ~MSTK_CREG_WRITE
;
485 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
487 spin_unlock_irq(&mostek_lock
);
490 prom_printf("CLOCK: Kick start procedure successful.\n");
493 /* Return nonzero if the clock chip battery is low. */
494 static int __init
has_low_battery(void)
496 void __iomem
*regs
= mstk48t02_regs
;
499 spin_lock_irq(&mostek_lock
);
501 data1
= mostek_read(regs
+ MOSTEK_EEPROM
); /* Read some data. */
502 mostek_write(regs
+ MOSTEK_EEPROM
, ~data1
); /* Write back the complement. */
503 data2
= mostek_read(regs
+ MOSTEK_EEPROM
); /* Read back the complement. */
504 mostek_write(regs
+ MOSTEK_EEPROM
, data1
); /* Restore original value. */
506 spin_unlock_irq(&mostek_lock
);
508 return (data1
== data2
); /* Was the write blocked? */
511 /* Probe for the real time clock chip. */
512 static void __init
set_system_time(void)
514 unsigned int year
, mon
, day
, hour
, min
, sec
;
515 void __iomem
*mregs
= mstk48t02_regs
;
517 unsigned long dregs
= ds1287_regs
;
518 void __iomem
*bregs
= bq4802_regs
;
520 unsigned long dregs
= 0UL;
521 void __iomem
*bregs
= 0UL;
525 if (!mregs
&& !dregs
&& !bregs
) {
526 prom_printf("Something wrong, clock regs not mapped yet.\n");
531 spin_lock_irq(&mostek_lock
);
533 /* Traditional Mostek chip. */
534 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
535 tmp
|= MSTK_CREG_READ
;
536 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
538 sec
= MSTK_REG_SEC(mregs
);
539 min
= MSTK_REG_MIN(mregs
);
540 hour
= MSTK_REG_HOUR(mregs
);
541 day
= MSTK_REG_DOM(mregs
);
542 mon
= MSTK_REG_MONTH(mregs
);
543 year
= MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs
) );
545 unsigned char val
= readb(bregs
+ 0x0e);
546 unsigned int century
;
548 /* BQ4802 RTC chip. */
550 writeb(val
| 0x08, bregs
+ 0x0e);
552 sec
= readb(bregs
+ 0x00);
553 min
= readb(bregs
+ 0x02);
554 hour
= readb(bregs
+ 0x04);
555 day
= readb(bregs
+ 0x06);
556 mon
= readb(bregs
+ 0x09);
557 year
= readb(bregs
+ 0x0a);
558 century
= readb(bregs
+ 0x0f);
560 writeb(val
, bregs
+ 0x0e);
570 year
+= (century
* 100);
572 /* Dallas 12887 RTC chip. */
575 sec
= CMOS_READ(RTC_SECONDS
);
576 min
= CMOS_READ(RTC_MINUTES
);
577 hour
= CMOS_READ(RTC_HOURS
);
578 day
= CMOS_READ(RTC_DAY_OF_MONTH
);
579 mon
= CMOS_READ(RTC_MONTH
);
580 year
= CMOS_READ(RTC_YEAR
);
581 } while (sec
!= CMOS_READ(RTC_SECONDS
));
583 if (!(CMOS_READ(RTC_CONTROL
) & RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
591 if ((year
+= 1900) < 1970)
595 xtime
.tv_sec
= mktime(year
, mon
, day
, hour
, min
, sec
);
596 xtime
.tv_nsec
= (INITIAL_JIFFIES
% HZ
) * (NSEC_PER_SEC
/ HZ
);
597 set_normalized_timespec(&wall_to_monotonic
,
598 -xtime
.tv_sec
, -xtime
.tv_nsec
);
601 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
602 tmp
&= ~MSTK_CREG_READ
;
603 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
605 spin_unlock_irq(&mostek_lock
);
609 /* davem suggests we keep this within the 4M locked kernel image */
610 static u32
starfire_get_time(void)
612 static char obp_gettod
[32];
615 sprintf(obp_gettod
, "h# %08x unix-gettod",
616 (unsigned int) (long) &unix_tod
);
617 prom_feval(obp_gettod
);
622 static int starfire_set_time(u32 val
)
624 /* Do nothing, time is set using the service processor
625 * console on this platform.
