Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / block / elevator.c
blobc3cef31e3f1d99e4361feb64cd67f0d9189f3868
1 /*
2 * Block device elevator/IO-scheduler.
4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * 30042000 Jens Axboe <axboe@kernel.dk> :
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
12 * an existing request
13 * - elevator_dequeue_fn, called when a request is taken off the active list
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 * when run without -bN
19 * Jens:
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
38 #include <asm/uaccess.h>
40 static DEFINE_SPINLOCK(elv_list_lock);
41 static LIST_HEAD(elv_list);
44 * Merge hash stuff.
46 static const int elv_hash_shift = 6;
47 #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
48 #define ELV_HASH_FN(sec) \
49 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
50 #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
51 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
52 #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
55 * Query io scheduler to see if the current process issuing bio may be
56 * merged with rq.
58 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
60 struct request_queue *q = rq->q;
61 elevator_t *e = q->elevator;
63 if (e->ops->elevator_allow_merge_fn)
64 return e->ops->elevator_allow_merge_fn(q, rq, bio);
66 return 1;
70 * can we safely merge with this request?
72 inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
74 if (!rq_mergeable(rq))
75 return 0;
78 * different data direction or already started, don't merge
80 if (bio_data_dir(bio) != rq_data_dir(rq))
81 return 0;
84 * must be same device and not a special request
86 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
87 return 0;
89 if (!elv_iosched_allow_merge(rq, bio))
90 return 0;
92 return 1;
94 EXPORT_SYMBOL(elv_rq_merge_ok);
96 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
98 int ret = ELEVATOR_NO_MERGE;
101 * we can merge and sequence is ok, check if it's possible
103 if (elv_rq_merge_ok(__rq, bio)) {
104 if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
105 ret = ELEVATOR_BACK_MERGE;
106 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
107 ret = ELEVATOR_FRONT_MERGE;
110 return ret;
113 static struct elevator_type *elevator_find(const char *name)
115 struct elevator_type *e;
117 list_for_each_entry(e, &elv_list, list) {
118 if (!strcmp(e->elevator_name, name))
119 return e;
122 return NULL;
125 static void elevator_put(struct elevator_type *e)
127 module_put(e->elevator_owner);
130 static struct elevator_type *elevator_get(const char *name)
132 struct elevator_type *e;
134 spin_lock(&elv_list_lock);
136 e = elevator_find(name);
137 <<<<<<< HEAD:block/elevator.c
138 =======
139 if (!e) {
140 char elv[ELV_NAME_MAX + strlen("-iosched")];
142 spin_unlock(&elv_list_lock);
144 if (!strcmp(name, "anticipatory"))
145 sprintf(elv, "as-iosched");
146 else
147 sprintf(elv, "%s-iosched", name);
149 request_module(elv);
150 spin_lock(&elv_list_lock);
151 e = elevator_find(name);
154 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:block/elevator.c
155 if (e && !try_module_get(e->elevator_owner))
156 e = NULL;
158 spin_unlock(&elv_list_lock);
160 return e;
163 static void *elevator_init_queue(struct request_queue *q,
164 struct elevator_queue *eq)
166 return eq->ops->elevator_init_fn(q);
169 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
170 void *data)
172 q->elevator = eq;
173 eq->elevator_data = data;
176 static char chosen_elevator[16];
178 static int __init elevator_setup(char *str)
181 * Be backwards-compatible with previous kernels, so users
182 * won't get the wrong elevator.
