2 * linux/arch/i386/mm/pgtable.c
5 #include <linux/sched.h>
6 #include <linux/kernel.h>
7 #include <linux/errno.h>
10 #include <linux/swap.h>
11 #include <linux/smp.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <linux/pagemap.h>
15 #include <linux/spinlock.h>
16 #include <linux/module.h>
17 #include <linux/quicklist.h>
19 #include <asm/system.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/fixmap.h>
25 #include <asm/tlbflush.h>
29 int total
= 0, reserved
= 0;
30 int shared
= 0, cached
= 0;
37 printk(KERN_INFO
"Mem-info:\n");
39 printk(KERN_INFO
"Free swap: %6ldkB\n", nr_swap_pages
<<(PAGE_SHIFT
-10));
40 for_each_online_pgdat(pgdat
) {
41 pgdat_resize_lock(pgdat
, &flags
);
42 for (i
= 0; i
< pgdat
->node_spanned_pages
; ++i
) {
43 if (unlikely(i
% MAX_ORDER_NR_PAGES
== 0))
45 page
= pgdat_page_nr(pgdat
, i
);
47 if (PageHighMem(page
))
49 if (PageReserved(page
))
51 else if (PageSwapCache(page
))
53 else if (page_count(page
))
54 shared
+= page_count(page
) - 1;
56 pgdat_resize_unlock(pgdat
, &flags
);
58 printk(KERN_INFO
"%d pages of RAM\n", total
);
59 printk(KERN_INFO
"%d pages of HIGHMEM\n", highmem
);
60 printk(KERN_INFO
"%d reserved pages\n", reserved
);
61 printk(KERN_INFO
"%d pages shared\n", shared
);
62 printk(KERN_INFO
"%d pages swap cached\n", cached
);
64 printk(KERN_INFO
"%lu pages dirty\n", global_page_state(NR_FILE_DIRTY
));
65 printk(KERN_INFO
"%lu pages writeback\n",
66 global_page_state(NR_WRITEBACK
));
67 printk(KERN_INFO
"%lu pages mapped\n", global_page_state(NR_FILE_MAPPED
));
68 printk(KERN_INFO
"%lu pages slab\n",
69 global_page_state(NR_SLAB_RECLAIMABLE
) +
70 global_page_state(NR_SLAB_UNRECLAIMABLE
));
71 printk(KERN_INFO
"%lu pages pagetables\n",
72 global_page_state(NR_PAGETABLE
));
76 * Associate a virtual page frame with a given physical page frame
77 * and protection flags for that frame.
79 static void set_pte_pfn(unsigned long vaddr
, unsigned long pfn
, pgprot_t flags
)
86 pgd
= swapper_pg_dir
+ pgd_index(vaddr
);
91 pud
= pud_offset(pgd
, vaddr
);
96 pmd
= pmd_offset(pud
, vaddr
);
101 pte
= pte_offset_kernel(pmd
, vaddr
);
102 if (pgprot_val(flags
))
103 set_pte_present(&init_mm
, vaddr
, pte
, pfn_pte(pfn
, flags
));
105 pte_clear(&init_mm
, vaddr
, pte
);
108 * It's enough to flush this one mapping.
109 * (PGE mappings get flushed as well)
111 __flush_tlb_one(vaddr
);
115 * Associate a large virtual page frame with a given physical page frame
116 * and protection flags for that frame. pfn is for the base of the page,
117 * vaddr is what the page gets mapped to - both must be properly aligned.
118 * The pmd must already be instantiated. Assumes PAE mode.
120 void set_pmd_pfn(unsigned long vaddr
, unsigned long pfn
, pgprot_t flags
)
126 if (vaddr
& (PMD_SIZE
-1)) { /* vaddr is misaligned */
127 printk(KERN_WARNING
"set_pmd_pfn: vaddr misaligned\n");
130 if (pfn
& (PTRS_PER_PTE
-1)) { /* pfn is misaligned */
131 printk(KERN_WARNING
"set_pmd_pfn: pfn misaligned\n");
134 pgd
= swapper_pg_dir
+ pgd_index(vaddr
);
135 if (pgd_none(*pgd
)) {
136 printk(KERN_WARNING
"set_pmd_pfn: pgd_none\n");
139 pud
= pud_offset(pgd
, vaddr
);
140 pmd
= pmd_offset(pud
, vaddr
);
141 set_pmd(pmd
, pfn_pmd(pfn
, flags
));
143 * It's enough to flush this one mapping.