630 static u32
hypervisor_get_time(void)
632 unsigned long ret
, time
;
636 ret
= sun4v_tod_get(&time
);
639 if (ret
== HV_EWOULDBLOCK
) {
644 printk(KERN_WARNING
"SUN4V: tod_get() timed out.\n");
647 printk(KERN_WARNING
"SUN4V: tod_get() not supported.\n");
651 static int hypervisor_set_time(u32 secs
)
657 ret
= sun4v_tod_set(secs
);
660 if (ret
== HV_EWOULDBLOCK
) {
665 printk(KERN_WARNING
"SUN4V: tod_set() timed out.\n");
668 printk(KERN_WARNING
"SUN4V: tod_set() not supported.\n");
672 static int __init
clock_model_matches(const char *model
)
674 if (strcmp(model
, "mk48t02") &&
675 strcmp(model
, "mk48t08") &&
676 strcmp(model
, "mk48t59") &&
677 strcmp(model
, "m5819") &&
678 strcmp(model
, "m5819p") &&
679 strcmp(model
, "m5823") &&
680 strcmp(model
, "ds1287") &&
681 strcmp(model
, "bq4802"))
687 static int __devinit
clock_probe(struct of_device
*op
, const struct of_device_id
*match
)
689 struct device_node
*dp
= op
->node
;
690 const char *model
= of_get_property(dp
, "model", NULL
);
691 const char *compat
= of_get_property(dp
, "compatible", NULL
);
692 unsigned long size
, flags
;
698 if (!model
|| !clock_model_matches(model
))
701 /* On an Enterprise system there can be multiple mostek clocks.
702 * We should only match the one that is on the central FHC bus.
704 if (!strcmp(dp
->parent
->name
, "fhc") &&
705 strcmp(dp
->parent
->parent
->name
, "central") != 0)
708 size
= (op
->resource
[0].end
- op
->resource
[0].start
) + 1;
709 regs
= of_ioremap(&op
->resource
[0], 0, size
, "clock");
714 if (!strcmp(model
, "ds1287") ||
715 !strcmp(model
, "m5819") ||
716 !strcmp(model
, "m5819p") ||
717 !strcmp(model
, "m5823")) {
718 ds1287_regs
= (unsigned long) regs
;
719 } else if (!strcmp(model
, "bq4802")) {
723 if (model
[5] == '0' && model
[6] == '2') {
724 mstk48t02_regs
= regs
;
725 } else if(model
[5] == '0' && model
[6] == '8') {
726 mstk48t08_regs
= regs
;
727 mstk48t02_regs
= mstk48t08_regs
+ MOSTEK_48T08_48T02
;
729 mstk48t59_regs
= regs
;
730 mstk48t02_regs
= mstk48t59_regs
+ MOSTEK_48T59_48T02
;
733 printk(KERN_INFO
"%s: Clock regs at %p\n", dp
->full_name
, regs
);
735 local_irq_save(flags
);
737 if (mstk48t02_regs
!= NULL
) {
738 /* Report a low battery voltage condition. */
739 if (has_low_battery())
740 prom_printf("NVRAM: Low battery voltage!\n");
742 /* Kick start the clock if it is completely stopped. */
743 if (mostek_read(mstk48t02_regs
+ MOSTEK_SEC
) & MSTK_STOP
)
749 local_irq_restore(flags
);
754 static struct of_device_id clock_match
[] = {
764 static struct of_platform_driver clock_driver
= {
765 .match_table
= clock_match
,
766 .probe
= clock_probe
,
772 static int __init
clock_init(void)
774 if (this_is_starfire
) {
775 xtime
.tv_sec
= starfire_get_time();
776 xtime
.tv_nsec
= (INITIAL_JIFFIES
% HZ
) * (NSEC_PER_SEC
/ HZ
);
777 set_normalized_timespec(&wall_to_monotonic
,
778 -xtime
.tv_sec
, -xtime
.tv_nsec
);
781 if (tlb_type
== hypervisor
) {
782 xtime
.tv_sec
= hypervisor_get_time();
783 xtime
.tv_nsec
= (INITIAL_JIFFIES
% HZ
) * (NSEC_PER_SEC
/ HZ
);
784 set_normalized_timespec(&wall_to_monotonic
,
785 -xtime
.tv_sec
, -xtime
.tv_nsec
);
789 return of_register_driver(&clock_driver
, &of_platform_bus_type
);
792 /* Must be after subsys_initcall() so that busses are probed. Must
793 * be before device_initcall() because things like the RTC driver
794 * need to see the clock registers.