184 if (!strcmp(str, "as"))
185 strcpy(chosen_elevator, "anticipatory");
186 else
187 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
188 return 1;
191 __setup("elevator=", elevator_setup);
193 static struct kobj_type elv_ktype;
195 static elevator_t *elevator_alloc(struct request_queue *q,
196 struct elevator_type *e)
198 elevator_t *eq;
199 int i;
201 eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL | __GFP_ZERO, q->node);
202 if (unlikely(!eq))
203 goto err;
205 eq->ops = &e->ops;
206 eq->elevator_type = e;
207 kobject_init(&eq->kobj, &elv_ktype);
208 mutex_init(&eq->sysfs_lock);
210 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
211 GFP_KERNEL, q->node);
212 if (!eq->hash)
213 goto err;
215 for (i = 0; i < ELV_HASH_ENTRIES; i++)
216 INIT_HLIST_HEAD(&eq->hash[i]);
218 return eq;
219 err:
220 kfree(eq);
221 elevator_put(e);
222 return NULL;
225 static void elevator_release(struct kobject *kobj)
227 elevator_t *e = container_of(kobj, elevator_t, kobj);
229 elevator_put(e->elevator_type);
230 kfree(e->hash);
231 kfree(e);
234 int elevator_init(struct request_queue *q, char *name)
236 struct elevator_type *e = NULL;
237 struct elevator_queue *eq;
238 int ret = 0;
239 void *data;
241 INIT_LIST_HEAD(&q->queue_head);
242 q->last_merge = NULL;
243 q->end_sector = 0;
244 q->boundary_rq = NULL;
246 if (name) {
247 e = elevator_get(name);
248 if (!e)
249 return -EINVAL;
252 if (!e && *chosen_elevator) {
253 e = elevator_get(chosen_elevator);
254 if (!e)
255 printk(KERN_ERR "I/O scheduler %s not found\n",
256 chosen_elevator);
259 if (!e) {
260 e = elevator_get(CONFIG_DEFAULT_IOSCHED);
261 if (!e) {
262 printk(KERN_ERR
263 "Default I/O scheduler not found. " \
264 "Using noop.\n");
265 e = elevator_get("noop");
269 eq = elevator_alloc(q, e);
270 if (!eq)
271 return -ENOMEM;
273 data = elevator_init_queue(q, eq);
274 if (!data) {
275 kobject_put(&eq->kobj);
276 return -ENOMEM;
279 elevator_attach(q, eq, data);
280 return ret;
282 EXPORT_SYMBOL(elevator_init);
284 void elevator_exit(elevator_t *e)
286 mutex_lock(&e->sysfs_lock);
287 if (e->ops->elevator_exit_fn)
288 e->ops->elevator_exit_fn(e);
289 e->ops = NULL;
290 mutex_unlock(&e->sysfs_lock);
292 kobject_put(&e->kobj);
294 EXPORT_SYMBOL(elevator_exit);
296 static void elv_activate_rq(struct request_queue *q, struct request *rq)
298 elevator_t *e = q->elevator;
300 if (e->ops->elevator_activate_req_fn)
301 e->ops->elevator_activate_req_fn(q, rq);
304 static void elv_deactivate_rq(struct request_queue *q, struct request *rq)
306 elevator_t *e = q->elevator;
308 if (e->ops->elevator_deactivate_req_fn)
309 e->ops->elevator_deactivate_req_fn(q, rq);
312 static inline void __elv_rqhash_del(struct request *rq)
314 hlist_del_init(&rq->hash);
317 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
319 if (ELV_ON_HASH(rq))
320 __elv_rqhash_del(rq);
323 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
325 elevator_t *e = q->elevator;
327 BUG_ON(ELV_ON_HASH(rq));
328 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
331 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
333 __elv_rqhash_del(rq);
334 elv_rqhash_add(q, rq);
337 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
339 elevator_t *e = q->elevator;
340 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
341 struct hlist_node *entry, *next;
342 struct request *rq;
344 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
345 BUG_ON(!ELV_ON_HASH(rq));
347 if (unlikely(!rq_mergeable(rq))) {
348 __elv_rqhash_del(rq);
349 continue;
352 if (rq_hash_key(rq) == offset)
353 return rq;
356 return NULL;
360 * RB-tree support functions for inserting/lookup/removal of requests
361 * in a sorted RB tree.