144 * (PGE mappings get flushed as well)
146 __flush_tlb_one(vaddr
);
150 unsigned long __FIXADDR_TOP
= 0xfffff000;
151 EXPORT_SYMBOL(__FIXADDR_TOP
);
153 void __set_fixmap (enum fixed_addresses idx
, unsigned long phys
, pgprot_t flags
)
155 unsigned long address
= __fix_to_virt(idx
);
157 if (idx
>= __end_of_fixed_addresses
) {
161 set_pte_pfn(address
, phys
>> PAGE_SHIFT
, flags
);
166 * reserve_top_address - reserves a hole in the top of kernel address space
167 * @reserve - size of hole to reserve
169 * Can be used to relocate the fixmap area and poke a hole in the top
170 * of kernel address space to make room for a hypervisor.
172 void reserve_top_address(unsigned long reserve
)
175 printk(KERN_INFO
"Reserving virtual address space above 0x%08x\n",
177 __FIXADDR_TOP
= -reserve
- PAGE_SIZE
;
178 __VMALLOC_RESERVE
+= reserve
;
181 pte_t
*pte_alloc_one_kernel(struct mm_struct
*mm
, unsigned long address
)
183 return (pte_t
*)__get_free_page(GFP_KERNEL
|__GFP_REPEAT
|__GFP_ZERO
);
186 pgtable_t
pte_alloc_one(struct mm_struct
*mm
, unsigned long address
)
190 #ifdef CONFIG_HIGHPTE
191 pte
= alloc_pages(GFP_KERNEL
|__GFP_HIGHMEM
|__GFP_REPEAT
|__GFP_ZERO
, 0);
193 pte
= alloc_pages(GFP_KERNEL
|__GFP_REPEAT
|__GFP_ZERO
, 0);
196 pgtable_page_ctor(pte
);
201 * List of all pgd's needed for non-PAE so it can invalidate entries
202 * in both cached and uncached pgd's; not needed for PAE since the
203 * kernel pmd is shared. If PAE were not to share the pmd a similar
204 * tactic would be needed. This is essentially codepath-based locking
205 * against pageattr.c; it is the unique case in which a valid change
206 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
207 * vmalloc faults work because attached pagetables are never freed.
210 static inline void pgd_list_add(pgd_t
*pgd
)
212 struct page
*page
= virt_to_page(pgd
);
214 list_add(&page
->lru
, &pgd_list
);
217 static inline void pgd_list_del(pgd_t
*pgd
)
219 struct page
*page
= virt_to_page(pgd
);
221 list_del(&page
->lru
);
224 #define UNSHARED_PTRS_PER_PGD \
225 (SHARED_KERNEL_PMD ? USER_PTRS_PER_PGD : PTRS_PER_PGD)
227 static void pgd_ctor(void *p
)
232 /* Clear usermode parts of PGD */
233 memset(pgd
, 0, USER_PTRS_PER_PGD
*sizeof(pgd_t
));
235 spin_lock_irqsave(&pgd_lock
, flags
);
237 /* If the pgd points to a shared pagetable level (either the
238 ptes in non-PAE, or shared PMD in PAE), then just copy the
239 references from swapper_pg_dir. */
240 if (PAGETABLE_LEVELS
== 2 ||
241 (PAGETABLE_LEVELS
== 3 && SHARED_KERNEL_PMD
)) {
242 clone_pgd_range(pgd
+ USER_PTRS_PER_PGD
,
243 swapper_pg_dir
+ USER_PTRS_PER_PGD
,
245 paravirt_alloc_pd_clone(__pa(pgd
) >> PAGE_SHIFT
,
246 __pa(swapper_pg_dir
) >> PAGE_SHIFT
,
251 /* list required to sync kernel mapping updates */
252 if (!SHARED_KERNEL_PMD
)
255 spin_unlock_irqrestore(&pgd_lock
, flags
);
258 static void pgd_dtor(void *pgd
)
260 unsigned long flags
; /* can be called from interrupt context */
262 if (SHARED_KERNEL_PMD
)
265 spin_lock_irqsave(&pgd_lock
, flags
);
267 spin_unlock_irqrestore(&pgd_lock
, flags
);
270 #ifdef CONFIG_X86_PAE
272 * Mop up any pmd pages which may still be attached to the pgd.