796 fs_initcall(clock_init
);
798 /* This is gets the master TICK_INT timer going. */
799 static unsigned long sparc64_init_timers(void)
801 struct device_node
*dp
;
804 dp
= of_find_node_by_path("/");
805 if (tlb_type
== spitfire
) {
806 unsigned long ver
, manuf
, impl
;
808 __asm__
__volatile__ ("rdpr %%ver, %0"
810 manuf
= ((ver
>> 48) & 0xffff);
811 impl
= ((ver
>> 32) & 0xffff);
812 if (manuf
== 0x17 && impl
== 0x13) {
813 /* Hummingbird, aka Ultra-IIe */
814 tick_ops
= &hbtick_operations
;
815 clock
= of_getintprop_default(dp
, "stick-frequency", 0);
817 tick_ops
= &tick_operations
;
818 clock
= local_cpu_data().clock_tick
;
821 tick_ops
= &stick_operations
;
822 clock
= of_getintprop_default(dp
, "stick-frequency", 0);
829 unsigned long clock_tick_ref
;
830 unsigned int ref_freq
;
832 static DEFINE_PER_CPU(struct freq_table
, sparc64_freq_table
) = { 0, 0 };
834 unsigned long sparc64_get_clock_tick(unsigned int cpu
)
836 struct freq_table
*ft
= &per_cpu(sparc64_freq_table
, cpu
);
838 if (ft
->clock_tick_ref
)
839 return ft
->clock_tick_ref
;
840 return cpu_data(cpu
).clock_tick
;
843 #ifdef CONFIG_CPU_FREQ
845 static int sparc64_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
848 struct cpufreq_freqs
*freq
= data
;
849 unsigned int cpu
= freq
->cpu
;
850 struct freq_table
*ft
= &per_cpu(sparc64_freq_table
, cpu
);
853 ft
->ref_freq
= freq
->old
;
854 ft
->clock_tick_ref
= cpu_data(cpu
).clock_tick
;
856 if ((val
== CPUFREQ_PRECHANGE
&& freq
->old
< freq
->new) ||
857 (val
== CPUFREQ_POSTCHANGE
&& freq
->old
> freq
->new) ||
858 (val
== CPUFREQ_RESUMECHANGE
)) {
859 cpu_data(cpu
).clock_tick
=
860 cpufreq_scale(ft
->clock_tick_ref
,
868 static struct notifier_block sparc64_cpufreq_notifier_block
= {
869 .notifier_call
= sparc64_cpufreq_notifier
872 #endif /* CONFIG_CPU_FREQ */
874 static int sparc64_next_event(unsigned long delta
,
875 struct clock_event_device
*evt
)
877 return tick_ops
->add_compare(delta
) ? -ETIME
: 0;
880 static void sparc64_timer_setup(enum clock_event_mode mode
,
881 struct clock_event_device
*evt
)
884 case CLOCK_EVT_MODE_ONESHOT
:
885 case CLOCK_EVT_MODE_RESUME
:
888 case CLOCK_EVT_MODE_SHUTDOWN
:
889 tick_ops
->disable_irq();
892 case CLOCK_EVT_MODE_PERIODIC
:
893 case CLOCK_EVT_MODE_UNUSED
:
899 static struct clock_event_device sparc64_clockevent
= {
900 .features
= CLOCK_EVT_FEAT_ONESHOT
,
901 .set_mode
= sparc64_timer_setup
,
902 .set_next_event
= sparc64_next_event
,
907 static DEFINE_PER_CPU(struct clock_event_device
, sparc64_events
);
909 void timer_interrupt(int irq
, struct pt_regs
*regs
)
911 struct pt_regs
*old_regs
= set_irq_regs(regs
);
912 unsigned long tick_mask
= tick_ops
->softint_mask
;
913 int cpu
= smp_processor_id();
914 struct clock_event_device
*evt
= &per_cpu(sparc64_events
, cpu
);
916 clear_softint(tick_mask
);
920 kstat_this_cpu
.irqs
[0]++;
922 if (unlikely(!evt
->event_handler
)) {
924 "Spurious SPARC64 timer interrupt on cpu %d\n", cpu
);
926 evt
->event_handler(evt
);
930 set_irq_regs(old_regs
);
933 void __devinit
setup_sparc64_timer(void)
935 struct clock_event_device
*sevt
;
936 unsigned long pstate
;
938 /* Guarantee that the following sequences execute
941 __asm__
__volatile__("rdpr %%pstate, %0\n\t"
942 "wrpr %0, %1, %%pstate"
946 tick_ops
->init_tick();
948 /* Restore PSTATE_IE. */
949 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
953 sevt
= &__get_cpu_var(sparc64_events
);
955 memcpy(sevt
, &sparc64_clockevent
, sizeof(*sevt
));
956 sevt
->cpumask
= cpumask_of_cpu(smp_processor_id());
958 clockevents_register_device(sevt
);
961 #define SPARC64_NSEC_PER_CYC_SHIFT 10UL
963 static struct clocksource clocksource_tick
= {
965 .mask
= CLOCKSOURCE_MASK(64),
967 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
970 static void __init
setup_clockevent_multiplier(unsigned long hz
)
972 unsigned long mult
, shift
= 32;
975 mult
= div_sc(hz
, NSEC_PER_SEC
, shift
);
976 if (mult
&& (mult
>> 32UL) == 0UL)
982 sparc64_clockevent
.shift
= shift
;
983 sparc64_clockevent
.mult
= mult
;
986 static unsigned long tb_ticks_per_usec __read_mostly
;
988 void __delay(unsigned long loops
)
990 unsigned long bclock
, now
;
992 bclock