363 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
365 struct rb_node **p = &root->rb_node;
366 struct rb_node *parent = NULL;
367 struct request *__rq;
369 while (*p) {
370 parent = *p;
371 __rq = rb_entry(parent, struct request, rb_node);
373 if (rq->sector < __rq->sector)
374 p = &(*p)->rb_left;
375 else if (rq->sector > __rq->sector)
376 p = &(*p)->rb_right;
377 else
378 return __rq;
381 rb_link_node(&rq->rb_node, parent, p);
382 rb_insert_color(&rq->rb_node, root);
383 return NULL;
385 EXPORT_SYMBOL(elv_rb_add);
387 void elv_rb_del(struct rb_root *root, struct request *rq)
389 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
390 rb_erase(&rq->rb_node, root);
391 RB_CLEAR_NODE(&rq->rb_node);
393 EXPORT_SYMBOL(elv_rb_del);
395 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
397 struct rb_node *n = root->rb_node;
398 struct request *rq;
400 while (n) {
401 rq = rb_entry(n, struct request, rb_node);
403 if (sector < rq->sector)
404 n = n->rb_left;
405 else if (sector > rq->sector)
406 n = n->rb_right;
407 else
408 return rq;
411 return NULL;
413 EXPORT_SYMBOL(elv_rb_find);
416 * Insert rq into dispatch queue of q. Queue lock must be held on
417 * entry. rq is sort instead into the dispatch queue. To be used by
418 * specific elevators.
420 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
422 sector_t boundary;
423 struct list_head *entry;
424 int stop_flags;
426 if (q->last_merge == rq)
427 q->last_merge = NULL;
429 elv_rqhash_del(q, rq);
431 q->nr_sorted--;
433 boundary = q->end_sector;
434 stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
435 list_for_each_prev(entry, &q->queue_head) {
436 struct request *pos = list_entry_rq(entry);
438 if (rq_data_dir(rq) != rq_data_dir(pos))
439 break;
440 if (pos->cmd_flags & stop_flags)
441 break;
442 if (rq->sector >= boundary) {
443 if (pos->sector < boundary)
444 continue;
445 } else {
446 if (pos->sector >= boundary)
447 break;
449 if (rq->sector >= pos->sector)
450 break;
453 list_add(&rq->queuelist, entry);
455 EXPORT_SYMBOL(elv_dispatch_sort);
458 * Insert rq into dispatch queue of q. Queue lock must be held on
459 * entry. rq is added to the back of the dispatch queue. To be used by
460 * specific elevators.
462 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
464 if (q->last_merge == rq)
465 q->last_merge = NULL;
467 elv_rqhash_del(q, rq);
469 q->nr_sorted--;
471 q->end_sector = rq_end_sector(rq);
472 q->boundary_rq = rq;
473 list_add_tail(&rq->queuelist, &q->queue_head);
475 EXPORT_SYMBOL(elv_dispatch_add_tail);
477 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
479 elevator_t *e = q->elevator;
480 struct request *__rq;
481 int ret;
484 * First try one-hit cache.
486 if (q->last_merge) {
487 ret = elv_try_merge(q->last_merge, bio);
488 if (ret != ELEVATOR_NO_MERGE) {
489 *req = q->last_merge;
490 return ret;
495 * See if our hash lookup can find a potential backmerge.
497 __rq = elv_rqhash_find(q, bio->bi_sector);
498 if (__rq && elv_rq_merge_ok(__rq, bio)) {
499 *req = __rq;
500 return ELEVATOR_BACK_MERGE;
503 if (e->ops->elevator_merge_fn)
504 return e->ops->elevator_merge_fn(q, req, bio);
506 return ELEVATOR_NO_MERGE;
509 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
511 elevator_t *e = q->elevator;
513 if (e->ops->elevator_merged_fn)
514 e->ops->elevator_merged_fn(q, rq, type);
516 if (type == ELEVATOR_BACK_MERGE)
517 elv_rqhash_reposition(q, rq);
519 q->last_merge = rq;
522 void elv_merge_requests(struct request_queue *q, struct request *rq,
523 struct request *next)
525 elevator_t *e = q->elevator;
527 if (e->ops->elevator_merge_req_fn)
528 e->ops->elevator_merge_req_fn(q, rq, next);
530 elv_rqhash_reposition(q, rq);
531 elv_rqhash_del(q, next);
533 q->nr_sorted--;
534 q->last_merge = rq;
537 void elv_requeue_request(struct request_queue *q, struct request *rq)
540 * it already went through dequeue, we need to decrement the
541 * in_flight count again
543 if (blk_account_rq(rq)) {
544 q->in_flight--;
545 if (blk_sorted_rq(rq))
546 elv_deactivate_rq(q, rq);
549 rq->cmd_flags &= ~REQ_STARTED;
551 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
554 static void elv_drain_elevator(struct request_queue *q)
556 static int printed;
557 while (q->elevator->ops->elevator_dispatch_fn(q, 1))
559 if (q->nr_sorted == 0)
560 return;
561 if (printed++ < 10) {
562 printk(KERN_ERR "%s: forced dispatching is broken "
563 "(nr_sorted=%u), please report this\n",
564 q->elevator->elevator_type->elevator_name, q->nr_sorted);
568 void elv_insert(struct request_queue *q, struct request *rq, int where)
570 struct list_head *pos;
571 unsigned ordseq;
572 int unplug_it = 1;
574 blk_add_trace_rq(q, rq, BLK_TA_INSERT);
576 rq->q = q;
578 switch (where) {
579 case ELEVATOR_INSERT_FRONT:
580 rq->cmd_flags |= REQ_SOFTBARRIER;
582 list_add(&rq->queuelist, &q->queue_head);
583 break;
585 case ELEVATOR_INSERT_BACK:
586 rq->cmd_flags |= REQ_SOFTBARRIER;
587 elv_drain_elevator(q);
588 list_add_tail(&rq->queuelist, &q->queue_head);
590 * We kick the queue here for the following reasons.