273 * Normally they will be freed by munmap/exit_mmap, but any pmd we
274 * preallocate which never got a corresponding vma will need to be
277 static void pgd_mop_up_pmds(struct mm_struct
*mm
, pgd_t
*pgdp
)
281 for(i
= 0; i
< UNSHARED_PTRS_PER_PGD
; i
++) {
284 if (pgd_val(pgd
) != 0) {
285 pmd_t
*pmd
= (pmd_t
*)pgd_page_vaddr(pgd
);
287 pgdp
[i
] = native_make_pgd(0);
289 paravirt_release_pd(pgd_val(pgd
) >> PAGE_SHIFT
);
296 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
297 * updating the top-level pagetable entries to guarantee the
298 * processor notices the update. Since this is expensive, and
299 * all 4 top-level entries are used almost immediately in a
300 * new process's life, we just pre-populate them here.
302 * Also, if we're in a paravirt environment where the kernel pmd is
303 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
304 * and initialize the kernel pmds here.
306 static int pgd_prepopulate_pmd(struct mm_struct
*mm
, pgd_t
*pgd
)
312 pud
= pud_offset(pgd
, 0);
313 for (addr
= i
= 0; i
< UNSHARED_PTRS_PER_PGD
;
314 i
++, pud
++, addr
+= PUD_SIZE
) {
315 pmd_t
*pmd
= pmd_alloc_one(mm
, addr
);
318 pgd_mop_up_pmds(mm
, pgd
);
322 if (i
>= USER_PTRS_PER_PGD
)
323 memcpy(pmd
, (pmd_t
*)pgd_page_vaddr(swapper_pg_dir
[i
]),
324 sizeof(pmd_t
) * PTRS_PER_PMD
);
326 pud_populate(mm
, pud
, pmd
);
331 #else /* !CONFIG_X86_PAE */
332 /* No need to prepopulate any pagetable entries in non-PAE modes. */
333 static int pgd_prepopulate_pmd(struct mm_struct
*mm
, pgd_t
*pgd
)
338 static void pgd_mop_up_pmds(struct mm_struct
*mm
, pgd_t
*pgdp
)
341 #endif /* CONFIG_X86_PAE */
343 pgd_t
*pgd_alloc(struct mm_struct
*mm
)
345 <<<<<<< HEAD
:arch
/x86
/mm
/pgtable_32
.c
346 pgd_t
*pgd
= quicklist_alloc(0, GFP_KERNEL
, pgd_ctor
);
348 pgd_t
*pgd
= (pgd_t
*)__get_free_page(GFP_KERNEL
| __GFP_ZERO
);
349 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:arch
/x86
/mm
/pgtable_32
.c
351 <<<<<<< HEAD
:arch
/x86
/mm
/pgtable_32
.c
352 mm
->pgd
= pgd
; /* so that alloc_pd can use it */
354 /* so that alloc_pd can use it */
358 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:arch
/x86
/mm
/pgtable_32
.c
360 if (pgd
&& !pgd_prepopulate_pmd(mm
, pgd
)) {
361 <<<<<<< HEAD
:arch
/x86
/mm
/pgtable_32
.c
362 quicklist_free(0, pgd_dtor
, pgd
);
365 free_page((unsigned long)pgd
);
366 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:arch
/x86
/mm
/pgtable_32
.c
373 void pgd_free(struct mm_struct
*mm
, pgd_t
*pgd
)
375 pgd_mop_up_pmds(mm
, pgd
);
376 <<<<<<< HEAD
:arch
/x86
/mm
/pgtable_32
.c
377 quicklist_free(0, pgd_dtor
, pgd
);
380 void check_pgt_cache(void)
382 quicklist_trim(0, pgd_dtor
, 25, 16);
385 free_page((unsigned long)pgd
);
386 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:arch
/x86
/mm
/pgtable_32
.c
389 void __pte_free_tlb(struct mmu_gather
*tlb
, struct page
*pte
)
391 pgtable_page_dtor(pte
);
392 paravirt_release_pt(page_to_pfn(pte
));
393 tlb_remove_page(tlb
, pte
);
396 #ifdef CONFIG_X86_PAE
398 void __pmd_free_tlb(struct mmu_gather
*tlb
, pmd_t
*pmd
)
400 paravirt_release_pd(__pa(pmd
) >> PAGE_SHIFT
);
401 tlb_remove_page(tlb
, virt_to_page(pmd
));