= tick_ops
->get_tick();
994 now
= tick_ops
->get_tick();
995 } while ((now
-bclock
) < loops
);
997 EXPORT_SYMBOL(__delay
);
999 void udelay(unsigned long usecs
)
1001 __delay(tb_ticks_per_usec
* usecs
);
1003 EXPORT_SYMBOL(udelay
);
1005 void __init
time_init(void)
1007 unsigned long clock
= sparc64_init_timers();
1009 tb_ticks_per_usec
= clock
/ USEC_PER_SEC
;
1011 timer_ticks_per_nsec_quotient
=
1012 clocksource_hz2mult(clock
, SPARC64_NSEC_PER_CYC_SHIFT
);
1014 clocksource_tick
.name
= tick_ops
->name
;
1015 clocksource_tick
.mult
=
1016 clocksource_hz2mult(clock
,
1017 clocksource_tick
.shift
);
1018 clocksource_tick
.read
= tick_ops
->get_tick
;
1020 printk("clocksource: mult[%x] shift[%d]\n",
1021 clocksource_tick
.mult
, clocksource_tick
.shift
);
1023 clocksource_register(&clocksource_tick
);
1025 sparc64_clockevent
.name
= tick_ops
->name
;
1027 setup_clockevent_multiplier(clock
);
1029 sparc64_clockevent
.max_delta_ns
=
1030 clockevent_delta2ns(0x7fffffffffffffff, &sparc64_clockevent
);
1031 sparc64_clockevent
.min_delta_ns
=
1032 clockevent_delta2ns(0xF, &sparc64_clockevent
);
1034 printk("clockevent: mult[%lx] shift[%d]\n",
1035 sparc64_clockevent
.mult
, sparc64_clockevent
.shift
);
1037 setup_sparc64_timer();
1039 #ifdef CONFIG_CPU_FREQ
1040 cpufreq_register_notifier(&sparc64_cpufreq_notifier_block
,
1041 CPUFREQ_TRANSITION_NOTIFIER
);
1045 unsigned long long sched_clock(void)
1047 unsigned long ticks
= tick_ops
->get_tick();
1049 return (ticks
* timer_ticks_per_nsec_quotient
)
1050 >> SPARC64_NSEC_PER_CYC_SHIFT
;
1053 static int set_rtc_mmss(unsigned long nowtime
)
1055 int real_seconds
, real_minutes
, chip_minutes
;
1056 void __iomem
*mregs
= mstk48t02_regs
;
1058 unsigned long dregs
= ds1287_regs
;
1059 void __iomem
*bregs
= bq4802_regs
;
1061 unsigned long dregs
= 0UL;
1062 void __iomem
*bregs
= 0UL;
1064 unsigned long flags
;
1068 * Not having a register set can lead to trouble.
1069 * Also starfire doesn't have a tod clock.
1071 if (!mregs
&& !dregs
&& !bregs
)
1075 spin_lock_irqsave(&mostek_lock
, flags
);
1077 /* Read the current RTC minutes. */
1078 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
1079 tmp
|= MSTK_CREG_READ
;
1080 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
1082 chip_minutes
= MSTK_REG_MIN(mregs
);
1084 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
1085 tmp
&= ~MSTK_CREG_READ
;
1086 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
1089 * since we're only adjusting minutes and seconds,
1090 * don't interfere with hour overflow. This avoids
1091 * messing with unknown time zones but requires your
1092 * RTC not to be off by more than 15 minutes
1094 real_seconds
= nowtime
% 60;
1095 real_minutes
= nowtime
/ 60;
1096 if (((abs(real_minutes
- chip_minutes
) + 15)/30) & 1)
1097 real_minutes
+= 30; /* correct for half hour time zone */
1100 if (abs(real_minutes
- chip_minutes
) < 30) {
1101 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
1102 tmp
|= MSTK_CREG_WRITE
;
1103 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
1105 MSTK_SET_REG_SEC(mregs
,real_seconds
);
1106 MSTK_SET_REG_MIN(mregs
,real_minutes
);
1108 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
1109 tmp
&= ~MSTK_CREG_WRITE
;
1110 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
1112 spin_unlock_irqrestore(&mostek_lock
, flags
);
1116 spin_unlock_irqrestore(&mostek_lock
, flags
);
1122 unsigned char val
= readb(bregs
+ 0x0e);
1124 /* BQ4802 RTC chip. */
1126 writeb(val
| 0x08, bregs
+ 0x0e);
1128 chip_minutes
= readb(bregs
+ 0x02);
1129 BCD_TO_BIN(chip_minutes
);
1130 real_seconds
= nowtime
% 60;
1131 real_minutes
= nowtime
/ 60;
1132 if (((abs(real_minutes
- chip_minutes
) + 15)/30) & 1)
1136 if (abs(real_minutes
- chip_minutes
) < 30) {
1137 BIN_TO_BCD(real_seconds
);
1138 BIN_TO_BCD(real_minutes
);
1139 writeb(real_seconds
, bregs
+ 0x00);
1140 writeb(real_minutes
, bregs
+ 0x02);
1143 "set_rtc_mmss: can't update from %d to %d\n",
1144 chip_minutes
, real_minutes
);
1148 writeb(val
, bregs
+ 0x0e);
1153 unsigned char save_control
, save_freq_select
;
1155 /* Stolen from arch/i386/kernel/time.c, see there for
1156 * credits and descriptive comments.