591 * - The elevator might have returned NULL previously
592 * to delay requests and returned them now. As the
593 * queue wasn't empty before this request, ll_rw_blk
594 * won't run the queue on return, resulting in hang.
595 * - Usually, back inserted requests won't be merged
596 * with anything. There's no point in delaying queue
597 * processing.
599 blk_remove_plug(q);
600 q->request_fn(q);
601 break;
603 case ELEVATOR_INSERT_SORT:
604 BUG_ON(!blk_fs_request(rq));
605 rq->cmd_flags |= REQ_SORTED;
606 q->nr_sorted++;
607 if (rq_mergeable(rq)) {
608 elv_rqhash_add(q, rq);
609 if (!q->last_merge)
610 q->last_merge = rq;
614 * Some ioscheds (cfq) run q->request_fn directly, so
615 * rq cannot be accessed after calling
616 * elevator_add_req_fn.
618 q->elevator->ops->elevator_add_req_fn(q, rq);
619 break;
621 case ELEVATOR_INSERT_REQUEUE:
623 * If ordered flush isn't in progress, we do front
624 * insertion; otherwise, requests should be requeued
625 * in ordseq order.
627 rq->cmd_flags |= REQ_SOFTBARRIER;
630 * Most requeues happen because of a busy condition,
631 * don't force unplug of the queue for that case.
633 unplug_it = 0;
635 if (q->ordseq == 0) {
636 list_add(&rq->queuelist, &q->queue_head);
637 break;
640 ordseq = blk_ordered_req_seq(rq);
642 list_for_each(pos, &q->queue_head) {
643 struct request *pos_rq = list_entry_rq(pos);
644 if (ordseq <= blk_ordered_req_seq(pos_rq))
645 break;
648 list_add_tail(&rq->queuelist, pos);
649 break;
651 default:
652 printk(KERN_ERR "%s: bad insertion point %d\n",
653 __FUNCTION__, where);
654 BUG();
657 if (unplug_it && blk_queue_plugged(q)) {
658 int nrq = q->rq.count[READ] + q->rq.count[WRITE]
659 - q->in_flight;
661 if (nrq >= q->unplug_thresh)
662 __generic_unplug_device(q);
666 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
667 int plug)
669 if (q->ordcolor)
670 rq->cmd_flags |= REQ_ORDERED_COLOR;
672 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
674 * toggle ordered color
676 if (blk_barrier_rq(rq))
677 q->ordcolor ^= 1;
680 * barriers implicitly indicate back insertion
682 if (where == ELEVATOR_INSERT_SORT)
683 where = ELEVATOR_INSERT_BACK;
686 * this request is scheduling boundary, update
687 * end_sector
689 if (blk_fs_request(rq)) {
690 q->end_sector = rq_end_sector(rq);
691 q->boundary_rq = rq;
693 } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
694 where == ELEVATOR_INSERT_SORT)
695 where = ELEVATOR_INSERT_BACK;
697 if (plug)
698 blk_plug_device(q);
700 elv_insert(q, rq, where);
702 EXPORT_SYMBOL(__elv_add_request);
704 void elv_add_request(struct request_queue *q, struct request *rq, int where,
705 int plug)
707 unsigned long flags;
709 spin_lock_irqsave(q->queue_lock, flags);
710 __elv_add_request(q, rq, where, plug);
711 spin_unlock_irqrestore(q->queue_lock, flags);
713 EXPORT_SYMBOL(elv_add_request);
715 static inline struct request *__elv_next_request(struct request_queue *q)
717 struct request *rq;
719 while (1) {
720 while (!list_empty(&q->queue_head)) {
721 rq = list_entry_rq(q->queue_head.next);
722 if (blk_do_ordered(q, &rq))
723 return rq;
726 if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
727 return NULL;
731 struct request *elv_next_request(struct request_queue *q)
733 struct request *rq;
734 int ret;
736 while ((rq = __elv_next_request(q)) != NULL) {
738 * Kill the empty barrier place holder, the driver must
739 * not ever see it.