1158 spin_lock_irqsave(&rtc_lock
, flags
);
1159 save_control
= CMOS_READ(RTC_CONTROL
); /* tell the clock it's being set */
1160 CMOS_WRITE((save_control
|RTC_SET
), RTC_CONTROL
);
1162 save_freq_select
= CMOS_READ(RTC_FREQ_SELECT
); /* stop and reset prescaler */
1163 CMOS_WRITE((save_freq_select
|RTC_DIV_RESET2
), RTC_FREQ_SELECT
);
1165 chip_minutes
= CMOS_READ(RTC_MINUTES
);
1166 if (!(save_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
)
1167 BCD_TO_BIN(chip_minutes
);
1168 real_seconds
= nowtime
% 60;
1169 real_minutes
= nowtime
/ 60;
1170 if (((abs(real_minutes
- chip_minutes
) + 15)/30) & 1)
1174 if (abs(real_minutes
- chip_minutes
) < 30) {
1175 if (!(save_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
1176 BIN_TO_BCD(real_seconds
);
1177 BIN_TO_BCD(real_minutes
);
1179 CMOS_WRITE(real_seconds
,RTC_SECONDS
);
1180 CMOS_WRITE(real_minutes
,RTC_MINUTES
);
1183 "set_rtc_mmss: can't update from %d to %d\n",
1184 chip_minutes
, real_minutes
);
1188 CMOS_WRITE(save_control
, RTC_CONTROL
);
1189 CMOS_WRITE(save_freq_select
, RTC_FREQ_SELECT
);
1190 spin_unlock_irqrestore(&rtc_lock
, flags
);
1196 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
1197 static unsigned char mini_rtc_status
; /* bitmapped status byte. */
1200 #define STARTOFTIME 1970
1201 #define SECDAY 86400L
1202 #define SECYR (SECDAY * 365)
1203 #define leapyear(year) ((year) % 4 == 0 && \
1204 ((year) % 100 != 0 || (year) % 400 == 0))
1205 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1206 #define days_in_month(a) (month_days[(a) - 1])
1208 static int month_days
[12] = {
1209 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1213 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1215 static void GregorianDay(struct rtc_time
* tm
)
1220 int MonthOffset
[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1222 lastYear
= tm
->tm_year
- 1;
1225 * Number of leap corrections to apply up to end of last year
1227 leapsToDate
= lastYear
/ 4 - lastYear
/ 100 + lastYear
/ 400;
1230 * This year is a leap year if it is divisible by 4 except when it is
1231 * divisible by 100 unless it is divisible by 400
1233 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1235 day
= tm
->tm_mon
> 2 && leapyear(tm
->tm_year
);
1237 day
+= lastYear
*365 + leapsToDate
+ MonthOffset
[tm
->tm_mon
-1] +
1240 tm
->tm_wday
= day
% 7;
1243 static void to_tm(int tim
, struct rtc_time
*tm
)
1246 register long hms
, day
;
1251 /* Hours, minutes, seconds are easy */
1252 tm
->tm_hour
= hms
/ 3600;
1253 tm
->tm_min
= (hms
% 3600) / 60;
1254 tm
->tm_sec
= (hms
% 3600) % 60;
1256 /* Number of years in days */
1257 for (i
= STARTOFTIME
; day
>= days_in_year(i
); i
++)
1258 day
-= days_in_year(i
);
1261 /* Number of months in days left */
1262 if (leapyear(tm
->tm_year
))
1263 days_in_month(FEBRUARY
) = 29;
1264 for (i
= 1; day
>= days_in_month(i
); i
++)
1265 day
-= days_in_month(i
);
1266 days_in_month(FEBRUARY
) = 28;
1269 /* Days are what is left over (+1) from all that. */
1270 tm
->tm_mday
= day
+ 1;
1273 * Determine the day of week
1278 /* Both Starfire and SUN4V give us seconds since Jan 1st, 1970,
1279 * aka Unix time. So we have to convert to/from rtc_time.
1281 static void starfire_get_rtc_time(struct rtc_time
*time
)
1283 u32 seconds
= starfire_get_time();
1285 to_tm(seconds
, time
);
1286 time
->tm_year
-= 1900;
1290 static int starfire_set_rtc_time(struct rtc_time
*time
)
1292 u32 seconds
= mktime(time
->tm_year
+ 1900, time
->tm_mon
+ 1,
1293 time
->tm_mday
, time
->tm_hour
,
1294 time
->tm_min
, time
->tm_sec
);
1296 return starfire_set_time(seconds
);
1299 static void hypervisor_get_rtc_time(struct rtc_time
*time
)
1301 u32 seconds
= hypervisor_get_time();
1303 to_tm(seconds
, time
);
1304 time
->tm_year
-= 1900;
1308 static int hypervisor_set_rtc_time(struct rtc_time
*time
)
1310 u32 seconds
= mktime(time
->tm_year
+ 1900, time
->tm_mon
+ 1,
1311 time
->tm_mday
, time
->tm_hour
,
1312 time
->tm_min
, time
->tm_sec
);
1314 return hypervisor_set_time(seconds
);
1318 static void bq4802_get_rtc_time(struct rtc_time
*time
)
1320 unsigned char val
= readb(bq4802_regs
+ 0x0e);
1321 unsigned int century
;
1323 writeb(val
| 0x08, bq4802_regs
+ 0x0e);
1325 time
->tm_sec
= readb(bq4802_regs
+ 0x00);
1326 time
->tm_min
= readb(bq4802_regs
+ 0x02);
1327 time
->tm_hour
= readb(bq4802_regs
+ 0x04);
1328 time
->tm_mday
= readb(bq4802_regs
+ 0x06);
1329 time
->tm_mon
= readb(bq4802_regs
+ 0x09);
1330 time
->tm_year
= readb(bq4802_regs
+ 0x0a);
1331 time
->tm_wday
= readb(bq4802_regs
+ 0x08);
1332 century
= readb(bq4802_regs
+ 0x0f);
1334 writeb(val
, bq4802_regs
+ 0x0e);
1336 BCD_TO_BIN(time
->tm_sec
);
1337 BCD_TO_BIN(time
->tm_min
);
1338 BCD_TO_BIN(time
->tm_hour
);
1339 BCD_TO_BIN(time
->tm_mday
);
1340 BCD_TO_BIN(time
->tm_mon
);
1341 BCD_TO_BIN(time
->tm_year
);
1342 BCD_TO_BIN(time
->tm_wday
);
1343 BCD_TO_BIN(century
);
1345 time
->tm_year
+= (century
* 100);
1346 time
->tm_year
-= 1900;
1351 static int bq4802_set_rtc_time(struct rtc_time
*time
)
1353 unsigned char val
= readb(bq4802_regs
+ 0x0e);
1354 unsigned char sec
, min
, hrs
, day
, mon
, yrs
, century
;
1357 year
= time
->tm_year
+ 1900;
1358 century
= year
/ 100;
1361 mon
= time
->tm_mon
+ 1; /* tm_mon starts at zero */
1362 day
= time
->tm_mday
;
1363 hrs
= time
->tm_hour
;
1373 BIN_TO_BCD(century
);
1375 writeb(val
| 0x08, bq4802_regs
+ 0x0e);
1377 writeb(sec
, bq4802_regs
+ 0x00);
1378 writeb(min
, bq4802_regs
+ 0x02);
1379 writeb(hrs
, bq4802_regs
+ 0x04);
1380 writeb(day
, bq4802_regs
+ 0x06);
1381 writeb(mon
, bq4802_regs
+ 0x09);
1382 writeb(yrs
, bq4802_regs
+ 0x0a);
1383 writeb(century
, bq4802_regs
+ 0x0f);
1385 writeb(val
, bq4802_regs
+ 0x0e);
1390 static void cmos_get_rtc_time(struct rtc_time
*rtc_tm
)
1394 rtc_tm
->tm_sec
= CMOS_READ(RTC_SECONDS
);
1395 rtc_tm
->tm_min
= CMOS_READ(RTC_MINUTES
);
1396 rtc_tm
->tm_hour
= CMOS_READ(RTC_HOURS
);
1397 rtc_tm
->tm_mday
= CMOS_READ(RTC_DAY_OF_MONTH
);
1398 rtc_tm
->tm_mon
= CMOS_READ(RTC_MONTH
);
1399 rtc_tm
->tm_year
= CMOS_READ(RTC_YEAR
);
1400 rtc_tm
->tm_wday
= CMOS_READ(RTC_DAY_OF_WEEK
);
1402 ctrl
= CMOS_READ(RTC_CONTROL
);
1403 if (!(ctrl
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
1404 BCD_TO_BIN(rtc_tm
->tm_sec
);
1405 BCD_TO_BIN(rtc_tm
->tm_min
);
1406 BCD_TO_BIN(rtc_tm
->tm_hour
);
1407 BCD_TO_BIN(rtc_tm
->tm_mday
);
1408 BCD_TO_BIN(rtc_tm
->tm_mon
);
1409 BCD_TO_BIN(rtc_tm
->tm_year
);
1410 BCD_TO_BIN(rtc_tm
->tm_wday
);
1413 if (rtc_tm
->tm_year
<= 69)
1414 rtc_tm
->tm_year
+= 100;