741 if (blk_empty_barrier(rq)) {
742 end_queued_request(rq, 1);
743 continue;
745 if (!(rq->cmd_flags & REQ_STARTED)) {
747 * This is the first time the device driver
748 * sees this request (possibly after
749 * requeueing). Notify IO scheduler.
751 if (blk_sorted_rq(rq))
752 elv_activate_rq(q, rq);
755 * just mark as started even if we don't start
756 * it, a request that has been delayed should
757 * not be passed by new incoming requests
759 rq->cmd_flags |= REQ_STARTED;
760 blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
763 if (!q->boundary_rq || q->boundary_rq == rq) {
764 q->end_sector = rq_end_sector(rq);
765 q->boundary_rq = NULL;
768 if (rq->cmd_flags & REQ_DONTPREP)
769 break;
771 if (q->dma_drain_size && rq->data_len) {
773 * make sure space for the drain appears we
774 * know we can do this because max_hw_segments
775 * has been adjusted to be one fewer than the
776 * device can handle
778 rq->nr_phys_segments++;
779 rq->nr_hw_segments++;
782 if (!q->prep_rq_fn)
783 break;
785 ret = q->prep_rq_fn(q, rq);
786 if (ret == BLKPREP_OK) {
787 break;
788 } else if (ret == BLKPREP_DEFER) {
790 * the request may have been (partially) prepped.
791 * we need to keep this request in the front to
792 * avoid resource deadlock. REQ_STARTED will
793 * prevent other fs requests from passing this one.
795 if (q->dma_drain_size && rq->data_len &&
796 !(rq->cmd_flags & REQ_DONTPREP)) {
798 * remove the space for the drain we added
799 * so that we don't add it again
801 --rq->nr_phys_segments;
802 --rq->nr_hw_segments;
805 rq = NULL;
806 break;
807 } else if (ret == BLKPREP_KILL) {
808 rq->cmd_flags |= REQ_QUIET;
809 end_queued_request(rq, 0);
810 } else {
811 printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
812 ret);
813 break;
817 return rq;
819 EXPORT_SYMBOL(elv_next_request);
821 void elv_dequeue_request(struct request_queue *q, struct request *rq)
823 BUG_ON(list_empty(&rq->queuelist));
824 BUG_ON(ELV_ON_HASH(rq));
826 list_del_init(&rq->queuelist);
829 * the time frame between a request being removed from the lists
830 * and to it is freed is accounted as io that is in progress at
831 * the driver side.