1419 static int cmos_set_rtc_time(struct rtc_time
*rtc_tm
)
1421 unsigned char mon
, day
, hrs
, min
, sec
;
1422 unsigned char save_control
, save_freq_select
;
1425 yrs
= rtc_tm
->tm_year
;
1426 mon
= rtc_tm
->tm_mon
+ 1;
1427 day
= rtc_tm
->tm_mday
;
1428 hrs
= rtc_tm
->tm_hour
;
1429 min
= rtc_tm
->tm_min
;
1430 sec
= rtc_tm
->tm_sec
;
1435 if (!(CMOS_READ(RTC_CONTROL
) & RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
1444 save_control
= CMOS_READ(RTC_CONTROL
);
1445 CMOS_WRITE((save_control
|RTC_SET
), RTC_CONTROL
);
1446 save_freq_select
= CMOS_READ(RTC_FREQ_SELECT
);
1447 CMOS_WRITE((save_freq_select
|RTC_DIV_RESET2
), RTC_FREQ_SELECT
);
1449 CMOS_WRITE(yrs
, RTC_YEAR
);
1450 CMOS_WRITE(mon
, RTC_MONTH
);
1451 CMOS_WRITE(day
, RTC_DAY_OF_MONTH
);
1452 CMOS_WRITE(hrs
, RTC_HOURS
);
1453 CMOS_WRITE(min
, RTC_MINUTES
);
1454 CMOS_WRITE(sec
, RTC_SECONDS
);
1456 CMOS_WRITE(save_control
, RTC_CONTROL
);
1457 CMOS_WRITE(save_freq_select
, RTC_FREQ_SELECT
);
1461 #endif /* CONFIG_PCI */
1463 static void mostek_get_rtc_time(struct rtc_time
*rtc_tm
)
1465 void __iomem
*regs
= mstk48t02_regs
;
1468 spin_lock_irq(&mostek_lock
);
1470 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
1471 tmp
|= MSTK_CREG_READ
;
1472 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
1474 rtc_tm
->tm_sec
= MSTK_REG_SEC(regs
);
1475 rtc_tm
->tm_min
= MSTK_REG_MIN(regs
);
1476 rtc_tm
->tm_hour
= MSTK_REG_HOUR(regs
);
1477 rtc_tm
->tm_mday
= MSTK_REG_DOM(regs
);
1478 rtc_tm
->tm_mon
= MSTK_REG_MONTH(regs
);
1479 rtc_tm
->tm_year
= MSTK_CVT_YEAR( MSTK_REG_YEAR(regs
) );
1480 rtc_tm
->tm_wday
= MSTK_REG_DOW(regs
);
1482 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
1483 tmp
&= ~MSTK_CREG_READ
;
1484 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
1486 spin_unlock_irq(&mostek_lock
);
1490 rtc_tm
->tm_year
-= 1900;
1493 static int mostek_set_rtc_time(struct rtc_time
*rtc_tm
)
1495 unsigned char mon
, day
, hrs
, min
, sec
, wday
;
1496 void __iomem
*regs
= mstk48t02_regs
;
1500 yrs
= rtc_tm
->tm_year
+ 1900;
1501 mon
= rtc_tm
->tm_mon
+ 1;
1502 day
= rtc_tm
->tm_mday
;
1503 wday
= rtc_tm
->tm_wday
+ 1;
1504 hrs
= rtc_tm
->tm_hour
;
1505 min
= rtc_tm
->tm_min
;
1506 sec
= rtc_tm
->tm_sec
;
1508 spin_lock_irq(&mostek_lock
);
1510 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
1511 tmp
|= MSTK_CREG_WRITE
;
1512 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
1514 MSTK_SET_REG_SEC(regs
, sec
);
1515 MSTK_SET_REG_MIN(regs
, min
);
1516 MSTK_SET_REG_HOUR(regs
, hrs
);
1517 MSTK_SET_REG_DOW(regs
, wday
);
1518 MSTK_SET_REG_DOM(regs
, day
);
1519 MSTK_SET_REG_MONTH(regs
, mon
);
1520 MSTK_SET_REG_YEAR(regs
, yrs
- MSTK_YEAR_ZERO
);
1522 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
1523 tmp
&= ~MSTK_CREG_WRITE
;
1524 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
1526 spin_unlock_irq(&mostek_lock
);
1531 struct mini_rtc_ops
{
1532 void (*get_rtc_time
)(struct rtc_time
*);
1533 int (*set_rtc_time
)(struct rtc_time
*);
1536 static struct mini_rtc_ops starfire_rtc_ops
= {
1537 .get_rtc_time
= starfire_get_rtc_time
,
1538 .set_rtc_time
= starfire_set_rtc_time
,
1541 static struct mini_rtc_ops hypervisor_rtc_ops
= {
1542 .get_rtc_time
= hypervisor_get_rtc_time
,
1543 .set_rtc_time
= hypervisor_set_rtc_time
,
1547 static struct mini_rtc_ops bq4802_rtc_ops
= {
1548 .get_rtc_time
= bq4802_get_rtc_time
,
1549 .set_rtc_time
= bq4802_set_rtc_time
,
1552 static struct mini_rtc_ops cmos_rtc_ops
= {
1553 .get_rtc_time
= cmos_get_rtc_time
,
1554 .set_rtc_time
= cmos_set_rtc_time
,
1556 #endif /* CONFIG_PCI */
1558 static struct mini_rtc_ops mostek_rtc_ops
= {
1559 .get_rtc_time
= mostek_get_rtc_time
,
1560 .set_rtc_time
= mostek_set_rtc_time
,
1563 static struct mini_rtc_ops
*mini_rtc_ops
;
1565 static inline void mini_get_rtc_time(struct rtc_time
*time
)
1567 unsigned long flags
;
1569 spin_lock_irqsave(&rtc_lock
, flags
);
1570 mini_rtc_ops
->get_rtc_time(time
);
1571 spin_unlock_irqrestore(&rtc_lock
, flags
);
1574 static inline int mini_set_rtc_time(struct rtc_time
*time
)
1576 unsigned long flags
;
1579 spin_lock_irqsave(&rtc_lock
, flags
);
1580 err
= mini_rtc_ops
->set_rtc_time(time
);
1581 spin_unlock_irqrestore(&rtc_lock
, flags
);
1586 static int mini_rtc_ioctl(struct inode
*inode
, struct file
*file
,
1587 unsigned int cmd
, unsigned long arg
)
1589 struct rtc_time wtime
;
1590 void __user
*argp
= (void __user
*)arg
;
1600 case RTC_UIE_OFF
: /* disable ints from RTC updates. */
1603 case RTC_UIE_ON
: /* enable ints for RTC updates. */
1606 case RTC_RD_TIME
: /* Read the time/date from RTC */
1607 /* this doesn't get week-day, who cares */
1608 memset(&wtime
, 0, sizeof(wtime
));
1609 mini_get_rtc_time(&wtime
);
1611 return copy_to_user(argp
, &wtime
, sizeof(wtime
)) ? -EFAULT
: 0;
1613 case RTC_SET_TIME
: /* Set the RTC */
1617 if (!capable(CAP_SYS_TIME
))
1620 if (copy_from_user(&wtime
, argp
, sizeof(wtime
)))
1623 year
= wtime
.tm_year
+ 1900;
1624 days
= month_days
[wtime
.tm_mon
] +
1625 ((wtime
.tm_mon
== 1) && leapyear(year
));
1627 if ((wtime
.tm_mon
< 0 || wtime
.tm_mon
> 11) ||
1628 (wtime
.tm_mday
< 1))
1631 if (wtime
.tm_mday
< 0 || wtime
.tm_mday
> days
)
1634 if (wtime
.tm_hour
< 0 || wtime
.tm_hour
>= 24 ||
1635 wtime
.tm_min
< 0 || wtime
.tm_min
>= 60 ||
1636 wtime
.tm_sec
< 0 || wtime
.tm_sec
>= 60)
1639 return mini_set_rtc_time(&wtime
);
1646 static int mini_rtc_open(struct inode
*inode
, struct file
*file
)
1648 if (mini_rtc_status
& RTC_IS_OPEN
)
1651 mini_rtc_status
|= RTC_IS_OPEN
;
1656 static int mini_rtc_release(struct inode
*inode
, struct file
*file
)
1658 mini_rtc_status
&= ~RTC_IS_OPEN
;
1663 static const struct file_operations mini_rtc_fops
= {
1664 .owner
= THIS_MODULE
,
1665 .ioctl
= mini_rtc_ioctl
,
1666 .open
= mini_rtc_open
,
1667 .release
= mini_rtc_release
,
1670 static struct miscdevice rtc_mini_dev
=
1674 .fops
= &mini_rtc_fops
,
1677 static int __init
rtc_mini_init(void)
1681 if (tlb_type
== hypervisor
)
1682 mini_rtc_ops
= &hypervisor_rtc_ops
;
1683 else if (this_is_starfire
)
1684 mini_rtc_ops
= &starfire_rtc_ops
;
1686 else if (bq4802_regs
)
1687 mini_rtc_ops
= &bq4802_rtc_ops
;
1688 else if (ds1287_regs
)
1689 mini_rtc_ops
= &cmos_rtc_ops
;
1690 #endif /* CONFIG_PCI */
1691 else if (mstk48t02_regs
)
1692 mini_rtc_ops
= &mostek_rtc_ops
;
1696 printk(KERN_INFO
"Mini RTC Driver\n");
1698 retval
= misc_register(&rtc_mini_dev
);
1705 static void __exit
rtc_mini_exit(void)
1707 misc_deregister(&rtc_mini_dev
);
1710 int __devinit
read_current_timer(unsigned long *timer_val
)
1712 *timer_val
= tick_ops
->get_tick();
1716 module_init(rtc_mini_init
);
1717 module_exit(rtc_mini_exit
);