833 if (blk_account_rq(rq))
834 q->in_flight++;
836 EXPORT_SYMBOL(elv_dequeue_request);
838 int elv_queue_empty(struct request_queue *q)
840 elevator_t *e = q->elevator;
842 if (!list_empty(&q->queue_head))
843 return 0;
845 if (e->ops->elevator_queue_empty_fn)
846 return e->ops->elevator_queue_empty_fn(q);
848 return 1;
850 EXPORT_SYMBOL(elv_queue_empty);
852 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
854 elevator_t *e = q->elevator;
856 if (e->ops->elevator_latter_req_fn)
857 return e->ops->elevator_latter_req_fn(q, rq);
858 return NULL;
861 struct request *elv_former_request(struct request_queue *q, struct request *rq)
863 elevator_t *e = q->elevator;
865 if (e->ops->elevator_former_req_fn)
866 return e->ops->elevator_former_req_fn(q, rq);
867 return NULL;
870 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
872 elevator_t *e = q->elevator;
874 if (e->ops->elevator_set_req_fn)
875 return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
877 rq->elevator_private = NULL;
878 return 0;
881 void elv_put_request(struct request_queue *q, struct request *rq)
883 elevator_t *e = q->elevator;
885 if (e->ops->elevator_put_req_fn)
886 e->ops->elevator_put_req_fn(rq);
889 int elv_may_queue(struct request_queue *q, int rw)
891 elevator_t *e = q->elevator;
893 if (e->ops->elevator_may_queue_fn)
894 return e->ops->elevator_may_queue_fn(q, rw);
896 return ELV_MQUEUE_MAY;
899 void elv_completed_request(struct request_queue *q, struct request *rq)
901 elevator_t *e = q->elevator;
904 * request is released from the driver, io must be done
906 if (blk_account_rq(rq)) {
907 q->in_flight--;
908 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
909 e->ops->elevator_completed_req_fn(q, rq);
913 * Check if the queue is waiting for fs requests to be
914 * drained for flush sequence.
916 if (unlikely(q->ordseq)) {
917 struct request *first_rq = list_entry_rq(q->queue_head.next);
918 if (q->in_flight == 0 &&
919 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
920 blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
921 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
922 q->request_fn(q);
927 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
929 static ssize_t
930 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
932 elevator_t *e = container_of(kobj, elevator_t, kobj);
933 struct elv_fs_entry *entry = to_elv(attr);
934 ssize_t error;
936 if (!entry->show)
937 return -EIO;
939 mutex_lock(&e->sysfs_lock);
940 error = e->ops ? entry->show(e, page) : -ENOENT;
941 mutex_unlock(&e->sysfs_lock);
942 return error;
945 static ssize_t
946 elv_attr_store(struct kobject *kobj, struct attribute *attr,
947 const char *page, size_t length)
949 elevator_t *e = container_of(kobj, elevator_t, kobj);
950 struct elv_fs_entry *entry = to_elv(attr);
951 ssize_t error;
953 if (!entry->store)
954 return -EIO;
956 mutex_lock(&e->sysfs_lock);
957 error = e->ops ? entry->store(e, page, length) : -ENOENT;
958 mutex_unlock(&e->sysfs_lock);
959 return error;
962 static struct sysfs_ops elv_sysfs_ops = {
963 .show = elv_attr_show,
964 .store = elv_attr_store,
967 static struct kobj_type elv_ktype = {
968 .sysfs_ops = &elv_sysfs_ops,
969 .release = elevator_release,
972 int elv_register_queue(struct request_queue *q)
974 elevator_t *e = q->elevator;
975 int error;
977 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
978 if (!error) {
979 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
980 if (attr) {
981 while (attr->attr.name) {
982 if (sysfs_create_file(&e->kobj, &attr->attr))
983 break;
984 attr++;
987 kobject_uevent(&e->kobj, KOBJ_ADD);
989 return error;
992 static void __elv_unregister_queue(elevator_t *e)
994 kobject_uevent(&e->kobj, KOBJ_REMOVE);
995 kobject_del(&e->kobj);
998 void elv_unregister_queue(struct request_queue *q)
1000 if (q)
1001 __elv_unregister_queue(q->elevator);
1004 void elv_register(struct elevator_type *e)
1006 char *def = "";
1008 spin_lock(&elv_list_lock);
1009 BUG_ON(elevator_find(e->elevator_name));
1010 list_add_tail(&e->list, &elv_list);
1011 spin_unlock(&elv_list_lock);
1013 if (!strcmp(e->elevator_name, chosen_elevator) ||
1014 (!*chosen_elevator &&
1015 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
1016 def = " (default)";
1018 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
1019 def);
1021 EXPORT_SYMBOL_GPL(elv_register);
1023 void elv_unregister(struct elevator_type *e)
1025 struct task_struct *g, *p;
1028 * Iterate every thread in the process to remove the io contexts.
1030 if (e->ops.trim) {
1031 read_lock(&tasklist_lock);
1032 do_each_thread(g, p) {
1033 task_lock(p);
1034 if (p->io_context)
1035 e->ops.trim(p->io_context);
1036 task_unlock(p);
1037 } while_each_thread(g, p);
1038 read_unlock(&tasklist_lock);
1041 spin_lock(&elv_list_lock);
1042 list_del_init(&e->list);
1043 spin_unlock(&elv_list_lock);
1045 EXPORT_SYMBOL_GPL(elv_unregister);
1048 * switch to new_e io scheduler. be careful not to introduce deadlocks -
1049 * we don't free the old io scheduler, before we have allocated what we
1050 * need for the new one. this way we have a chance of going back to the old
1051 * one, if the new one fails init for some reason.
1053 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
1055 elevator_t *old_elevator, *e;
1056 void *data;
1059 * Allocate new elevator
1061 e = elevator_alloc(q, new_e);
1062 if (!e)
1063 return 0;
1065 data = elevator_init_queue(q, e);
1066 if (!data) {
1067 kobject_put(&e->kobj);
1068 return 0;
1072 * Turn on BYPASS and drain all requests w/ elevator private data
1074 spin_lock_irq(q->queue_lock);
1076 set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1078 elv_drain_elevator(q);
1080 while (q->rq.elvpriv) {
1081 blk_remove_plug(q);
1082 q->request_fn(q);
1083 spin_unlock_irq(q->queue_lock);
1084 msleep(10);
1085 spin_lock_irq(q->queue_lock);
1086 elv_drain_elevator(q);
1090 * Remember old elevator.
1092 old_elevator = q->elevator;
1095 * attach and start new elevator
1097 elevator_attach(q, e, data);
1099 spin_unlock_irq(q->queue_lock);
1101 __elv_unregister_queue(old_elevator);
1103 if (elv_register_queue(q))
1104 goto fail_register;
1107 * finally exit old elevator and turn off BYPASS.
1109 elevator_exit(old_elevator);
1110 clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1111 return 1;
1113 fail_register:
1115 * switch failed, exit the new io scheduler and reattach the old
1116 * one again (along with re-adding the sysfs dir)
1118 elevator_exit(e);
1119 q->elevator = old_elevator;
1120 elv_register_queue(q);
1121 clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1122 return 0;
1125 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1126 size_t count)
1128 char elevator_name[ELV_NAME_MAX];
1129 size_t len;
1130 struct elevator_type *e;
1132 elevator_name[sizeof(elevator_name) - 1] = '\0';
1133 strncpy(elevator_name, name, sizeof(elevator_name) - 1);
1134 len = strlen(elevator_name);
1136 if (len && elevator_name[len - 1] == '\n')
1137 elevator_name[len - 1] = '\0';
1139 e = elevator_get(elevator_name);
1140 if (!e) {
1141 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1142 return -EINVAL;
1145 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1146 elevator_put(e);
1147 return count;
1150 if (!elevator_switch(q, e))
1151 printk(KERN_ERR "elevator: switch to %s failed\n",
1152 elevator_name);
1153 return count;
1156 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1158 elevator_t *e = q->elevator;
1159 struct elevator_type *elv = e->elevator_type;
1160 struct elevator_type *__e;
1161 int len = 0;
1163 spin_lock(&elv_list_lock);
1164 list_for_each_entry(__e, &elv_list, list) {
1165 if (!strcmp(elv->elevator_name, __e->elevator_name))
1166 len += sprintf(name+len, "[%s] ", elv->elevator_name);
1167 else
1168 len += sprintf(name+len, "%s ", __e->elevator_name);
1170 spin_unlock(&elv_list_lock);
1172 len += sprintf(len+name, "\n");
1173 return len;
1176 struct request *elv_rb_former_request(struct request_queue *q,
1177 struct request *rq)
1179 struct rb_node *rbprev = rb_prev(&rq->rb_node);
1181 if (rbprev)
1182 return rb_entry_rq(rbprev);
1184 return NULL;
1186 EXPORT_SYMBOL(elv_rb_former_request);
1188 struct request *elv_rb_latter_request(struct request_queue *q,
1189 struct request *rq)
1191 struct rb_node *rbnext = rb_next(&rq->rb_node);
1193 if (rbnext)
1194 return rb_entry_rq(rbnext);
1196 return NULL;
1198 EXPORT_SYMBOL(elv_rb_latter_request);